
Available on line at www.alexjournal.org/math

Volume1 -Number1 - June 2010
Alexandria Journal of Mathematics                                                                                                    (ISSN 2090-4320 )

 

11 

Adomian Decomposition Method  

Applied to Nonlinear Integral Equations 

 

Fawzi Abdelwahid 
   

Department of Mathematics 

 Faculty of Sciences 

 University of Garyounis 

 Benghazi-Libya 

fawziabd@garyounis.edu 

 

Abstract 
Our main objective in this paper is to study the accuracy, applicability and simplicity of Adomian method 

applied to non linear integral equations. In this work, we introduced a result obtained by the linearization 

method applied on a selected non-linear integral equation.  Then, we compared this result against a result, we 

obtained by the Adomian decomposition method. This comparison study, showed the applicability and the 

accuracy of Adomian decomposition method comparing with the linearization method, even when the accuracy 

of linearization method improved by employing variable steps. This study showed also, that the simplicity and 

the speed of the convergent of Adomian decomposition method is depended on the initial choice of 0y . 

 

1. Introduction 

In recent years, numerous works have been focusing on the development of more advanced 

and efficient methods for integral equations such as implicitly linear collocation methods [1], 

product integration method [2], and Hermite-type collocation method [3] and semi analytical-

numerical techniques such as Adomian decomposition method [4]. In this paper, we 

introduce a result obtained by the linearization method [5], then we compared this result 

against a result, we will obtain by Adomian method. To do that, we will introduce Adomian 

method for the nonlinear integral equations.   

The general form of nonlinear integral equations which we will study is 

 

 ( ) ( ) ( , ) ( ( ))
x

a

y x f x k x t H y t dt   .           (1.1) 

In (1.1), ( )y x is an unknown function, a  is a real constant.  The kernel ( , )k x t  and ( )f x  are 

analytical functions on 2R  and R , respectively,   is a real (or complex) parameter, known as 

the eigenvalue when   is real parameter, and H  is nonlinear function of y .  Equation (1.1) 

represents a nonlinear Volterra integral equation of second kind. 

The first step of Adomian technique is to decompose y into 
0

n
n

y




  and assume that 

 
0

n

i
n i

y Lim y
 

 
  

 
            (1.2) 

Next, we choose 0 ( )y f x  and set
0

( ) n
n

H y A




  , where nA ; 0n   are special polynomials 

known as Adomian polynomials [6-7].  

Now equation (1.1) becomes, 

 
0 0

( ) ( , )
x

n n
n na

y f x k x t A dt
 

 

 
   

 
  .           (1.3) 

This leads to the recursive formulas 
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                    0 ( )y f x  

         (1.4) 

  1 ( , )
x

n n
a

y k x t A dt   , n = 0, 1, 2, …  .  

As we will see later, the choice of the initial data 
0y , plays an essential rule on the speed of 

the convergence of Adomian method.  In ref [9], close formulas of Adomian polynomials nA  

for any analytic nonlinear function ( )H y , introduced in the forms 

 

  0 0( )A y y , 

          (1.5) 

 
1

0
, 1 2 1 2

1 , , ,1 2 1 0

( )1
.... ,

!

n n v

n n i i i i i ivv
v i i iv

d H y
A y y y

v dy






 

  
 

 
  

 
 

   1,2,....n   

 

Here n v  and ,n m  is the kronecker delta.  Consequently, this gives 

  

   0 0A H y  

 

   1 1 0
0

d
A y H y

dy
  

            (1.6) 

     
2

2
2 2 0 1 02

0 0

1

2 !

d d
A y H y y H y

dy dy
   

 

  
     

2 3
3

3 3 0 1 2 0 1 02 3
0 0 0

1

3 !

d d d
A y H y y y H y y H y

dy dy dy
  

 

  

    To generate the highest order Adomian polynomials, we can use the formulas (1.5) and any 

Mathematical packages.  This enables us to calculate any desire order of these polynomials.  

As example, we can found 

 

       
2

7 7 0 3 4 2 5 1 6 02
0 0

d d
A y H y y y y y y y H y

dy dy
      

 

 
2 2 2 3
2 3 1 3 1 5

1 2 4 03
0

2 2 2

y y y y y y d
y y y H y

dy

 
    

 
 

 
23 3 4
1 2 31 2 1 4

04
0

6 2 6

y y yy y y y d
H y

dy

 
   

 
 

 

           (1.7) 

   

    
43 2 55 6
1 31 2 1 2

0 05 6
0 0

12 24 120

y yy y y yd d
H y H y

dy dy

 
   

 
 

 
7 7
1

07
0

5040

y d
H y

dy
. 

 

Note that: the polynomial 0A  depends only on 0y , 1A  on 0y , 1y  and 2A  on 0 ,y  1 2,y y .  In 

general the polynomials nA  depends on only 0 1, ,..., ny y y , with the sum of subscripts of the 
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components of ny  of each term of nA  is equal to n.  In addition, the polynomial 0A  is always 

determined independently of the other polynomials nA ; ( 1n  ), hence 0A  is always defined by

0 0( )A H y . 

2. Linearization-Method Result  

The linearization method based on the piecewise linearization of the nonlinear integral 

equations, and the analytical solution of the resulting linear integral equation. In this section, 

we present a numerical result obtained by the linearization method.  In ref. [8], they study the 

solution of the following Volterra non-linear integral equation in [0,1]  
 

  2 2

0

1
( ) 1 ( )

2

x
x xy x e e y t dt                (2.1) 

 

Following the same reference, we can reduce the integral equation (2.1) to the linear integral 

equation 

 

 2 2

0

1
( ) 1 2 ( ) ,

2

x
x x

n ny x e e xy y y t dt       1n nx x x   .          (2.2) 

 

The numerical solution of (2.2), with step size h  and at the grid points 1; ( 0,1,2,.....)nx n  , can 

be obtained from the formula 

 

     2 2 21 1 1 1
1

1 1 1 1
1 1

2 2 2 2

x x hy x xn n n n n
n n ny y e e e y e e   


 
         

 
 

  

  2 2211
1

2 1
2

xy x tyt tnn n n
n xn

y e e e e dt
  

  
 

          (2.3) 

Following ref [7], Table 2.1, shows the errors-involved presented by the Linearization 

method with the step sizes 0.0001, 0.001, 0.01, and 0.1 along with the exact solution. The 

exact solution at x = 0.7 is 2.013752707000, whereas the numerical solutions corresponding 

to 0.0001, 0.001, 0.01, and 0.1 are 2.0137523240, 2.0137511060, 2.0136061360, and 

2.0005244930, respectively. Note that: the aim of Darania Ebadian and Oskoi work [8], was 

to get 10
x kr re


 , where rk  is any positive integer.  Hence, by assuming  10 10

k krMax
  , the 

step size h  can be decreasing as far as the inequality 10
x kre   holds at each point xr . 

Table 2.1 shows the errors-involved presented by the Linearization method with 

 h = 0.0001, 0.001, 0.01, and 0.1 along with the exact solution.  

 
 h = 0.1 h = 0.01 h = 0.001 h = 0.0001 

0.0 0.000000000 e +00 0.000000000 e +00 0.000000000 e +00 0.000000000 e +00 

0.1 3.779750000 e  -04 4.065000000 e  -06 5.100000000 e  -08 2.000000000 e  -08 

0.2 9.402320000 e  -04 1.015300000 e  -05 1.160000000 e  -07 5.800000000 e  -08 

0.3 1.783404000 e  -03 1.933700000 e  -05 2.150000000 e  -07 8.500000000 e  -08 

0.4 3.063988000 e  -03 3.337100000 e  -05 3.700000000 e  -07 1.190000000 e  -07 

0.5 5.042530000 e  -03 5.519100000 e  -05 6.140000000 e  -07 1.890000000 e  -07 

0.6 8.166182000 e  -03 8.989100000 e  -05 9.900000000 e  -07 2.580000000 e  -07 

0.7 1.322821400 e  -02 1.465710000 e  -04 1.601000000 e  -06 3.830000000 e  -07 

0.8 2.168746500 e  -02 2.421720000 e  -04 2.612000000 e  -06 6.260000000 e  -07 

0.9 3.633225600 e  -02 4.095920000 e  -04 4.382000000 e  -06 9.340000000 e  -07 

1.0 6.271307700 e  -02 7.156940000 e  -04 7.651000000 e  -06 1.600000000 e  -06 
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3. Adomian Decomposition Method Result  

In order to assess both the applicability and accuracy of the Adomian method, we apply  

Adomian method on the selected non-linear integral equation (2.1), and compare our result 

against the linearization method result of the previous section.  To do that, we follow ref. [7] 

and write (2.1) in the operator form 

 

    2 21
( ) 1 ( )

2

x x
xy x e e L y t     

0

( )
x

tL dt  ,         (3.1) 

 

For the Adomian polynomials 
nA  of the non-linear function 2 ( )y x  we can use the formula 

(1.5).  This gives 

 

 2

0 0A y  

 
1 0 12A y y  

 2

2 0 2 12A y y y                                                                                                           (3.2) 

 3 0 3 1 22 2A y y y y   

 
2

4 0 4 1 3 22 2A y y y y y  
 

Now, we decomposes y in (3.1) into 
0

n

n

y




 , and equate the non-linear term to 
0

n
n

A




 .  Then 

(3.1) becomes 

 

  
0 0

( )n x n

n n

y x f x L A
 

 

   . 

 

Finally, we set 
0 ( )y f x , which yields the recursive formulas 

 

 0 ( )y f x ,  

          (3.3) 

   1n x ny x L A  , 1n   

 

This gives,  

 0 ( )y f x  

 

   2

1 0 0x xy x L A L y   

 

  2 1 0 1(2 )x xy x L A L y y   

          (3.4) 

   2

3 2 0 2 1(2 )x xy x L A L y y y    

 

  4 3 0 3 1 2(2 2 )x xy x L A L y y y y    
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  2

5 4 0 4 1 3 2(2 2 )x xy x L A L y y y y y   
 

 

Now, (3.5) and (3.2) leads to 

 

 

 
2

0

1 1
( )

2 2

x xy x e e    

         (3.5) 

   2 3 4

1

47 1 1 1 1

48 4 4 3 16

x x x xy x x e e e e        

 

   2 2 3 4 5 6 2

2

551 47 1 35 161 5 41 11 1 1 1

2880 48 8 24 96 18 192 120 96 2 8

x x x x x x xy x x x e e e e e e xe xe            

 

Similarly, with the help of Mathematica Packages, we can calculate ( )ny x for 5n  .  This 

will lead to the approximate series solution  

 

   0 1 3 ......n ny x y y y y              (3.6) 

 

Note that, we believe that the series in (3.6) converges [**] and 

 

 
0

( ) ( ) x

n n n

n

Lim y x y x e






  .         (3.7) 

 

To compare our result against the linearization method result, we study the Adomian 

approximate solutions  

 

  
0

, 0,1,2,....
n

n i

i

y x y n


           (3.8) 

 

For example: 

 

  2 3 4

1

23 1 1 1 1
2

48 4 4 3 16

x x x xy x x e e e e                (3.9) 

 

 

   2 2 3

2

829 35 1 13 137 11

2880 48 8 24 96 18

x x xy x x x e e e         

 

 4 5 6 229 11 1 1 1

192 120 96 2 8

x x x xe e e xe xe           (3.10) 

 

The following table (3.1), contains Adomian approximate solutions  5y x ,  10y x ,  12y x  and 

the exact solution   xy x e  on the interval [0,1] .  This result indicates that Adomian 
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approximate solution  12y x  is nearly identical to the exact solution and we believe for large 

enough n ,  ny x  is identical to the exact solution. It also showed that Adomian method 

minimizes the computational difficulties of the other methods, such as linearization method, 

because the components 
0 1 2, , ,...y y y  are usually determined by using simple integration 

formulas. 

 

 

 

 

 

 

Table 3.1: A comparison study between the numerical solutions of Adomian approximations 

 5y x ,  10y x ,  12y x  and the exact solution  y x  on the interval [0,1] .  

 

 

Adomian 

approximation 

 5y x  
….… 

Adomian 

approximation 

 10y x  
……… 

Adomian 

approximation 

 12y x  

The Exact 

Solution 

  xy x e  

0.0 1.000000000  1.000000000  1.000000000 1.000000000 

0.1 1.105169816  1.105170918  1.105170918 1.105170918 

0.2 1.221325536  1.221402734  1.221402757 1.221402758 

0.3 1.348904080  1.349856590  1.349858612 1.349858808 

0.4 1.486065716  1.491770554  1.491816326 1.491824698 

0.5 1.625456162  1.648090633  1.648572331 1.648721271 

0.6 1.749776851  1.817596906  1.820627063 1.822118800 

0.7 1.827622422  1.990961309  2.003913672 2.013752707 

0.8 1.812527615  2.138405580  2.178779637 2.225540928 

0.9 1.649083627  2.194820246  2.290348556 2.459603111 

1.0 1.288613226  2.058799960  2.234344769 2.718281828 

 

4. The Convergence of Adomian Method  

In this section study the convergence of Adomian method. In particular, we will show that the 

Adomian method has a fast convergent series solution comparing with other methods.  We 

will also show that the speed of the convergent of Adomian decomposition method is 

depended on the initial choice of 0y .  To do that, let us study integral equation (2.1) for 

different choice of 0y . 

First, we write the integral equation (2.1) in the form 

 

  2 2

0

( ) 1 ( )
x

t ty x y t e e dt               (4.1) 

 

 Then we write (4.1) in the operator form 

 

  2 2( ) 1 ( ) t t
ty x L y t e e    ,            (4.2) 

 

Next, we equate the non-linear term 2 ( )y x  to nA ,  and decompose y  into 
0

n

n

y




 . Then (4.2) 

becomes  
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 
0 0

1 1 2
!

n
n

n t n
n n

t
y L A

n

 

 

  
        

  
   

For the initial data, we assume that 
0 1y  .  This yields the recursive formulas 

 
0 1y  ,  

         (4.3) 

  1 1 2 , 0,1,2,....
!

n
n

n t n

t
y L A n

n


 
     

 

,  

This gives,  
 

0 1y   

        2

1 0 00 1t t ty x L A L y L x      

     2

2 1 0 1

1
(2 ) (2 )

2!
t t ty x L A t L y y t L t t x        

        (4.4) 

   2 2 2 2 2 2 2 3

3 2 0 2 1

3 3 3 1 1
(2 ) ( ) ( )

2 2 2 2 3!
t t t ty x L A t L y y y t L t t t L t x
 

          
 

 

 

   3 3 3 3 3 3 4

4 3 0 3 1 2

7 7 2 2 7 1 1
(2 2 ) ( ) ( )

3! 3! 3! 2! 3! 3! 4!
t t t ty x L A t L y y y y t L t t t L t t
 

          
 

 

 

 

  4 4 4 4 4 4 4 4 4 4 5

5 4

15 2 2 1 15 2 2 1 15 1 1
( ) ( ) ( )

4! 4! 3! 2! 2! 4! 4! 3! 2! 2! 4! 4! 5!
t t t ty x L A t L t t t t L t t t t L t t
 

            
    

Next, we used the Mathematica Packages to calculate ( )ny x for 5n  .  This led to the 

approximate series solution  

 

   0 1 3 ......n ny x y y y y            (3.6) 

 

This gives, 

 

 
0

1
( )

!

n x

n n

n

y x Lim y x x e
n







    

 

This result showed that the Adomian method has a fast convergent series solution comparing 

with other methods and the convergent of the series solution depends on the choice of initial 

data,   . In particular, this showed also the applicability and the accuracy of the Adomian 

method, comparing with the linearization method, even when a small number of iterations are 

used. 

 

5. Conclusion 

In this work we showed the accuracy, applicability and simplicity of Adomian method 

applied to non linear integral equations. A compression study against the linearization 

method, showed the applicability and the accuracy of Adomian decomposition method, even 

when the accuracy of linearization method improved by employing variable steps. This study 

also showed, that the speed of the convergent of Adomian series solution depends on the 

initial choice of 0y , which will open the door for further research in this direction.  In 
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particular, this study showed the accuracy of the Adomian method even when a small number 

of iterations are used.  This encourages us to apply the same approach for other types of 

integral equations. 
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