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Abstract 
We have investigated the motion of a stretched elastic circular membrane which is subjected to a restorative force 

proportional to the velocity. The wave equation which describes the vibrations in this case is written in polar form. The 

perturbation method is applied together with the usual method of separation of variables. The oscillations are then 

given at any instant of time t and point on the membrane depending on the given boundary and initial conditions. The 

roles of the restorative force and the initial displacement are discussed. The numerical solutions are then given by using 

the program Mathematica. 
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1. Introduction 

Most of the physically important partial differential equations are of second order and can be 

classified into three types: elliptic, parabolic, and hyperbolic. Elliptic partial differential equations 

involve second order derivatives in each of the independent variables, each derivative having the 

same sign when all terms in the equation are grouped on one side. Roughly speaking, parabolic 

partial differential equations involve only a first-order derivative in one variable, but have second 

order derivatives in the remaining variables. Hyperbolic partial differential equations involve 

second-order derivatives of opposite sign, such as the wave equation describing the vibrations of a 

stretched string. Hyperbolic partial differential equations are very essential in engineering and 

theoretical physics problems. One of the famous problems of their applicability in theoretical 

physics is the solution of the motion of a relativistic quantum mechanical particle in an 

electromagnetic field. The problems of vibrating rectangular or circular membrane are also very 

interesting especially when the membrane is subject to a restorative force. 

    The vibrating membrane problem can be used as a rather appropriate example to demonstrate the 

power of computer algebra systems like Axiom, Maple, Mathematica, Derive, etc. [1]. Different 

methods have been applied for the investigation of vibrating membranes. The differential 

quadrature method was applied for frequency analysis of rectangular and circular membranes [2,3]. 

Accordingly, some important studies concerning analysis of membranes have been carried out 

[4,5]. Furthermore, free vibration analysis of plates and shells has been also investigated [6,7]. 

    Once the boundary and initial conditions are given, the simplest method for solving the 

differential equation governing the problem of a vibrating rectangular or circular membrane is 

given, as usual [8], by separating the variables. In the presence of a restorative force, that is 

proportional to the velocity, the perturbation expansions for eigenvalues and eigenfunctions are 

also of particular interest. Based upon the known solutions of the problem in the absence of the 
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restorative force one can then derive the solutions of the problem in the presence of the external 

force in the form of a power series of those solutions [9]. 

    In the present paper, we have solved the differential equation, which represents the motion of a 

stretched elastic circular membrane that is subjected to a restorative force proportional to the 

velocity by using two methods. The first is the usual method of separation of variables and the 

second is the perturbation method. The roles of the restoring force and the initial displacement are 

discussed. Finally, the displacement of the membrane at any given point (   ) and instant of time t 

is given and the numerical solutions are then given by using the program Mathematica.  

     

2. Formulation of the Problem 

The vibrations of a circular membrane when the membrane is subjected to a restorative force 

proportional to the velocity at any instant of time t is governed by the two-dimensional wave 

equation 

 

                
   

   
  

  

  
    

   

   
 

 

 

  

  
 

 

  

   

   
                                                (2.1)  

 

subjected to the boundary conditions  
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and the initial conditions 
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The initial displacement        and initial velocity        of the membrane are assumed to be 

continuous functions.  

     

3. The Method of Separation of Variables 

Let us find solutions of (2.1) subject to the boundary and initial conditions given by (2.2), (2.3) and 

(2.4) in the form 

 

                                                       . 

 

    Hence, the partial differential equation (2.1) separates to three second-order ordinary differential 

equations in the form 
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In equations (3.1), (3.2) and (3.3) m and   are arbitrary constants to be determined. The solutions of 

these equations, which are finite in t and continuous in our domain of values of   and   are simply 

given by  

                                         
   

 
                        ,                                                  (3.4) 
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                                                      ,                                                     (3.5) 

 

                                                                    ,             (3.6)                                

   

Here,              ,         
  

   
  and         are the Bessel functions. The boundary 

condition (2.2) implies that 

 

                                                                     ,                                                              (3.7)                                

               
Assuming that                      , are positive roots of         the solutions of (2.1) are then 

given by 
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    If the function         is taken to be zero, i.e. the initial velocity is zero, we obtain 

     
 

      
 , and the final solution in this case is then given by 
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4. The Perturbation Method of Solution 

To apply the perturbation method [9,10] to equation (2.1) we try first to find solutions of the form 
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where   is also a function of       and   . 

    Equation (2.1), then, becomes 
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with the boundary condition 
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and the initial conditions 
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    The order of the approximation in the perturbation method is very important, so that we rewrite 

equation (4.2) in the form 
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where   is a parameter introduced to know the order of the approximation and takes the value 1 in 

the final result. Accordingly, the zeroth order of the approximation is governed by the equation 

representing the case where there is no external restorative force, which is obtained by putting  

    in (4.6), i.e. 
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where       is the corresponding solution in this case, which can be proved to be given by 
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    The boundary condition (4.3) is then satisfied and the initial conditions are the same as given by 

(4.4) and (4.5), with    . 

    We have now to determine by how much the solutions of the vibrations of the circular 

membrane, given by equation (4.8), under the boundary and initial conditions stated above, have 

been changed on account of the presence of the disturbing factor  
  

  
 , since it is assumed to be 

small compared to the other terms. The change is known as a perturbation. 

    The second step is now to use the solution            , equation (4.8), to derive solutions of 

equation (4.6), satisfying the boundary and initial conditions stated above in the following manner. 

Assume that the solutions of equations (4.6),         , are expanded in series in powers of  , such 

that 
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For any order of the approximation, we have the system of inhomogeneous wave equations 
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with the initial conditions 
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    The solutions of equations (4.10) are given by 
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where  
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                                  ,                                  (4.13) 

 

and       
   

    ,            are to be determined. From (4.10) and (4.12) we get 
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    The solutions of (4.14) can be written in the form 

 

                    
   

    
  

      
     

     
                     

 

 
 ,           .                       (4.15)

   

 

    Hence, the solutions of ( 2.1) are finally given by 
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    From (4.14) and (4.15), we have 
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    Accordingly,              and              are calculated. From which the functions   and, 

hence,   are calculated. We have applied the perturbation method to the second-order of the 

approximation, which is sufficiently enough since the convergence of the solutions for our choice 

of parameters is good. Hence, our solutions are finally given by 
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    The initial condition (2.3) now gives 
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and the initial condition (2.4) gives 
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5. Determination of the Coefficients 

In the treatment of the present problem we considered the following physical assumptions: 

    1. The mass of the membrane per unit area is constant ("homogeneous membrane"). The 

membrane is perfectly flexible and offers no resistance to bending. 

    2. The membrane is stretched and then fixed along its entire boundary in the plane. 

    3. The tension per unit length,  , caused by stretching the membrane is the same at all points and 

in all directions and does not change during the motion. 

    4. The deflection          of the membrane during the motion is small compared to the size of 

the membrane, and all angles of inclination are small. 

    Although these assumptions cannot be realized exactly, they hold relatively accurately for small 

transverse vibrations of a thin elastic membrane, so that we shall obtain a good model, for instance, 

of a drumhead. In the numerical calculations we take     ft, the density,     slugs/ft², as for 

light rubber, the constant tension     lb/ft, so that          (ft/sec)². Moreover, the initial 

displacement is taken to be 

 

                                                                     
   ,                                             (5.1)

   

which is a continuous function of   and θ in the intervals        and       .  

    Also, as before, we assume that the initial velocity is zero, so that          . Hence,   
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    The initial displacement condition then gives 

 

      
 
   

 
                                                         

           (5.3)  

 

    Comparing the coefficients of         and         on both sides of (5.3) we conclude that all 

the coefficients are zero except: 
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    Accordingly, (4.19) takes the form 
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where         are given by (4.20) and (5.2). 

    It is to be noticed that the boundary and initial conditions for our model do not give information 

about the coefficients     ,     ,      and     . We can arbitrarily take          and        . 

Also, choosing         and         we get   
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6. Results and Conclusions 

In order to investigate the role of the restorative force, given in this paper by the term  
  

  
 , we 

draw the maximum value of the function u as function of the time t for different values of the 

coefficient  . In Fig. (1) we present the variation of the maximum value of u with respect to the 

time   when there is no external force,    . Fig.(2) shows the variations of maximum u with 

respect to   for                   and 0.5. It is seen from Fig.(2) that the amplitude of the 

oscillation and the time during which the phenomena is seen, decrease as   increases, as expected. 

The process is well presented at        
    In Fig. (3) we present the vibrations of the circular membrane at    ,      , initial 

displacement. In Figs. (4-21 "a") we present the vibrations of the circular membrane, by using the 

method of separation of variables, at                                    , respectively,  

     . In Figs. (4-21 "b") we present the vibrations of the circular membrane, by using the 

perturbation method, at                                  , respectively,       .             

    It is seen from Figs. (4-21 "a, b") that the two methods of solutions give the same results (same 

vibrations), a result which shows that the perturbation calculations up to the second-order of the 

approximation give accurate solution to the original problem.  

 

             
   

Fig. (1) Maximum displacement, for different values of    , as function of time t, K = 0.0  
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Fig. (2) Maximum displacement, for different values of    , as function of time t, K = 0.1, 0.2, 0.3, 

0.4 and 0.5. 

 

 

    
Fig. (3) Initial displacement. 

 

Sec. a- Method of separation of variables  b- Second-order perturbation method  
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 Figs. (4-21 "a") Vibrations of the circular membrane, by using the method of separation of 

variables, at                                    , respectively,      .  

Figs. (4-21 "b") Vibrations of the circular membrane, by using the perturbation method, at   
                              , respectively,      .  
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    Since the radius of the membrane a = 1 ft, the values of the frequency of oscillation, in our 

model, are given by 

                                                                       
     

  
 HZ.                                                                         

(6.1) 

 

The values of these frequencies are given in Table-1.  

 

 

 

 

 

 

 

 

 

 

Table-1 Frequency values for c = 2 ft/sec. 

 Frequency (HZ) 

    0.765 

    1.219 

    1.634 

    2.030 

    2.414 

    2.791 

    3.161 

    3.527 

    3.890 

`    4.250 
 

 

    In practical applications, the frequencies given by (6.1) produce vibrations which are outside the 

range of hearing. In circumstances like what we have studied, it is desirable from the physical point 

of view to take the value of the velocity as               In such case, the corresponding values 

of the frequency are in the range                                     For the 

considered modes, these frequencies produce vibrations which can be heard. At the same time, the 

shape of the resulting figures are very similar to those obtained in Figures (4-21 “a” and “b”) but 

with different amplitudes.             
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