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Abstract

In this paper, the existence and uniqueness of the solution of Volterra-Fredholm
integral equations of the first kind with Carleman kernel is investigated. Furthermore,
toeplitz matrix method and Nystrom method are used to obtain the eigenvalues and
eigenfunctions for the Fredholm integral equation of the second kind with Carleman
kernel. The comparison between the two methods shows that their numerical results
are approximately the same.
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1-Introduction

Some basic equations of mathematical physics and contact problems, in the theory of
elasticity, lead to an integral equation of the first or second kind that requires
solutions [1]. Accordingly, different methods of solving some Fredholm integral
equations (FIE) of the first kind with Carleman function are discussed in [2,3].

The theory of eigenvalues and eigenfunctions are also playing an important role in
solving the integral equations, especially with singular kernel. For example, the
spectral relationships for an integral equation of Volterra- Fredholm integral equation
(V-FIE) of thefirst kind can be obtained [3,4].

In the present paper, we study the existence and uniqueness of the solution of V-
FIE of the first kind with Carleman kernel. Two numerical methods are used to obtain
the eigenvalues and the eigenfunctions for the Fredholm integral equation of the
second kind with Carleman kernel, namely: the Toeplitz matrix method and the
Nystrom method. The comparison between the two methods shows that their
numerical results are approximately the same.

2-Volterra-Fredholm Integral Equations of the First Kind with Carleman
Kernel

2-1 Formulation of the problem

Let us consider the V-FIE of the first kind, namely

Jy G(t, DD, 1)dr — [ [1 F(t.D)|x — y| @y, 0)dydr = f(x,t), O<v<1) (21)

under the condition
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[, o(x, t)dx = P(t) (2.2)
The contact problem for a rigid surface (G, v) having an elastic material lead to the
integral equation (2.1) under the condition (2.2), which can be investigated for G
being the displacement magnitude and v the Poisson's coefficient. Let a stamp of
length two units with its surface being described by f,(x) is impressed into an elastic
layer surface of a strip by a variable force P(t), whose eccentricity of application is
e(t), that causes rigid displacement y(t). Therefore, we define the free term of (2.1)
as

fet) =m0l6(t) - £.(0)], (6= -"=,0<t <), (2.3)

T 201-v)!

In (2.1) the given function of time F (t, t) represents the resistance force of the lower
material, while G (¢, 1) is called the supplied external force in the contact domain of
the upper and lower surfaces. Then, using the method of potential theory [5] the
spectral relationships for the Gegenbauer operator are obtained and many special
cases are discussed. Also, a numerical method is used to obtain a system of FIE of the
first kind or second kind depending on the relation between the derivatives of the two
functions F(t,7) and G(t,7) for al values of t,7 € [0,T]. Finally, we used the
Toeplitz matrix method and Nystrom product method to obtain numerical solutions of
the linear system of FIE with Carleman kernel.

2-2 Existence and Uniqueness of the Solution
In order to guarantee the existence of a unique solution of equation (2.1), under the
condition (2.2), we assume the following:

()  Thekernel k(|52|) satisfiesthe discontinuity condition
f_ll f_ll k? ( == )dxdy =4 (A isaconstant)

(i) For all valuesof t,7 € [0,T] the two continuous functions of time F (¢, ) and
G(t, 1) satisfy | F(t,t)| < B,| G(¢t,7)| < C.

(iii) The known function f(x, y) € L,[—1,1] x C[0, T], and its norm is defined as

If @ e = o2& Jy{J7, 2 1)dxf dr.

(iv) The unknown function ®(x,t) behaves like f(x,t) and satisfies Lipschitz
condition with respect to the first argument and Holder condition for the second
argument.

To obtain the solution of (2.1), under (2.2), we divide the interval [0,T], as
O=ty<t;<- <ty=Twhere,t =t;,j =012,..,N, toget

fotj G(t, 1)®(x, T)dT — fotj f_llF(tj,T)Ix —yl7vo@y, Ddydr = f(x,t;), (24

under the condition
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Hence, we have

{=0 Vi G(tj, ti)(l)(x, ti) - Z{=0 ulF(tj, tl) f_lllx - yl—vq)(y, tl)dy + O(h]p) +
o)) = flxt;), (= maxosiy by by = tig — t;) (2.6)

where, O(hf’) is the estimate error deduced from the approximate integral of the

function G(¢t,t) and o(hf) depends on F(t, 7). The values of the weight functions

v;,u; and p,p depend on the number of derivatives of G(t,t) and F(t, ), for al
7 € [0, T] with respect to t.

Example
If G(t,t) € C*[0,T]
then, we have

p=4, j=4ad vo=%h0, v4=%h4, v, = h,,n=123, v, =0 for n>4.
While, if F(t,t) € C3[0,T], wehave
p=3,k ~3,uy=5ho,us = shy, Uy = hy,m=1,220d,up, = 0for m >3,

More information about the characteristic points and quadratic coefficient are found
in[6,7].

Using the following notations

Gt t) = Gy F(tjt,) = Fj; , ©(x,t;) = ©y(x)
flt) = fi(x), (i,j,1 =012,..N), 2.7)

formula (2.6), after neglecting the error, becomes

LoV G () = X wFy, [l =y 0, (n)dy = £(x) (2.8)
under the condition

f_ll ®;(x)dx = P; (P; arecongtants j =0,1,2,...N) (2.9)
Now, we can discuss the following:
(8) Formula (2.8) represents a linear system of FIE of the second kind, for all

cases when the two functions G(t, ), F(t,7) have the same derivatives with
respect totimet € [0, T]. Hence, we have

@) — i} [ 1x = yI 7D, (y)dy = g;(x) (2.10)
where
j-1

j-1 1
(x) = fi(x) — i Gji®; iFji —yI770;(y)dy,
560 =09 = ) G, )+ s | 1x =y o)y

i=0

hi .,k
W =5 Gk =5 Fj Gy # 0.5 # 0w = v,
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(b) When the function G (t, 7) has n derivatives with respect tot , n < j, therefore
formula (2.8) takes the following forms

z:?=0ui{Gn,i(Di(x) - Fn,i f_lllx - yl_vq)i(y)dy} = fn(x)s (n < J ’ J = O,l,..., N ) (211)
1o Ui{Gr i @y(x) = Foy [, Ix =y 7Y@, (y)dy} =
Fr () = o Bi (wi, G, Frt)@i(x), (n < j,j = 01,...,N). (2.12)

Formula (2.11) represents a linear system of FIE of the second kind, while formula
(2.8) is of the first kind. ®;(x), i =0,1,...,n in the R.H.S. of (2.12) represents the

recurrence solution of the integral equation (2.11) and b, are constants.
() When the function F(t, t) hasn derivatives such that n < j, hence we have

{=n+1 w; G @i(x) = £;(x) — X0 ¥i (Wi, Gy Frt)@i(x), (2.13)
where @;(x) inthe R.H.S. isthe solution of (2.11) and y; are constants.
3-Spectral Relationshipsfor Carleman Integral Equation
In this section, using the method of potential theory, we obtain the spectral
relationships for the FIE of the first kind with Carleman kernel. The importance of
Carleman function came from the work of Arytonian [6], who has showed that the
plane contact problem of the nonlinear theory of plasticity, in its first approximation

can be reduced to FIE of thefirst kind with Carleman kernel.
Consider the integral equation

f_lllx —yI7e()dy} = f(x) (0O<v<1l), (3.1)

under the static condition
[L, ¢G)dyr =P (P is constant) (3.2)
To solve (3.1), under the condition (3.2), we introduce the general Carleman function

UG t) = [1,—22 ay, (3.3)

[((x—y)2+t2]2

The solution of (3.3), under (3.2) is equivalent to the boundary value problem

AU+E2 =g <(x,t) ¢ (-11),A=2 + 62>

t ot axz | o2
U(x,0) = f(x), (x,t € (-11))
UCx,t) =P, (P>0asr =vVa? +t2 > ) (3.4)

The complete solution of (3.3) isgiven by [4]
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¢(x) = ((1:,):1) lim,_, tlyl" x € (-11) (3.5
where I'(n) is the Gamma function.
Using the substitution
Ux,t) = |t] "2V (x, 0), (36)
and the transformation mapping
z=%w(§)=%(f+%), ((=pe? z=x+1y,.=v-1) (37

the boundary value problem (3.4), yields

1
24sin29] V(p’ 6)=0, (b <1)

(o =2)sin6] *V(p.0)l,=1 = f(c0s0), (- <0< m)

AV(p,0) +v(2 = V) [ 255 + -

V(0,9)=0, (A=6_2+1a 1 92

apz ; % 2 692) (38)

where

V(x,y) = V((p + %) cos9, (p — %) sin 9) = V(p,0).

The transformation mapping (3.7) maps the region in the x-y plane into the region
outside the unit circle y , such that w'(§) does not vanish or become infinite outside
y. The mapping function (3.7) maps the upper and lower half-plane (x,y) € (—1,1)
into the lower and upper of semi-circle p = 1, respectively.

Moreover, the point z = oo will be mapped onto the point ¢ =0
Now, using the method of separation of variables, we can write

V(p,0) =R(p)Z(6) (3.9)

The first differential equation of (3.8), then, becomes

p2327§+p +Ve-is ~?|R(p)=0 (0 <p <1) (3.10)
and
L2t p2[a2 + 2220 2(0) = 0 (-7 <6 <) (3.11)

where a? isthe constant of separation.
The general solution of (3.10) and (3.11), respectively takes the form

R(p) = p™*(1 = p>)'F (3, n+vin+1;p?), RO) =0,0< p<1n=012.) (312
and
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Z(6) = Isin6]:C2(cos 6). (—1<6 < mn=012 .) (3.13)

Here, F(a,b;c;z) is Hypergeometric function and C?(x) is the Gegenbauer
polynomial.
From (3.12), (3.13), (3.9), and using the result of (3.6), we get

U(p.6) = p"*F(2,n+vin+2+1;p?) CZ(cos0)

Up.0)=U(5(p+ )c039 (p——)sm 6)= U(xy) (3.14)
The complete solution of the problem, can be obtained, by writing (3.5) in polar
coordinates

( )(sm g)v-1
¢(cosH) = T(I,Jrl)llmp_,l(l p )V 0< 6 <m) (3.15)
2

Then, substituting from (3.14) into (3.15) we get

r(v)r 6 Y

r(n+1+3)sin C:(cos ) (3.16)
+1

\/_2"1"( )F(n+v)

¢(cosH) =

Hence, inserting (3.16) in (3.1), we arrive at the following spectral relationships

: —%w) s =0 G, A=) [ureeos(Z) [ 317

Ix ulvV(1- uz) 2

where 4, are called the eigenvalues of the integral operator. Many spectral
relationships can be established from (3.17)
(@ Letx = —1 in (3.17) and use the following relation

(i) = (D" () (318)
we get

v

L GW gy = (-1, CZ( 1) (3.19)

|1+u|"(1 -u?) 2

(b) Differentiating (3.17) with respect to x and using the relation

a2 GV 00) = Gy Go) (3.20)
we obtain
' CE(l) - T v+1
+
'1|—1-u|v+1(1-u2)1£—”du (n- 1)'r(1+v)cos(’2”)r(n v) (-1 (32

(c) Using the Gegenbauer Cfl (x) and the Jacobi P,f“‘ﬁ )(x) relation
24
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( S)r(n+v) ( —2)

r(n+v;r 1) (x), (322

CZ( )=

we obtain the following spectral relationships

(‘V 1v— 1) v 1'V 1
! P—(”Bvd =2, P( )(x) (3.23)

Ix ulV(1-u?) z
(d) Using the famous formulas [8]

lim,o T (%) €2,(¢) = =Ty, (x),
and

Inﬁ = lim,_o(lx —y|™" = 1), (3.24)

we arrive at the following spectral relationships

mln?2 =0
fll |x1y|xT/2ﬂdy {nTZm(x) >0 (3.25)
2m -

where T,,,(x) isthe Chebyshev polynomial of the first kind.
For aVolterra-Fredholm integral operator, we have

2 (w) v
S0y [y —— = du = T wiFypdn €2 () (n; = 0) (3.26)

lx—ulv(1-u?) 2z~
4-Solution of Fredholm Integral Equation of the Second Kind
Letj = 0in(2.10), we have

Do) =2 [1lx =y Dy = fx), A=k f(x) =L2 (4.1)
In general, consider

O(x) = f(x) + A [ k(lx — y]) ©()dy, (4.2)
where ®(x) is the unknown function, f(t) is a given function and is called the free
term. Hence, the convolution kernel has a singularity and A is a known constant.

Formula (4.1) can be written in the integral operator form

1-K)o=f¥, (4.3
where
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ko= A[' k(x—y)o(y)dy (4.4)

4-1 The existence of a unique solution

In order to discuss the existence of a unique solution, we assume the following
conditions:

(i) The kernel satisfies the Fredholm condition

1

(S, 2, k2 Q1x = yDdydx)* < 4, 4, isaconstan.

(ii) The given function f(x), with its first derivatives, is continuousin L,[—1,1], and
its norm is defined as

1

Il = (f_ll fz(x)dx)E = A,, A, isaconstant.

(iii) The unknown function ®(x) behaves as the known function f(x) in L,[—1,1].
Now, to prove the existence of the solution, we will use the successive approximation
method (Picard method), for this we construct a sequence functions @, (x) defined by

©, () = f() + 2 klx = y]) Dy () dy Oo(x) = f(x).  (45)
For ease of manipulation, it is convenient to introduce

Pn(x) = Op(x) — Dy (%),

Pu() = [ k(lx = YD [0 (0) = Py (D] dy, n=12..

Then, we have

Pa () = 2L k(x = y1) Yy (¥)dy (4.6)
And, we can deduce that
D, (x) = Lo i(x) (4.7)

Using the properties of the norm, we obtain

I GOl =1 2]

1
j k(lx = y1) Ynr()dy
-1

By induction, we get

1, COIl < A, (A )" (4.9)

This bounds makes the sequence y,, converges; so that when n — « , we have

D(x) = limyy, @ (x) =220 ¥i(x) < (4.9)

Az
1-4.1
Also, it iseasily to prove that the existed solution is unique.
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4-2 The normality and continuity of the integral operator
The normality of integral operator

1
KO= A Jk(lx —yl) o(y)dy,
-1

can be proved as follows

1
kol = 4] ( j kz(lx—yl)dy>
-1

i.e

N =

1
1 2
( j CI)Z(y)dy> < | l4 @]

-1

IKIl < [214,

Also, for the continuity, we have

1 1
Ik, = ko1 = 121 (1 K20 = 3Dy ) (110209 - 0,00y )
Ko, || = [ A4 l|®y — @,||. (4.10)

KD, —

Since from (4.9) |A] A; < 1, then the integral operator is a contraction operator.

5-Numerical Methods

(i) The Toeplitz matrix method

In this section, we present the Toeplitz matrix method [9-11] to obtain the numerical
solution for Fredholm integral equation of the second kind with singular kernel. The
idea of this method is to obtain a system of 2N + 1 linear algebraic equations, where
2N + 1 isthe number of the discrimination points used.

Let us consider the Fredholm integral equation of the second kind

O(x) = f(x) + A [° k(lx — y]) ©(y)dy. (5.1)

The integral termin (5.1) can be written in the form

nh+h a

[ ke(lx = yD) ©G)dy = ZN2y 10 k(lx - yD @)y, h=2 (52)

The second step is to approximate the integral in the right hand side of (5.2) by

2 k(1 = y1) ©()dy = A,(x)p(nh) + B, (x)p(nh + k) + R, (5.3)

where A,,(x) and B,(x) aretwo arbitrary functions which will be determined and R
is the estimate error. Putting ¢(x) = 1,x in equation (5.3), we obtain a set of two

equations in terms of two functions A4,,(x) and B, (x), where, in this case, we have
R = 0. By solving these two equations, the functions 4,,(x) and B, (x) take the forms

An(x) = = ((nh + R)I(x) — ] (x)) (54)
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and
Ba(x) = U(x) = nhi(x)) (55)
The values of I(x) and J(x) are
16) = [ klx = ) (5.6)
and
J@) = [ yk(lx = y1) dy (5.7)

Hence, the relation (5.2), becomes

IS k(x — yD) ¢ (0)dy = ZN__y Da(x) p(nh), (5.8)
where
A_y(x) ‘n=—N
D,(x) = A, (x) + B,_;(x) : —-N<n<N (5.9)
By_1(x) ;n=N

Furthermore, the integral equation (5.1), then, becomes

d(x) = AXN__nyDp(x) p(nh) = f(x). (5.10)

Now, if we put x = mh in (5.10), we get
p(mh) — AXN__y anpm d(nh) = f(mh) (5.11)

The function ¢ is a vector of 2N + 1 elements but a,,, is a matrix whose
elements are given by

Anm = a|,n,m| + Inm (5.12)

A = An(mh) + B, _, (mh) i —N<n<N

The matrix a,, is the Toeplitz matrix of order 2N + 1 where —N < m,n < N
and the elements of the second matrix are zeros except for the elements of the first
and last rows. We can evaluate the values of the first row by substituting in
B,_1(mh);by —=N;m = —-N +i, 0<i < 2N ,iisan integer. And the values of the
last row are given by substituting in A,(mh) ;by n=N,m =—N +1i.

The solution of formula (5.11) takes the form

d(mh) = [1 = Aannm] f(mh) I = Adym| # 0, (5.13)

where I isthe unit matrix.
The Toeplitz matrix method is said to be convergent of order r in [—a, a].
If, for N sufficiently large, there exists a constant D > 0 independent of N such that
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lp(x) — py ()l < DN (5.14)
The error term R is determined from the following formula
R= [0 y2k |x = yldy — A, () (h)? = B,()mh + h)? | = 0(h®)  (5.15)

Application of Toeplitz matrix method

Consider the discontinuous kernel

k(x,y) =|x—y|™ O<sv<l1 (5.16)

then
1G) = [ x =y dy = A, (x) + B, (x) (5.17)

and
J(x) = f;”h ylx — y|™Vdy = aA, (x) + (a + k) B,(x) (5.18)

Hence, using equations (5.17) and (5.18) we get

|x—(a+h)|2_"_ [x—al?>~V
a-ve-v) a-ve-nl

4,00 =[x - + (5.19)

(x—(a+h))2_v+ (x-a)?™v
1-v)(2-v) a-ve-»|

B = 1[G — @t ) - (520)

By puttinga =nh,and x =mh,—N < n < N,—N < m < N inequations
(5.19) and (5.20), we get

A, (mh) = % |G — nyr (-1-2=0)+ (’”‘;‘j)z_”], (5.21)
and
Balmh) =7 [(m = n = 17 (1 - 22 + 2] 622

Therefore, the elements of the Toeplitz matrix are given by

hl—v

a}l,m = An(mh) + Bn_l(mh) = m [(m -_n-— 1)2_V — 2(m — Tl)z_v +

(m-—n+1)*7"]. (5.23)
In the homogeneous case, we have the following integral equations
K¢ = 1¢
kb= [llx—yl™o@)dy, 0<v <L

If we use the Toeplitz matrix method, the eigenvalues and eigenfunctions will be
obtained numerically asfollows, for N =1, v =0.1
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.5847995322 .526315790 .4756686559
amn =| 1012942670 1.169590643 1.012942670
4756686559 526315790 .584795322
and
Eigenvalues 1 | Eigenfunctions Average
eigenfunctions
.08099027029 | [. 3945573400, —.7342712425 ,.3945573552] | .0182811509
.1091266661 9x10~10
[. 7409863181, —.110x10~7, —.7409863062 ]
2.149064351 -.5902364859
[—.4352411919, —9002270738, —.4352411920 ]
ForN =2, v =0.1, we have
ae3133840535 .2820456481 .2549045215 2430196326 .2353518670 §
8.5428225358 6267681066 5428225364 5012146136 .4806335778 -
a,n =G.5012146135 .5428225364 6267681070 .5428225364 5012146135 +
8.4806335778 5012146136 5428225364 6267681066 5428225358 -
2353518670 .2430196326 .2549045215 .2820456481 3133840535
and
Eigenvalues A Eigenfunctions Average
eigenfunctions
.04614131009 | [.3635923367,-.4691244764,.2494323361 | 7.676012832 10°°
-.4691244015,.3635922405]
04709772222 | [ 5330501467 ,-.4225289259,-.95x10°® 8.6 10"
,.4225289661,-.5330501731]
.08445138050 | [-.3147874395,-.1466550567,.8754431615 | - 9488367 10°°
-.1466550617,-.3147874386]
1564879573 | [.2390245966,.4805219940,-.18x10°® -1.74"10°
-.4805219991, -.2390245984]
2172894057 | [.4323332395,.8958531334,.9093450733 | .7131435636
,.8958531327,.4323332389
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Finally, for N = 3,v = 0.1; we get

Eigenvalues 4 | Eigenfunctions Average
eigenfunctions
.03189238343 | [.4873130708,-.4432031295,.1354699398 2414285714 10°°

,-.1037x10°, -.1354697675
,-4432026689,-.4873126619]
.03242709156 | [-.3821413186,.4378206084,-.1718382822 | - 4.863370886" 10°
,.1982746406,-.1718384881
,.4378212561,-.3821420124]
.04517354903 | [.1970588112,-.03258804927,-.4296431679 | 2.997585276 " 10 °
,.5513279056,-.4296431643
,-.0325880455,.1970588071]
06123226648 | [-.1517762035,-.1391825439,.3715950288 | - 6" 10 %°
,.9x10° -.3715950334
,-1391825443,.1517762026]
.09567105961 | [.2531157089,.4024654962,-.2839905569 7.288509714" 10°°
,-.6921617410,-.2839905427
,.4024655015,.2531157020]
1662641344 [.2678353197,.6185749142,.4185740823 -4.114285714" 10°°
-.32x10° -.4185740846
,-.6185749140,-.2678353144]
2.178153958 | [-.4322066284,-.8903750005,-.9085714372 | - .8733799745

,-.9138674191,-.9085714375
,-.8903750009,-.4322066284]

(ii) The product Nystrom method
To use the product Nystrom method as a numerical method, we consider

$(x) = f(x) + A [, pCe.y)k (x,y) p()dy, (5.24)
where p(x, y) is 'badly behaved' function and k(x,y) is ‘well behaved' function of
their arguments, f(x) isagiven function, while ¢ (x) is the unknown function. Here,
the use of product integration treats p(x, y) exactly and approximates only the part of

the integrand which is smooth, by a suitable Lagrange interpolation polynomial. So,
equation (5.24) can be written in the form

d(x) = fx;) + AZ?’:Q VVUE (xi,y,-) ¢>(y,-), (5.25)

where, x; =y; =a +ih,i =012,..,N, with h :bN;a, N even and W;; are the
weights which can be determined directly from [6,9].
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Also, we approximate the integral term by a product integration, from Simpson's rule,
where, x = x; and we write

J2 Py (i) 9y = 3,2, 247 plt Y (50 ) ). (526)
Hence, we get
oWk (103) $() =2 %, L2+ pCe, YK (i y) $(y)dy. (5.27)

If we approximate the nonsingular part of the integrand, k(x,y)¢(y), by a second
degree of Lagrange interpolation polynomial which interpolates it at the points
Y2j,V2j+1, Yaj+2, OVEr theinterval [y,;,v2)42], weobtain

[ G 0 y) 9O dy = X Wik (v ;) 6 (), (5.28)

where
Y2

1
Wio = onz J pi, )1 — ¥)(y2 — y)dy,
Yo

YV2j+2
1
Wizj1 = 13 J i, V) (V2 =) Vajiz — ¥)dy,
Y2j
Y2j+2
Wi = J P31, Y) Vajs1 — V) Vajiz — ¥)dy
Y2j
Y2j
1
o J P V) (V2j-2 = ¥) (V2i—1 — Y)Y,
YV2j-2

_ 1

Wiv = 2= [V 001 y) On-z = ¥) On-1 — y)dy

YN-2

or, Wip = B1(i)s Wizje1 = 2¥j41(y:) and Wiy = aj(y;) + Bjy1 (i), Wiy = ag

(5.29)
Therefore,
aj(yi) = #ﬁz}_z P(}’i,}’)(YZj—z - 3’)(3’21‘—1 - y)dy
Y2j
1

B0 =55 J (i, y)(¥2j-1 —¥)(¥2; — y)dy

Y2j-2
0D =530 pOuNY = y2y-2) (2 = ¥)dy. (5.30)
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We, then, introduce the change of variables

IA
N
IA
N

Yy =Yj—2+<¢h, 0
Thus, the system (5.30) becomes
2
h
a,-(yi) = EJ (@ - 1)P()’2j—2 + (h, Yi)d(

0
Bi ) =2 I, = 1)@ = 2)p(y2j-2 + Ch,y,)dg (531)

v =3 Jy 2 = Op(y2j-2 + Chy)dC

If we, now, define

W; = foz 7ip(y2j—z + Chyy,)dS i=012 (5.32)
for  p(xy)=px-y),

we get

Vi = foz ¢y = (y2j—2 + ¢h))d< i=012
(Vi —¥2j-2 = (i —2j +2)h).

Also, if we assumethat z = i — 2j + 2, then we have

() =2 J3 $@ = Dp((z = DML By = 2 [ = D = Dp((z — OHh)d¢,  (5.39)
v, () =3[y €2 = Op((z — OHh)dg

Hence, the system (5.29) becomes

Wio = 2[240(2) — 3, (2) + (2], 2 = i

Wizj1 = h[291(2) = ¥,(2)], z =i — 2j (5.34)
Wizj = g['l’z(z) —1(2) + 2o (z—2) =391 (z—-2) + P,(z-2)],z=i—-2j+2

Win =2[p2(2) — (@], z=i—-N+2

Therefore, the integral equation (5.24) is reduced to a system of linear algebraic
equations of the form

(I-W)d =F, (5.35)
which has the solution

® =[I — AW]TF, lI—Aw| =0 (5.36)
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The product Nystrom method is said to be convergent of order r in [a, b] if and only
if, for N sufficiently large there exists € > 0, independent of N, such that

lp(x) — Py (X)leo < CN7T.
Application for Nystrom method

Here, for Carleman kernel if k(x,y) =|x—y|™, 0<v <1,
then equation (5.24) takes the form

¢() = f(x) + A []1x = y1™ p()ay, (5.37)
which can be written in the form
d(x) = f(x) + A X Wi o ()

Using (5.30) we obtain

) =555y i =917 (-2 = ¥) (21— ¥)dy

B0 =5z [y 1y =17 (21 = ¥) vz = )y

and
Y2j
1
Yi(vi) = h2 J ly: — }’|_V(y - }’21'—2)(3’21' —}’)d}’-
Y2j-2
Also, letting
Y=Y¥j,+uh, 0<pu <2
then
_ hl—‘v 2 i . v
aj(y) = ——fy ulu—Dli —2j +2 - p|™dy,
2

hl-v
Bo) = S [@-w@-wli-2+2- uvd
0

hl—v z
Yi(vi) = TJM(Z — Wi —2j+2—pul™7du.
0

Now, we define
Wi (x) = foz pilx —pl™du , =012

Thisimplies that
1-v
a;(y;) = N [W,(x) — ¥, (x)],
1-v
B0 = 1) - 3,00 + B (),

1-v

B0 = o 9 — %],
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If we use Nystrom method, the eigenvalues and eigenfunctions will be obtained
numerically as the follows

ForN =2,v=0.1;

882694026290 1.486642182 .362196869006

G =%.3225806455 1.425641909 .3225806455:
§.3621968675 1.317079525 2694026295

where the eigenvalues and their corresponding eigenvectors are

Eigenvalues | Eigenfunctions Average
eigenfunctions
-.001938463057 | [.4661736952, - .3643098490,1.146079232] | .4159810261
-.09279423916 | [.6010492989, - .424° 10°®,- .6010492808] | 4.62" 10°°
2.059179873 [.730032314,.7147503516,.6737142728] .7061656461
Secondly, by putting N = 4,v = 0.1; we get
0191767844 2812229706 .1523289351 .3476285646 .07624052370
g.0457657927 2507228340 .1418998421 .3351888646 .0711432854i
G =¢.0655739037 .1964416420 .1291661815 .3206970196 .0655739044~
5.0711432849 1244121432 .0981931841 .3032646016 .0457657927:
%0762405269 .1964416426 .0383535691 .2812229706 .0191767847
Eigenvalues | Eigenfunctions Average
eigenfunctions
-.006483340777 | [- .3479964908, - .7784662120, - 5.333760501 | 1.290181672
,.2062981233,12.70483344]
-.01157210772 | [.0045441955, - .2053567606, - .9106337374 | .3142443304
,- 0302181046, 2.712886059]
-.04129584962 | [.3092173318,.1268631465,.06234040288 -.03872968232
,- 04093231118, - .6511369816]
.04899001844 [-.6337456416,-.6528335955,-.2790442080 -.2274320751
,.6431309750,-.2146679055]
.7318684659 [-.746199751,-.7209673858,-.6614542798 - .6394525679
,-.5410163131,-.5276251099]
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And finally if weput N = 6,v = 0.1 ; weget

2.03226715575 .0072752656  .0114492660 .0515456616 .0295304828 .0765665648 .0109307545 6
g-.0145411503 -.0130581588 .0044965374 .0432525284 .0259250988 .0711998784 .0085710024 :
¢-.0013357429 -.0492456200 -.0039925698 0335912984 .0218321154 .0653243848 .00577/53371 ~+
G =g .0023771779  -.0972652860 -.0246412348 .0219696864 .0170910597 .0588259648 .0023771783 :
G .0057753393 -.0492456196 -.06453431135 .0072752656 .0114492660 .0515456616 -.0013357425 +
g 0085710015 -.0130581584 -.0246412348 -.0130581588 .0044965374 .0432525284 -.0145411503 :
& .0109307639 .0072752616 -.0039925684 -.0492456200 -.0039925698 .0335912984 -.032267155603

We then have seven eigenvalues. We state just the real values and their corresponding
eigenvectors which are

Eigenvalues | Eigenfunctions Average
eigenfunctions

-.006910416283 | [-.3596144275,-.0268741807,-.0737981465 | .070681824
,-.8935235899,-1.986887244

,.8338164976,3.001653859]
-.01623664932 | [.5404853146,.0824841180,-.1405357256 .1873213002

,-.06928512220,-.6545016762

,.2376930345,1.314909158]
.02840212825 [-.2231397056,-.2026229629,-.03365823290 | - .1761004031

,.3043886336,-.0364652703
,-.2776126958,-.4606684918]

6-Comparison of ToeplitzMatrix Method and Product Nystrom Method

The following numerical results are obtained, when the exact solution is given by
¢(x,t) = x+t, and the Volterra kernel is F(t,7) =t%,G(t,t) =t,a=-1, B =
0.8. Also, we set in the Toeplitz matrix method the value of a equals 1 and in the
product Nystrom method we set a = —1,b = 1. Here, ¢,,, means numerical method
using Toeplitz matrix where RTis the resulting error, while 2., for the Nystrom
method, and the resulting error is RY. The dividing interval is considered when
h=0.05,t=03,and t =0.8.
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Table 6.1; Resultswhent = 0.3

t X fr R' fN RN

0.30 |-1.00 |-.700332E+00 | .700332E-03 | -.699997E+00 | .327135E-05
030 |-95 |-.649899E+00 | .100601E-03 | -.650020E+00 | .199044E-04
030 |-.90 |-.600044E+00 | .439576E-04 | -.600034E+00 | .340536E-04
030 | -85 |-550043E+00 | .326429E-04 | -.550052E+00 | .518646E-04
030 |-.80 |-.500043E+00 | .429652E-04 | -.500068E+00 | .677232E-04
030 |-.75 | -.450046E+00 | .457629E-04 | -.450083E+00 | .834994E-04
030 |-.70 | -.400048E+00 | .483623E-04 | -.400099E+00 | .965124E-04
030 |-.65 |-.350050E+00 | .500296E-04 | -.350113E+00 | .113131E-03
030 |-.60 |-.300051E+00 | .512533E-04 | -.300127E+00 | .127267E-03
0.30 | -55 |-.250052E+00 | .521324E-04 | -.250241E+00 | .141032E-03
0.30 | -50 | -.200053E+00 | .527657E-04 | -.200154E+00 | .154416E-03
030 |-45 |-150053E+00 | .532102E-04 | -.150167E+00 | .167466E-03
030 |-40 |-.100054E+00 | .535064E-04 | -.100180E+00 | .180183E-03
030 |-35 |-500537E-01 | .536825E-04 |-.501926E-01 | .192589E-03
030 |-30 |-537590E-04 | .537590E-04 | -.204686E-03 | .204686E-03
0.30 | -.25 | .499462E-01 537511E-04 | -.497835E-01 | .216482E-03
030 |-20 | .999463E-01 536700E-04 | -.997720E-01 | .227978E-03
0.30 | -.15 | .149946E+00 | .535242E-04 | .149761E+00 .239175E-03
030 |-10 |.199947E+00 | .533201E-04 | .199750E+00 .250070E-03
030 |-.05 | .249947E+00 | .530623E-04 | .249739E+00 .260658E-03
0.30 | .00 200047E+00 | .527544E-04 | .299729E+00 .270932E-03
0.30 | .05 349048E+00 | .523986E-04 | .349719E+00 .280880E-03
0.30 | .10 300048E+00 | .519963E-04 | .399710E+00 .290494E-03
0.30 | .15 A49048E+00 | .515479E-04 | .449700E+00 .299752E-03
0.30 | .20 A49949E+00 | .510532E-04 | .499691E+00 .308642E-03
0.30 | .25 549049E+00 | .505108E-04 | .549683E+00 .317130E-03
0.30 | .30 5O9950E+00 | .499187E-04 | .599675E+00 .325199E-03
0.30 |.35 B49951E+00 | .492736E-04 | .649667E+00 .332797E-03
0.30 | .40 699951E+00 | .485711E-04 | .699660E+00 .339899E-03
0.30 | .45 749952E+00 | .478054E-04 | .749654E+00 .346425E-03
0.30 | .50 799953E+00 | .469682E-04 | .799640E+00 .352333E-03
0.30 | .55 849054E+00 | .460490E-04 | .849643E+00 .357492E-03
0.30 | .60 .800055E+00 | .450328E-04 | .899638E+00 .361830E-03
0.30 | .65 949056E+00 | .438992E-04 | .949635E+00 .365114E-03
0.30 | .70 999057E+00 | .426182E-04 | .999633E+00 .367200E-03
030 |.75 104996E+00 | .411440E-04 | .104963E+01 .367608E-03
0.30 | .80 109996E+01 | .394013E-04 | .109963E+01 .365972E-03
0.30 | .85 114996E+01 | .372517E-04 | .114964E+01 .361054E-03
0.30 |.90 119997E+01 | .348866E-04 | .119965E+01 .352328E-03
0.30 |.95 124997E+01 | .29782E-04 1249967E+01 | .332114E-03
0.30 | 1.00 | .129999E+01 | .142894E-04 | .129980E+01 .199793E-03

Available on line at www.alexjournal.org/math

37




Alexandria Journal of Mathematics (ISSN 2090-4320 )

Volume1 -Number1 - June 2010

Table 6.2;: Resultswhen t = 0.8

t X fr R' fN RN

0.80 | -1.00 | -.200841E+00 | .841376E-03 -.199996E+00 | .414027E-05
0.80 | -.95 | -.149659E+00 | .341370E-03 -.150056E+00 | .564264E-04
0.80 |-.90 | -.100104E+00 | .104324E-03 -.100095E+00 | .950709E-04
0.80 | -.85 | -.500568E+01 | .567709E-04 | -.501424E-01 | .142431E-03
0.80 | -.80 -.920406E-04 | .920406E-04 -.184343E-03 | .184343E-03
0.80 | -.75 | .499008E-01 .992013E-04 .497738E-01 .226157E-03
0.80 | -.70 | .998925E-01 .107486E-03 .997342E-01 .265765E-03
0.80 | -.65 | .149887E+00 .112607E-03 .149696E+00 .304337E-03
0.80 | -.60 | .199883E+00 .116528E-03 .199658E+00 .341540E-03
0.80 | -.55 | .249881E+00 .119409E-03 .249622E+00 .377734E-03
0.80 | -.50 | .299878E+00 .121572E-03 .299587E+00 .412864E-03
0.80 | -.45 | .349877E+00 .123176E-03 .349553E+00 .447081E-03
0.80 | -.40 | .399876E+00 .124344E-03 .399520E+00 .480374E-03
0.80 | -.35 | .449875E+00 | .125159E-03 449487E+00 | .512820E-03
0.80 | -.30 | .499874E+00 .125681E-03 .499456E+00 .544413E-03
0.80 | -.25 | .549874E+00 .125957E-03 .549425E+00 .575190E-03
0.80 | -.20 | .599874E+00 .126020E-03 .599395E+00 .605144E-03
0.80 | -.15 | .649874E+00 .125895E-03 .649366E+00 .634284E-03
0.80 | -.10 | .699674E+00 .125603E-03 .699337E+00 .662601E-03
0.80 | -.05 | .749875E+00 .125159E-03 .749310E+00 .690082E-03
0.80 | .00 .799875E+00 .124572E-03 .799283E+00 .716713E-03
0.80 | .05 .849876E+00 .123852E-03 .849258E+00 .742459E-03
0.80 | .10 .899877E+00 .123003E-03 .899233E+00 .767300E-03
0.80 | .15 .949878E+00 .122027E-03 .949209E+00 .791175E-03
0.80 | .20 .999879E+00 .120926E-03 .999186E+00 .814056E-03
0.80 | .25 .104988E+01 .119696E-03 .104916E+01 .835847E-03
0.80 | .30 .109988E+01 .118335E-03 .109914E+01 .856509E-03
0.80 | .35 .114988E+01 .116834E-03 .114912E+01 .875895E-03
0.80 | .40 .119988E+01 .115183E-03 .119911E+01 .893944E-03
0.80 | .45 .124989E+01 .113368E-03 .124909E+01 .910432E-03
0.80 | .50 .129989E+01 .111370E-03 .129970E+01 .925256E-03
0.80 | .55 .134989E+01 .109162E-03 .134906E+01 .938053E-03
0.80 | .60 .139989E+01 .106708E-03 .139905E+01 .948641E-03
0.80 | .65 .144990E+01 .103957E-03 .144904E+01 .956375E-03
0.80 | .70 .149990E+01 .100835E-03 .149904E+01 .960886E-03
0.80 | .75 .154990E+01 .972298E-03 .154904E+01 .960849E-03
0.80 | .80 .159991E+01 .929539E-04 .159904E+01 .955322E-03
0.80 | .85 .164991E+01 .876645E-04 .164906E+01 .940902E-03
0.80 | .90 .169992E+01 .805990E-04 .169908E+01 .916350E-03
0.80 | .95 .174993E+01 .692591E-04 .174914E+01 .860546E-03
0.80 | 1.00 | .179997E+01 .320161E-04 .179949E+01 .507466E-03

Conclusion

From Tables 6-1 and 6-2 we can see that the error obtained by using Toeplitz method
is greater than the corresponding error obtained by using the product Nystrom
method, for the first three values and after that we see that the error obtained by using
the product Nystrom method is greater than the corresponding error obtained by using
the Toeplitz method (for t = 0.3,t = 0.8 ).
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