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Abstract 
In this paper, the existence and uniqueness of the solution of Volterra-Fredholm 
integral equations of the first kind with Carleman kernel is investigated. Furthermore, 
toeplitz matrix method and Nystrom method are used to obtain the eigenvalues and 
eigenfunctions for the Fredholm integral equation of the second kind with Carleman 
kernel. The comparison between the two methods shows that their numerical results 
are approximately the same. 
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1-Introduction 
Some basic equations of mathematical physics and contact problems, in the theory of 
elasticity, lead to an integral equation of the first or second kind that requires 
solutions [1]. Accordingly, different methods of solving some Fredholm integral 
equations (FIE) of the first kind with Carleman function are discussed in [2,3]. 
    The theory of eigenvalues and eigenfunctions are also playing an important role in 
solving the integral equations, especially with singular kernel. For example, the 
spectral relationships for an integral equation of Volterra- Fredholm integral equation 
(V-FIE) of the first kind can be obtained [3,4].  
    In the present paper, we study the existence and uniqueness of the solution of V-
FIE of the first kind with Carleman kernel. Two numerical methods are used to obtain 
the eigenvalues and the eigenfunctions for the Fredholm integral equation of the 
second kind with Carleman kernel, namely: the Toeplitz matrix method and the 
Nystrom method. The comparison between the two methods shows that their 
numerical results are approximately the same. 
 
2-Volterra-Fredholm Integral Equations of the First Kind with Carleman 
Kernel 
2-1 Formulation of the problem 
Let us consider the V-FIE of the first kind, namely 
 
 ∫  ( ,  )Φ( ,  )  − ∫ ∫  ( ,  )| −  |  Φ( ,  )    =  ( ,  )   ,     (0 <  < 1)       (2.1) 
 
under the condition  
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                          ∫ Φ( ,  )  =  ( )                                                                        (2.2) 
The contact problem for a rigid surface ( ,  ) having an elastic material lead to the 
integral equation (2.1) under the condition (2.2), which can be investigated for   
being the displacement magnitude and   the Poisson's coefficient. Let a stamp of 
length two units with its surface being described by  ∗( ) is impressed into an elastic 
layer surface of a strip by a variable force  ( ), whose eccentricity of application is  ( ), that causes rigid displacement  ( ). Therefore, we define the free term of (2.1) 
as  
 
               ( ,  ) =   [ ( )−  ∗( )],    =   (   ) , 0 ≤  ≤ ∞ .                            (2.3) 
 
In (2.1) the given function of time  ( ,  ) represents the resistance force of the lower 
material, while   ( ,  ) is called the supplied external force in the contact domain of 
the upper and lower surfaces. Then, using the method of potential theory [5] the 
spectral relationships for the Gegenbauer operator are obtained and many special 
cases are discussed. Also, a numerical method is used to obtain a system of FIE of the 
first kind or second kind depending on the relation between the derivatives of the two 
functions  ( ,  ) and   ( ,  ) for all values of   ,  ∈ [0, ]. Finally, we used the 
Toeplitz matrix method and Nystrom product method to obtain numerical solutions of 
the linear system of FIE with Carleman kernel.  
 
2-2 Existence and Uniqueness of the Solution  
In order to guarantee the existence of a unique solution of equation (2.1), under the 
condition (2.2), we assume the following: 
 

(i) The kernel             satisfies the discontinuity condition ∫ ∫                      =    (A is a constant) 
 

     (ii)  For all values of  ,  ∈ [0,  ]  the two continuous functions of time  ( ,  ) and  ( ,  ) satisfy |  ( ,  )| <   , | G( ,  )| <   . 
 

(iii) The known function  ( ,  ) ∈   [−1,1] ×  [0,  ], and its norm is defined as  
 ‖ ( ,  )‖  × =         ∫  ∫   ( ,  )            . 
 
     (iv) The unknown function Φ(x, t) behaves like  ( ,  ) and satisfies Lipschitz 
condition with respect to the first argument and Holder condition for the second 
argument.  
    To obtain the solution of (2.1), under (2.2), we divide the interval [0,  ], as  0 =   <   < ⋯  <   =   where,  =   ,  = 0,1,2, … , , to get 
 
     ∫     ,   Φ( ,  )  − ∫ ∫     ,   | −  |  Φ( ,  )    =    ,       ,             (2.4) 

 
under the condition  
                                          ∫ Φ  ,      =      .                                                     (2.5) 
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Hence, we have  
 ∑           ,    Φ( ,   ) − ∑       ,    ∫ | −  |  Φ( ,   )         +   ℏ   +  ℏ    =           ,     ,  ℏ = max   ; ℎ ;ℎ =     −                                          (2.6) 
 
where,   ℏ    is the estimate error deduced from the approximate integral of the 
function  ( ,  ) and  (ℏ   ) depends on  ( ,  ). The values of the weight functions   ,    and  ,   depend on the number of derivatives of  ( ,  ) and  ( ,  ), for all  ∈ [0, ] with respect to t. 
 
Example  
If  ( ,  ) ∈    [0, ]   
then, we have  = 4,  ≈ 4 and     =   ℎ  ,     =   ℎ ,      =   ℎ , = 1,2,3,      =  0   for   > 4.  
While, if   ( ,  )  ∈    [0, ],  we have   = 3 ,   ≈ 3 ,   =   ℎ ,   =     ℎ ,   = ℎ ,  = 1, 2 and,   = 0 for      > 3. 
 
More information about the characteristic points and quadratic coefficient are found 
in [6,7].  
    Using the following notations  
 
            ,    =   ,              ,    =   ,   , Φ( ,   ) = Φ ( ) 
         ( ,   ) =   ( ), ( ,  ,  = 0,1,2, … ),                                                             (2.7) 
 
formula (2.6), after neglecting the error, becomes 
 
      ∑       G , Φ ( )− ∑     , ∫ | −  |  Φ ( )         =   ( )                          (2.8) 
under the condition  
 
     ∫ Φ ( )  =           (   are constants   = 0,1,2, … )                                       (2.9) 
  
Now, we can discuss the following: 

(a) Formula (2.8) represents a linear system of FIE of the second kind, for all 
cases when the two functions  ( ,  ),  ( ,  ) have the same derivatives with 
respect to time t ∈ [0, ]. Hence, we have  

 
    Φ ( )−   ′ ∫ | −  |  Φ ( )     =   ( )                             (2.10) 
  

 where     ( ) =   ( )−      
   G , Φ ( ) +      ,  | −  |  Φ ( )  , 

  
   
    

    = ℎ 2   , ,   ′ = ℎ 2   , ,   , ≠ 0,   , ≠ 0,   =     
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(b) When the function  ( ,  ) has   derivatives with respect to t ,  <  , therefore 
formula (2.8) takes the following forms  

 ∑   {  , Φ ( ) −   , ∫ | −  |  Φ ( )  }       =   ( ), ( ), 0,1,...,n j j N< =        (2.11)  
         ∑   {  , Φ ( ) −   , ∫ | −  |  Φ ( )  }       =               ( )− ∑          ,   , ,  ,  Φ ( ), ( <  ,  = 0,1, … , ).                     (2.12) 

 
Formula (2.11) represents a linear system of FIE of the second kind, while formula 
(2.8) is of the first kind. Φ ( ),  = 0,1, … ,   in the R.H.S. of (2.12) represents the 
recurrence solution of the integral equation (2.11) and iβ are constants. 

(c) When the function  ( ,  ) has   derivatives such that  <  , hence we have  
  ∑     , Φ ( )      =   ( )− ∑          ,  , ,  ,  Φ ( ),          (2.13)                                     
 

 where Φ ( ) in the R.H.S. is the solution of (2.11) and    are constants. 
 
3-Spectral Relationships for Carleman Integral Equation  
In this section, using the method of potential theory, we obtain the spectral 
relationships for the FIE of the first kind with Carleman kernel. The importance of 
Carleman function came from the work of Arytonian [6], who has showed that the 
plane contact problem of the nonlinear theory of plasticity, in its first approximation 
can be reduced to FIE of the first kind with Carleman kernel. 
    Consider the integral equation 
                       ∫ | −  |   ( )  }   =  ( )    (0 <  < 1),                                     (3.1)                
 
under the static condition  
     
                       ∫  ( )  }   =             ( P is constant)  (3.2) 
 
To solve (3.1), under the condition (3.2), we introduce the general Carleman function  
 
                          ( ,  ) = ∫  ( )[(   )    ]       .     (3.3) 

 
The solution of (3.3), under (3.2) is equivalent to the boundary value problem  
 

Δ +       = 0         ( ,  ) ∉ (−1,1),Δ =      +         ( , 0) =  ( ),           ,  ∈ (−1,1)   ( ,  ) ≅     ,   → 0     = √  +   → ∞                                                        (3.4) 
 
The complete solution of (3.3) is given by [4]  
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                 ( ) = Γ    √ Γ      lim →  | |                         ∈ (−1,1)                         (3.5)      

 where Γ( ) is the Gamma function. 
 
Using the substitution 
 
                            ( ,  ) = | |    ( ,  ),   (3.6) 
 
and the transformation mapping 
  =    ( ) =     +     ,                                =      ,  =  +    ,  = √−1       (3.7) 
the boundary value problem (3.4), yields 
 
 
ΔV(ρ, θ) + ν(2− ν)   (ρ   ) +  

ρ      θ  V(ρ, θ) = 0 ,    (  < 1)      −    sin       ( , )|   =  (cos ) ,    (− <   <    ) 
 V(0, θ) = 0 ,                                        ( Δ =    ρ +      +       θ )                             (3.8) 
where                                                                                   V(x, y) = V   + 1  cos θ ,   − 1  sin   =  V(ρ, θ). 
 
The transformation mapping (3.7) maps the region in the x-y plane into the region 
outside the unit circle    , such that  ′( ) does not vanish or become infinite outside   . The mapping function (3.7) maps the upper and lower half-plane  (x, y)  ∈ (−1,1)   into the lower and upper of semi-circle   = 1, respectively. 
    Moreover, the point  = ∞ will be mapped onto the point   = 0 
Now, using the method of separation of variables, we can write  

  
    V(ρ, θ) = R(ρ)Z(θ)                                                                                               (3.9)  
The first differential equation of (3.8), then, becomes 
         +      +  ν(2 − ν) ρ (  ρ ) − α   ( ) = 0   (0 ≤   < 1)                         (3.10)                   
and 
 
       θ + ρ  α + ν(  ν)     θ  ( ) = 0  ,                 ( −  <   <  )                            (3.11) 
 
where    is the constant of separation. 
The general solution of (3.10) and (3.11), respectively takes the form 
 R(ρ) = ρ  ν(1 − ρ )νF  ν , n + ν; n + 1; ρ  , (R(0) = 0 , 0 ≤  ρ < 1,  = 0,1,2, … )    (3.12) 
and 
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  ( ) = |sin |      (cos ).                         (− <   ≤   ,  = 0,1,2, … )            (3.13) 

 

Here,  ( ,  ;  ;  ) is Hypergeometric function and     ( ) is the Gegenbauer 
polynomial. 
From (3.12), (3.13), (3.9), and using the result of (3.6), we get  
 

     U(ρ, θ) = ρ  ν F  ν , n + ν; n + ν + 1; ρ      (cos )               

     U(ρ, θ) =       +    cos ,     −    sin   =   ( ,  )                              (3.14)                         
 
The complete solution of the problem, can be obtained, by writing (3.5) in polar 
coordinates  
 

   (cos ) = Γ    (    )   √  ν  Γ      lim → (1−   )            (0 <    <  )                        (3.15)                                                         

 
Then, substituting from (3.14) into (3.15) we get  
  

                        (cos ) = Γ( )Γ            √  νΓ       Γ(   )     (cos  )                                          (3.16) 

           
Hence, inserting (3.16) in (3.1), we arrive at the following spectral relationships 
 ∫     ( )|   | (    )      =          ( ) ,     =   Γ( +  )   !Γ( ) cos          ,      (3.17) 

  
where    are called the eigenvalues of the integral operator. Many spectral 
relationships can be established from (3.17) 

(a) Let  = −1  in  (3.17) and use the following relation  
 

                                           (− ) = (−1)     ( )                                                   (3.18)       
we get                                                                                                

                   ∫     ( )|   | (    )      =   (−1)       (−1)                               (3.19) 

  
(b) Differentiating (3.17) with respect to x and using the relation 
 

                                              ( ) =         ( ),                                                    (3.20) 
we obtain   
        ∫     ( )|    |   (    )      =      (   )!Γ(   )         Γ( +  )         (−1)        (3.21) 

 

 (c) Using the Gegenbauer     ( ) and the Jacobi    ( , )( )  relation 
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                       ( ) = Γ      Γ(   )
Γ( )Γ               ,     ( ),                                         (3.22) 

  
we obtain the following spectral relationships  

 

                  ∫        ,     ( )|   | (    )      =             ,     ( )                                 (3.23)                 

 
(d) Using the famous formulas [8]  

                     lim → Γ          ( ) =      ( ),    
and  

 
                    ln  |   | = lim → (| −  |  − 1)  ,                                     (3.24) 
  

we arrive at the following spectral relationships  
 
 

         ∫ ln  |   |    ( )          =     ln 2                      = 0      ( )                        ≥ 0                            (3.25) 

  
where     ( ) is the Chebyshev polynomial of the first kind. 
    For a Volterra-Fredholm integral operator, we have 

 ∑     ,     ∫      ( )|   | (    )      = ∑     ,                ( )      ≥ 0                     (3.26) 

  
4-Solution of Fredholm Integral Equation of the Second Kind 
 
Let  = 0 in (2.10), we have 
  
Φ ( )−  ∫ | −  |     Φ ( )  =   ( ) ,       =   ′     , ( ) =  ( )                     (4.1) 
In general, consider 
 
                          Φ( ) =  ( ) +  ∫  (| −  |)   Φ( )  ,                                     (4.2)  
 
where Φ( ) is the unknown function,  ( ) is a given function and is called the free 
term. Hence, the convolution kernel has a singularity and   is a known constant. 
Formula (4.1) can be written in the integral operator form 
 
                                          (1 −  )Φ =  ,                  (4.3) 
where  
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                    Φ =      ∫  (| −  |)   Φ( )           (4.4) 
 
4-1 The existence of a unique solution 
In order to discuss the existence of a unique solution, we assume the following 
conditions: 
(i) The kernel satisfies the Fredholm condition 
    ∫ ∫   (| −  |)              ≤   ,                                           is a constant. 
 
 (ii) The given function  ( ), with its first derivatives, is continuous in    [−1,1], and 

its norm is defined as   

                        ‖ ‖ =  ∫   ( )        =   ,                  2A  is a constant. 
   
(iii) The unknown function Φ( ) behaves as the known function  ( ) in   [−1,1].  
Now, to prove the existence of the solution, we will use the successive approximation 
method (Picard method), for this we construct a sequence functions Φ ( ) defined by 
 
Φ ( ) =  ( ) +  ∫  (| −  |)   Φ   ( )                            Φ ( ) =  ( ).     (4.5) 
 
For ease of manipulation, it is convenient to introduce  
   ( ) = Φ ( )−Φ   ( ), 
   ( ) =   ∫  (| −  |)   [Φ   ( )−Φ   ( )]    ,       = 1,2 … 
 
Then, we have  
   ( ) =   ∫  (| −  |)        ( )           (4.6) 
And, we can deduce that  
 
Φ ( ) = ∑   ( )     (4.7) 
 
Using the properties of the norm, we obtain ‖  ( )‖ = |  |   (| −  |) 

       ( )    

By induction, we get
  ‖  ( )‖ ≤   (   )                                                                                               (4.8)                                                                                                               

 
This bounds makes the sequence     converges; so that when   → ∞  , we have 
 
Φ( ) = lim →∞Φ ( ) =∑   ( )∞    ≤                                                                (4.9)

   
Also, it is easily to prove that the existed solution is unique. 
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4-2 The normality and continuity of the integral operator 
The normality of integral operator  
  Φ =      (| −  |) 

  Φ( )  , 
can be proved as follows  

‖ Φ‖ = |  |      (| −  |)   
       Φ ( )   

        ≤ |  |  ‖Φ‖ 

i.e.   ‖ ‖ ≤ |  |   
 
Also, for the continuity, we have  
 ‖ Φ −  Φ ‖ = |  |  ∫   (| −  |)         ∫ |Φ ( )− Φ ( )|          ,‖ Φ − Φ ‖ = |  |  ‖Φ − Φ ‖.                                                                                    (4.10)  
 
Since from (4.9) | |   < 1, then the integral operator is a contraction operator. 
 
5-Numerical Methods 
(i) The Toeplitz matrix method 
In this section, we present the Toeplitz matrix method [9-11] to obtain the numerical 
solution for Fredholm integral equation of the second kind with singular kernel. The 
idea of this method is to obtain a system of  2 + 1 linear algebraic equations, where  2 + 1  is the number of the discrimination points used. 
Let us consider the Fredholm integral equation of the second kind 
   
       Φ( ) =  ( ) +  ∫  (| −  |)   Φ( )  .                                                        (5.1)                                                                               
  
The integral term in (5.1) can be written in the form 
 ∫  (| −  |)   Φ( )  = ∑ ∫  (| −  |)      Φ( )         ,    ℎ =                       (5.2) 
 
The second step is to approximate the integral in the right hand side of (5.2) by 
 ∫  (| −  |)      Φ( )  =   ( ) ( ℎ) +   ( ) ( ℎ + ℎ) +  ,                      (5.3)                              
                                                                                                                   
where   ( )  and    ( ) are two arbitrary functions which will be determined and     
is the estimate error. Putting  ( ) = 1,  in equation (5.3), we obtain a set of two 
equations in terms of two functions   ( ) and   ( ), where, in this case, we have  = 0. By solving these two equations, the functions   ( ) and   ( ) take the forms

  
                             ( ) =    ( ℎ + ℎ) ( )−  ( )                 (5.4) 
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and 
  

                                      ( ) =   ( ( )−  ℎ ( ))    (5.5) 
 
The values of  ( )  and  ( ) are 
 
                   ( ) = ∫  (| −  |)                                                                              (5.6)                    
and  
 
                 ( ) = ∫   (| −  |)                                                                          (5.7) 
  
Hence, the relation (5.2), becomes 
 ∫  (| −  |)    ( )  = ∑   ( )       ( ℎ),    (5.8) 
 
where   ( ) =           ( )                                                           ; = −   ( ) +     ( )          ;                − <  <          ( )                                          ; =                                                (5.9) 

  
Furthermore, the integral equation (5.1), then, becomes  
  ( )−  ∑   ( )       ( ℎ) =  ( ).                                                                (5.10)

   
Now, if we put  =  ℎ  in (5.10), we get  
  ( ℎ)−  ∑   ,        ( ℎ) =  ( ℎ)                                                             (5.11)  
                                                                                 
     The function   is a vector of 2 + 1 elements but   ,  is a matrix whose 
elements are given by  
   , =  | , |′ +   ,                                                                                               (5.12) 
  
    | , |′ =   ( ℎ) +     ( ℎ)        ;  − ≤   ≤                                                                           

   
    The matrix   , ′

 is the Toeplitz matrix of order 2 + 1 where − ≤   ,  ≤                      
and the elements of the second matrix are zeros except for the elements of the first 
and last rows. We can evaluate the values of the first row by substituting in     ( ℎ); by − ; = − +  , 0 ≤  ≤ 2  ,   is an integer. And the values of the 
last row are given by substituting in    ( ℎ) ; by    =  , = − +  . 
     The solution of formula (5.11) takes the form 
  ( ℎ) =  1 −    ,     ( ℎ)                −    ,  ≠ 0,                                    (5.13) 
 
where   is the unit matrix.   
   The Toeplitz matrix method is said to be convergent of order   in [− , ]. If, for   sufficiently large, there exists a constant  > 0 independent of   such that 
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 ‖ ( )−   ( )‖ ≤                                                                                         (5.14)                                                                                           

  
The error term   is determined from the following formula 

  =  ∫          | −  |  −   ( )( ℎ) −   ( )( ℎ+ ℎ)    =  (ℎ )          (5.15) 
 
Application of Toeplitz matrix method 
 
Consider the discontinuous kernel                    ( ,  ) = | −  |          0 ≤  < 1                                                      (5.16) 
then 
              ( ) = ∫ | −  |    =      ( ) +   ( )                                             (5.17)                                       
and 
 
       ( ) =      ∫    | −  |    =        ( ) + ( + ℎ)   ( )                          (5.18)                                                                                                                                             
  
Hence, using equations (5.17) and (5.18) we get 
 
                    ( ) =         ( −  )   + |  (   )|   (   )(   ) − |   |   (   )(   ) ,                     (5.19) 
 

                     ( ) =          ( − ( + ℎ))   −    (   )    (   )(   ) + (   )   (   )(   ) .       (5.20) 
  
By putting  =  ℎ, and  =  ℎ, −   ≤       ≤     ,−   ≤       ≤     in equations 
(5.19) and (5.20), we get  
 
                  ( ℎ) =         ( −  )    −1 −        + (     )       ,                    (5.21)       
and                            
                ( ℎ) =         ( −  − 1)    1 −          + (   )       .                  (5.22)                             
 
    Therefore, the elements of the Toeplitz matrix are given by 
   ,  =   ( ℎ) +     ( ℎ) =     (   )(   ) [( −  − 1)   − 2( −  )   +( −  + 1)   ] .                                                                                                     (5.23) 
                                                                          
In the homogeneous case, we have the following integral equations  
   =    

  Φ =     ∫ | −  |     Φ( )  ,     0 <   < 1. 
 
If we use the Toeplitz matrix method, the eigenvalues and eigenfunctions will be 
obtained numerically as follows, for   = 1,     = 0.1 
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  , =  . 5847995322 . 526315790 . 47566865591.012942670 1.169590643 1.012942670. 4756686559 . 526315790 . 584795322   

 
and 
 
Eigenvalues   Eigenfunctions Average 

eigenfunctions 
.08099027029 [. 3945573400,−.7342712425 , .3945573552] 

 
.0182811509 

.1091266661  [. 7409863181,−.110 10  ,−.7409863062 ] 9x10    

2.149064351  [−.4352411919,−.9002270738,−.4352411920 ]  

-.5902364859 

 
For  = 2,     = 0.1, we have 
 

,

.3133840535  .2820456481 .2549045215  .2430196326 .2353518670

.5428225358 .6267681066 .5428225364 .5012146136 .4806335778

.5012146135 .5428225364 .6267681070 .5428225364 .5012146135

.4806335778 .5012146136  .5428
n ma =  

225364  .6267681066  .5428225358
.2353518670 .2430196326  .2549045215  .2820456481 .3133840535

 
 
 
 
 
 
 
 

 
and 
 

Eigenvalues   Eigenfunctions Average 
eigenfunctions 

.04614131009  [.3635923367,-.4691244764,.2494323361
,-.4691244015,.3635922405]

 
37.676012832 10−×  

.04709772222  -8[.5330501467,-.4225289259,-.95x10
,.4225289661,-.5330501731]

 
108.6 10−×  

.08445138050  [-.3147874395,-.1466550567,.8754431615
,-.1466550617,-.3147874386]

 
39.488367 10−− ×  

.1564879573  -8[.2390245966,.4805219940,-.18x10
,-.4805219991,-.2390245984]

 
91.74 10−− ×  

2.172894057  [.4323332395,.8958531334,.9093450733
,.8958531327,.4323332389]

 
.7131435636  
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Finally, for  = 3,  = 0.1; we get 
 
Eigenvalues   Eigenfunctions Average 

eigenfunctions 
.03189238343  

-6

[.4873130708,-.4432031295,.1354699398
,-.1037x10 , -.1354697675
,.4432026689,-.4873126619]

 

92.414285714 10−×  

.03242709156  [-.3821413186,.4378206084,-.1718382822
,.1982746406,-.1718384881
,.4378212561,-.3821420124]

 

34.863370886 10−− ×  

.04517354903  [.1970588112,-.03258804927,-.4296431679
,.5513279056,-.4296431643
,-.0325880455,.1970588071]

 

32.997585276 10−×  

.06123226648  
-9

[-.1517762035,-.1391825439,.3715950288
,.9x10 ,-.3715950334
,.1391825443,.1517762026]

 

106 10−− ×  

.09567105961 [.2531157089,.4024654962,-.2839905569
,-.6921617410,-.2839905427
,.4024655015,.2531157020]

 

37.288509714 10−×  

.1662641344  
-8

[.2678353197,.6185749142,.4185740823
,-.32x10 ,-.4185740846
,-.6185749140,-.2678353144]

 

94.114285714 10−− ×  

2.178153958  [-.4322066284,-.8903750005,-.9085714372
,-.9138674191,-.9085714375
,-.8903750009,-.4322066284]

 
.8733799745−  

 
(ii) The product Nystrom method 
 
To use the product Nystrom method as a numerical method, we consider 

  
              ( ) =  ( ) +  ∫  ( ,  )   ( ,  )   ( )  ,                                           (5.24) 
where  ( ,  ) is 'badly behaved' function and    ( ,  ) is 'well behaved' function of 
their arguments,  ( )  is a given function, while  ( ) is the unknown function. Here, 
the use of product integration treats  ( ,  ) exactly and approximates only the part of 
the integrand which is smooth, by a suitable Lagrange interpolation polynomial. So, 
equation (5.24) can be written in the form 
 
  (  ) =  (  ) +  ∑          ,             ,                                                       (5.25) 

                                                              
where,   =   =  +  ℎ,  = 0,1,2, … , , with ℎ =     ,   even and     are the 
weights which can be determined directly from [6,9]. 
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Also, we approximate the integral term by a product integration, from Simpson's rule, 
where,   =    and we write 
 ∫  (  , )   (  , )   ( )  = ∑ ∫  (  ,  )   (  , )         ( )         .                  (5.26)  
 
Hence, we get   
            ∑          ,            = ∑ ∫  (  , )   (  ,  )         ( )  .                              (5.27) 
  
If we approximate the nonsingular part of the integrand,   ( , ) ( ),  by a second 
degree of Lagrange interpolation polynomial which interpolates it at the points    ,     ,     , over the interval     ,      , we obtain   
 
        ∫  (  ,  )   (  ,  )   ( )  = ∑          ,             ,                             (5.28)    
 
 where     , = 12ℎ   (  ,  )(  −  )(  −  )    

  , 
        = 1ℎ   (  ,  )    −         −          

   , 
    =   (  , )      −         −          

   + 12ℎ   (  ,  )      −   (     −  )     
     , 

 
                                       =     ∫  (  ,  )(    −  )(    −  )         
 
or,    =   (  ),       = 2    (  ) and     =   (  ) +     (  ),    =      

                                                                                                                                (5.29)                   
Therefore,  
               
     (  ) =     ∫  (  , )      −         −                         

  (  ) = 12ℎ   (  , )      −       −        
      

   (  ) =     ∫  (  ,  )  −           −             .                                            (5.30)  
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We, then, introduce the change of variables 
  =      +  ℎ  ,                           0 ≤     ≤   2. 
 
Thus, the system (5.30) becomes      (  ) = ℎ2   ( − 1)       +  ℎ,       

    (  ) =   ∫ ( − 1)( − 2)       +  ℎ,                                                        (5.31) 
   (  ) =   ∫  (2 −  )       +  ℎ,         
 
If we, now, define 
   = ∫          +  ℎ,                                    = 0,1,2                                   (5.32) 
 
for          ( ,  ) =  ( −  ), 
 
we get 
   = ∫       − (      +  ℎ)      ,                         = 0,1,2          −     = ( − 2 + 2)ℎ . 
 
Also, if we assume that  =   − 2 + 2, then we have 
   (  ) =   ∫  ( − 1) (( −  )ℎ)      (  ) =   ∫ ( − 1)( − 2) (( −  )ℎ)    ,     (5.33) 

                    (  ) =   ∫  (2 −  ) (( −  )ℎ)     
  
Hence, the system (5.29) becomes 
    =   [2  ( ) − 3  ( ) +   ( )],  =         = ℎ[2  ( )−   ( )],  =  − 2                                                              (5.34)                                =   [  ( ) −  ( ) + 2  ( − 2) − 3   ( − 2) +    ( − 2) ],  =  − 2 + 2    =   [  ( )−   ( )]       ,    =  − + 2 
 
Therefore, the integral equation (5.24) is reduced to a system of linear algebraic 
equations of the form 
 
 ( −   )Φ =  ,                                                                                                    (5.35) 
 
which has the solution 
 Φ = [ −   ]   ,                                | −   | ≠ 0                                           (5.36)  
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The product Nystrom method is said to be convergent of order    in [ ,  ]  if and only 
if, for   sufficiently large there exists   > 0, independent of N, such that 
     ‖ ( )−   ( )‖ ≤     . 
  
Application for Nystrom method 
Here, for Carleman kernel if   ( , ) = | −  |  ,  0 <  < 1, 
then equation (5.24) takes the form 
 
        ( ) =  ( ) +  ∫ | −  |     ( )  ,                                                          (5.37)             
 
which can be written in the form 
  ( ) =  ( ) +  ∑      (  )    .                
 
Using (5.30) we obtain 
   (  ) =     ∫ |  −  |        −         −                (  ) =     ∫ |  −  |        −       −              
 
and   (  ) = 12ℎ    |  −  |    −           −     .   

      

 
Also, letting  =      +  ℎ ,     0 ≤    ≤ 2 
  
then 
       (  ) =        ∫  ( − 1)| − 2 + 2 −  |    ,     (  ) =   ℎ   2  (1 −  )(2−  )| − 2 + 2 −  |    , 

  

  (  ) =   ℎ   2   (2 −  )| − 2 + 2−  |    . 
  

 
Now, we define Ψ ( ) = ∫   | −  |        ,    = 0,1,2 
This implies that   (  ) =   ℎ   2 [Ψ ( )−Ψ ( )],   (  ) =   ℎ   2 [Ψ ( )− 3Ψ ( ) +Ψ ( )],   (  ) =   ℎ   2 [Ψ ( )−Ψ ( )]. 
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If we use Nystrom method, the eigenvalues and eigenfunctions will be obtained 
numerically as the follows 
 
For  = 2,  = 0.1; 
  

.2694026290 1.486642182 .3621968690

.3225806455 1.425641909 .3225806455

.3621968675 1.317079525 .2694026295
G

 
 =  
 
 

 

where the eigenvalues and their corresponding eigenvectors are 
 
 

Eigenvalues λ  Eigenfunctions Average 
eigenfunctions 

.001938463057−  [.4661736952, .3643098490,1.146079232]−  .4159810261 

.09279423916−  8[.6010492989, .424 10 , .6010492808]−− × −  94.62 10−×  
2.059179873 [.730032314,.7147503516,.6737142728]  .7061656461 

 
Secondly, by putting   = 4,  = 0.1; we get 
 

.0191767844 .2812229706 .1523289351 .3476285646 .0762405237

.0457657927 .2507228340 .1418998421 .3351888646 .0711432854

.0655739037 .1964416420 .1291661815 .3206970196 .0655739044

.0711432849 .1244121432 .0981931841
G =

.3032646016 .0457657927
.0762405269 .1964416426 .0383535691 .2812229706 .0191767847

 
 
 
 
 
 
 
   

 
Eigenvalues λ  Eigenfunctions Average 

eigenfunctions 
.006483340777−  [ .3479964908, .7784662120, 5.333760501

,.2062981233,12.70483344]
− − −

 
1.290181672  

.01157210772−  [.0045441955, .2053567606, .9106337374
, .0302181046,2.712886059]

− −
−

 
.3142443304  

.04129584962−  [.3092173318,.1268631465,.06234040288
, .04093231118, .6511369816]− −

 
.03872968232−  

.04899001844  [-.6337456416,-.6528335955,-.2790442080
,.6431309750,-.2146679055]

 
.2274320751−  

.7318684659  [-.746199751,-.7209673858,-.6614542798
,-.5410163131,-.5276251099]

 
.6394525679−  
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And finally if we put  = 6,  = 0.1  ; we get 
 

-.03226715575 .0072752656 .0114492660 .0515456616 .0295304828 .0765665648 .0109307545
-.0145411503 -.0130581588 .0044965374 .0432525284 .0259250988 .0711998784 .0085710024
-.0013357429 -.0492456200 -.0039925698 .033

G =
5912984 .0218321154 .0653243848 .0057753371

.0023771779 -.0972652860 -.0246412348 .0219696864 .0170910597 .0588259648 .0023771783

.0057753393 -.0492456196 -.06453431135 .0072752656 .0114492660 .0515456616 -.0013357425

.0085710015 -.0130581584 -.0246412348 -.0130581588 .0044965374 .0432525284 -.0145411503

.0109307639 .0072752616 -.0039925684 -.0492456200 -.0039925698 .0335912984 -.03226715560

 
 
 
 
 
 
 
 
 
 
 

 
We then have seven eigenvalues. We state just the real values and their corresponding 
eigenvectors which are 
 

Eigenvalues λ  Eigenfunctions Average 
eigenfunctions 

-.006910416283  [-.3596144275,-.0268741807,-.0737981465
,-.8935235899,-1.986887244
,.8338164976,3.001653859]

 

.070681824  

 -.01623664932  [.5404853146,.0824841180,-.1405357256
,-.06928512220,-.6545016762
,.2376930345,1.314909158]

 

.1873213002  

 .02840212825  [-.2231397056,-.2026229629,-.03365823290
,.3043886336,-.0364652703
,-.2776126958,-.4606684918]

 

.1761004031−  

 
6-Comparison of Toeplitz Matrix Method and Product Nystrom Method  
The following numerical results are obtained, when the exact solution is given by  ( ,  ) =  +  , and the Volterra kernel is  ( ,  ) =   ,  ( ,  ) =  ,  = −1,  =0.8. Also, we set in the Toeplitz matrix method the value of   equals 1 and in the 
product Nystrom method we set  = −1,  = 1. Here,       means numerical method 
using Toeplitz matrix where   is the resulting error, while      , for the Nystrom 
method, and the resulting error is   . The dividing interval is considered when ℎ = 0.05 ,  = 0.3, and   = 0.8. 
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Table 6.1: Results when  = 0.3 
 

t  x  T
mnφ  TR  N

mnφ  NR  
0.30 -1.00 -.700332E+00 .700332E-03 -.699997E+00 .327135E-05 
0.30 -.95 -.649899E+00 .100601E-03 -.650020E+00 .199044E-04 
0.30 -.90 -.600044E+00 .439576E-04 -.600034E+00 .340536E-04 
0.30 -.85 -.550043E+00 .326429E-04 -.550052E+00 .518646E-04 
0.30 -.80 -.500043E+00 .429652E-04 -.500068E+00 .677232E-04 
0.30 -.75 -.450046E+00 .457629E-04 -.450083E+00 .834994E-04 
0.30 -.70 -.400048E+00 .483623E-04 -.400099E+00 .965124E-04 
0.30 -.65 -.350050E+00 .500296E-04 -.350113E+00 .113131E-03 
0.30 -.60 -.300051E+00 .512533E-04 -.300127E+00 .127267E-03 
0.30 -.55 -.250052E+00 .521324E-04 -.250241E+00 .141032E-03 
0.30 -.50 -.200053E+00 .527657E-04 -.200154E+00 .154416E-03 
0.30 -.45 -.150053E+00 .532102E-04 -.150167E+00 .167466E-03 
0.30 -.40 -.100054E+00 .535064E-04 -.100180E+00 .180183E-03 
0.30 -.35 -.500537E-01 .536825E-04 -.501926E-01 .192589E-03 
0.30 -.30 -.537590E-04 .537590E-04 -.204686E-03 .204686E-03 
0.30 -.25 .499462E-01 .537511E-04 -.497835E-01 .216482E-03 
0.30 -.20 .999463E-01 .536700E-04 -.997720E-01 .227978E-03 
0.30 -.15 .149946E+00 .535242E-04 .149761E+00 .239175E-03 
0.30 -.10 .199947E+00 .533201E-04 .199750E+00 .250070E-03 
0.30 -.05 .249947E+00 .530623E-04 .249739E+00 .260658E-03 
0.30 .00 .299947E+00 .527544E-04 .299729E+00 .270932E-03 
0.30 .05 .349948E+00 .523986E-04 .349719E+00 .280880E-03 
0.30 .10 .399948E+00 .519963E-04 .399710E+00 .290494E-03 
0.30 .15 .449948E+00 .515479E-04 .449700E+00 .299752E-03 
0.30 .20 .449949E+00 .510532E-04 .499691E+00 .308642E-03 
0.30 .25 .549949E+00 .505108E-04 .549683E+00 .317130E-03 
0.30 .30 .599950E+00 .499187E-04 .599675E+00 .325199E-03 
0.30 .35 .649951E+00 .492736E-04 .649667E+00 .332797E-03 
0.30 .40 .699951E+00 .485711E-04 .699660E+00 .339899E-03 
0.30 .45 .749952E+00 .478054E-04 .749654E+00 .346425E-03 
0.30 .50 .799953E+00 .469682E-04 .799640E+00 .352333E-03 
0.30 .55 .849954E+00 .460490E-04 .849643E+00 .357492E-03 
0.30 .60 .899955E+00 .450328E-04 .899638E+00 .361830E-03 
0.30 .65 .949956E+00 .438992E-04 .949635E+00 .365114E-03 
0.30 .70 .999957E+00 .426182E-04 .999633E+00 .367200E-03 
0.30 .75 .104996E+00 .411440E-04 .104963E+01 .367608E-03 
0.30 .80 .109996E+01 .394013E-04 .109963E+01 .365972E-03 
0.30 .85 .114996E+01 .372517E-04 .114964E+01 .361054E-03 
0.30 .90 .119997E+01 .348866E-04 .119965E+01 .352328E-03 
0.30 .95 .124997E+01 .29782E-04 .1249967E+01 .332114E-03 
0.30 1.00 .129999E+01 .142894E-04 .129980E+01 .199793E-03 
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Table 6.2: Results when   = 0.8     
 

t  x  T
mnφ  TR  N

mnφ  NR  
0.80 -1.00 -.200841E+00 .841376E-03 -.199996E+00 .414027E-05 
0.80 -.95 -.149659E+00 .341370E-03 -.150056E+00 .564264E-04 
0.80 -.90 -.100104E+00 .104324E-03 -.100095E+00 .950709E-04 
0.80 -.85 -.500568E+01 .567709E-04 -.501424E-01 .142431E-03 
0.80 -.80  -.920406E-04 .920406E-04 -.184343E-03 .184343E-03 
0.80 -.75 .499008E-01  .992013E-04 .497738E-01 .226157E-03 
0.80 -.70 .998925E-01 .107486E-03 .997342E-01 .265765E-03 
0.80 -.65 .149887E+00 .112607E-03 .149696E+00 .304337E-03 
0.80 -.60 .199883E+00 .116528E-03 .199658E+00 .341540E-03 
0.80 -.55 .249881E+00 .119409E-03 .249622E+00 .377734E-03 
0.80 -.50 .299878E+00 .121572E-03 .299587E+00 .412864E-03 
0.80 -.45 .349877E+00 .123176E-03 .349553E+00 .447081E-03 
0.80 -.40 .399876E+00 .124344E-03 .399520E+00 .480374E-03 
0.80 -.35 .449875E+00 .125159E-03 .449487E+00 .512820E-03 
0.80 -.30 .499874E+00 .125681E-03 .499456E+00 .544413E-03 
0.80 -.25 .549874E+00 .125957E-03 .549425E+00 .575190E-03 
0.80 -.20 .599874E+00 .126020E-03 .599395E+00 .605144E-03 
0.80 -.15 .649874E+00 .125895E-03 .649366E+00 .634284E-03 
0.80 -.10 .699674E+00 .125603E-03 .699337E+00 .662601E-03 
0.80 -.05 .749875E+00 .125159E-03 .749310E+00 .690082E-03 
0.80 .00 .799875E+00 .124572E-03 .799283E+00 .716713E-03 
0.80 .05 .849876E+00 .123852E-03 .849258E+00 .742459E-03 
0.80 .10 .899877E+00 .123003E-03 .899233E+00 .767300E-03 
0.80 .15 .949878E+00 .122027E-03 .949209E+00 .791175E-03 
0.80 .20 .999879E+00 .120926E-03 .999186E+00 .814056E-03 
0.80 .25 .104988E+01 .119696E-03 .104916E+01 .835847E-03 
0.80 .30 .109988E+01 .118335E-03 .109914E+01 .856509E-03 
0.80 .35 .114988E+01 .116834E-03 .114912E+01 .875895E-03 
0.80 .40 .119988E+01 .115183E-03 .119911E+01 .893944E-03 
0.80 .45 .124989E+01 .113368E-03 .124909E+01 .910432E-03 
0.80 .50 .129989E+01 .111370E-03 .129970E+01 .925256E-03 
0.80 .55 .134989E+01 .109162E-03 .134906E+01 .938053E-03 
0.80 .60 .139989E+01 .106708E-03 .139905E+01 .948641E-03 
0.80 .65 .144990E+01 .103957E-03 .144904E+01 .956375E-03 
0.80 .70 .149990E+01 .100835E-03 .149904E+01 .960886E-03 
0.80 .75 .154990E+01 .972298E-03 .154904E+01 .960849E-03 
0.80 .80 .159991E+01 .929539E-04 .159904E+01 .955322E-03 
0.80 .85 .164991E+01 .876645E-04 .164906E+01 .940902E-03 
0.80 .90 .169992E+01 .805990E-04 .169908E+01 .916350E-03 
0.80 .95 .174993E+01 .692591E-04 .174914E+01 .860546E-03 
0.80 1.00 .179997E+01 .320161E-04 .179949E+01 .507466E-03 

 
Conclusion 
From Tables 6-1 and 6-2 we can see that the error obtained by using Toeplitz method 
is greater than the corresponding error obtained by using the product Nystrom 
method, for the first three values and after that we see that the error obtained by using 
the product Nystrom method is greater than the corresponding error obtained by using 
the Toeplitz method (for  = 0.3,  = 0.8  ). 
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