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Abstract

We are concerned here with a class of nonlinear fractional-order differential equa-
tions. We study the existence of a unique positive solution, its uniform stability and
its global stability at the equilibrium points. The fractional-order logistic equation,
replicator ( hawk-dove (HD) game) equation, law of mass actions and some other
examples will be considered as applications.
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1 Introduction

First of all we give the definition of fractional-order integration and fractional-order differ-
entiation

Definition 1.1 The fractional integral of order β ∈ R+ of the function f(t), t ≥ a is
defined by ( [8], [9], [12] and [13])

Iβ
a f(t) =

∫ t

a

(t− s)β−1

Γ(β)
f(s) ds. (1.1)

The ( Caputo ) fractional derivative of order α ∈ (n− 1, n) of f(t), t ≥ a is defined by

Dα
a f(t) = In−α

a Dn f(t), D =
d

dt
. (1.2)
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Let α ∈ (0, 1]. The uniform stability of the solution of the initial value problems of the
non-autonomous systems of fractional order

Dα
t0

x(t) = A(t) x(t) + f(t), t > to and x(to) = xo

and
d

dt
x(t) = A(t)

d

dt
Iα
t0

x(t) + f(t), t > to and x(to) = xo

has been studied in [1].
The equilibrium points of the initial value problems of the logistic equation

Dαx(t) = ρ x(t)(1− x(t)), t, ρ > 0, and x(0) = xo, (1.3)

and of the fractional-order replicator ( hawk-dove (HD) game) equation

Dαx(t) = ρ x(t)(1− x(t))(A−Bx(t)), A, B, t, ρ > 0, and x(0) = xo (1.4)

have been studied in [7] and [2] respectively. The authors in [7] and [2] evaluated the equilib-
rium points from the equation Dαx(t) = 0 not from the equation d

dt
x(t) = 0 as usual.

Theorem 3 here proved that these results are true and Theorem 2 proved the global stabil-
ity of the solutions of (1.3) and (1.4).

Now let ak(t), t ∈ I = [0, T ], k = 0, 1, 2, · · · are given functions. We are concerned
here with the initial value problem of the nonlinear fractional-order differential equation

Dαx(t) =
n∑

k=0

ak(t) fk(x(t)) (1.5)

with the initial data
x(0) = xo. (1.6)

The initial value problem (1.5) - (1.6) is a general case of the initial value problem

Dαx(t) =
n∑

k=0

ak(t) xk(t), t > 0 and x(0) = xo (1.7)

which has many applications. For examples the initial value problem of the fractional-order
logistic equation (1.3), replicator equation (1.4), Ricati’s equation [11]

Dαx(t) = ao(t) + a1(t) x(t) + a2(t) x2(t), t > 0 and x(0) = xo, (1.8)

the fractional-order law of mass action ( second-order chemical reaction) [10]

Dαx(t) = ρ (a1 − x(t)) (a2 − x(t)), ρ, t > 0 and x(0) = xo, (1.9)

the fractional-order law of mass action (third-order chemical reaction) [10]

Dαx(t) = ρ (a1 − x(t)) (a2 − x(t)) (a3 − x(t)), ρ, t > 0 and x(0) = xo, (1.10)
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and the fractional-order Stefan’s law of radiation

Dαx(t) = ρ (x4(t)− a), ρ, t > 0 and x(0) = xo, (1.11)

The existence of a unique positive solution x ∈ C[0, T ] of the problem (1.5)-(1.6) ( under
certain conditions ) will be proved.
The stability of the solution of the problem (1.5)-(1.6) will be studied, also we prove that
the equilibrium points of equation (1.5) are the same as the ones of the differential equation

d

dt
x(t) =

n∑

k=0

ak(t) fk(x(t)).

As applications, the initial value problems (1.3), (1.4) and (1.8) -(1.10) will be studied.

2 Existence and uniqueness

Let I = [0, T ], T < ∞ and C(I), be the class of all continuous functions defined on I,
with norm

|| x || = sup
t
| e−Ntx(t) |, N > 0 (2.1)

which is equivalent to the sup-norm || x || = supt | x(t) |. When t > σ ≥ 0 we write
C(Iσ).
Let also X = {x ∈ L1[0, T ], e−Ntx(t) ∈ L1[0, T ]} with norm || x ||X = || e−Ntx(t) ||L1

which is equivalent to the usual norm ||x||L1 =
∫ T

0
|x(s)|ds of L1[0, T ].

Consider now the initial value problem (1.5)-(1.6) with the following assumptions;
(1) ak(t) ∈ C1[0, T ], k = 0, 1, 2, · · · , the space of continuously differentiable functions on
I = [0, T ], ak > sup |ak(t)| and a′k > sup | d

dt
ak(t)|.

(2) F : D → R+, ∀ t ∈ I, D ⊂ R+ where F (x(t)) =
∑n

k=0 ak(t) fk(x(t).
(3) ∂

∂ x
fk(x) exists and bounded on D.

Condition (3) implies that the functions fk satisfy the Lipschitz condition

|fk(x)− fk(y)| < Ck |x− y|, Ck ≥ | ∂

∂ x
fk(x)| (2.2)

Now we have the following theorem

Theorem 2.1 If the assumptions (1)-(3) are satisfied, then the initial value problem (1.5)-
(1.6) has a unique positive solution x ∈ C(I), x′ ∈ C(Iσ) and x′ ∈ X. Moreover if
a′k(t) 6= 0 and ak(0) = 0 or

∑n
k=0 ak(0)f(xo) = 0, then x′ ∈ C(I).
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Proof. From the properties of the fractional calculus and the problem (1.5)-(1.6) we have

I1−α d

dt
x(t) =

n∑

k=0

ak(t) fk(x(t)).

Integrating α−times we obtain

x(t) = xo + Iα

n∑

k=0

ak(t) fk(x(t)). (2.3)

Now let the operator A : C(I) → C(I) be defined by

Ax(t) = xo + Iα

n∑

k=0

ak(t) fk(x(t)). (2.4)

The operator A transforms every positive function x ∈ C(I) into a function of the same
type.
Now we can obtain

|e−Nt(Ax− Ay)| ≤
∫ t

0

(t− s)α−1

Γ(α)
e−N(t−s)

n∑

k=0

|ak(t)| |e−Ns(fk(x(s))− fk(y(s))| ds

≤ K

∫ t

0

(t− s)α−1

Γ(α)
e−N(t−s) |e−Ns(x(s)− y(s)|ds, K >

n∑

k=0

Ck |ak(t)|

from which we obtain

|e−Nt(Ax− Ay)| ≤ ||x− y|| K

∫ t

0

sα−1e−Ns

Γ(α)
ds <

K

Nα
||x− y||.

Choose N such that Nα > K we deduce that

||Ax− Ay|| < ||x− y||

and the operator A has a unique fixed point. Consequently the integral equation (2.3)
has a unique positive solution x ∈ C(I). Also we can deduce that ([6])

(Iα

n∑

k=0

ak(t) fk(x(t)))|t=0 = 0.

Now from Eq. (2.3) we formally have

d

dt
x(t) =

n∑

k=0

{ ak(0)fk(xo)
tα−1

Γ(α)
+ Iα ak(t)

∂

∂x
fk(x(t))

d

dt
x(t) +

d

dt
ak(t)fk(x(t)) }
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and

| e−Nt d

dt
x(t) | <

n∑

k=0

{| ak(0)fk(xo) | e−Nt σα−1

Γ(α)
+a′k

∫ t

0

(t− s)α−1 e−N(t−s)

Γ(α)
|e−Nsfk(x(s))|ds}

+ K

∫ t

0

(t− s)α−1 e−N(t−s)

Γ(α)
|e−Ns d

dt
x(s)| ds, (2.5)

then

|| d
dt

x(t)|| <

n∑

k=0

{ ak(0)fk(xo)
σα−1

Γ(α)
+ a′k || fk(x(t)) || }+

K

Nα
|| d
dt

x(t)|| ⇒

|| d
dt

x(t)|| < 1

1− K
Nα

n∑

k=0

{ ak(0)fk(xo)
σα−1

Γ(α)
+ a′k || fk(x(t)) || }

from which we deduce that x′ ∈ C(Iσ).
Now if ak(0) = 0 or

∑n
k=0 ak(0)f(xo) = 0, then from (2.5) we obtain

|| d
dt

x(t)|| < 1

1− K
Nα

n∑

k=0

a′k || fk(x(t)) ||, t ∈ I ⇒ x′ ∈ C(I).

Also from (2.5) we can get

|| d
dt

x(t)||X <
1

1− K
Nα

n∑

k=0

{ ak(0)fk(xo) + a′k || fk(x(t)) ||X } 1

Nα
+

K

Nα
|| d
dt

x(t)||X

which implies that x′ ∈ X.
Now let x(t) be the solution of the integral equation (2.3), then we have

x(t)|t=0 = xo + (Iα

n∑

k=0

ak(t) fk(x(t)))|t=0 = xo.

and

Dαx(t) = I1−α d

dt
x(t) = I1−α d

dt
Iα

n∑

k=0

ak(t) fk(x(t)) =

d

dt
I1−αIα

n∑

k=0

ak(t) fk(x(t)) =
n∑

k=0

ak(t) fk(x(t))

which proves the equivalence between the integral equation (2.3) and the initial value
problem (1.5)-(1.6) and completes the proof of the theorem.
Consider now the initial value problem (1.7). Let D = {x ∈ R : 0 < x ≤ b} and
fk(x(t)) = xk(t), then we have

|
n∑

k=1

ak(t) kxk−1(t)| ≤
n∑

k=1

ak kbk−1 = K, on D , ∀ t ∈ I.
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Applying Theorem 2.1 we can prove the following corollary;

Corollary 2.2 The initial value problem (1.7) ( consequently the problem (1.8) ) has a
unique positive solution x ∈ C(I), x′ ∈ C(Iσ) and x′ ∈ X. If a′k(t) 6= 0 and ak(0) = 0
or

∑n
k=0 ak(0)xk

o = 0, then x′ ∈ C(I).

Now let ak(t) = ak (independent of t ) in (1.7), then we have the following corollary of
Theorem 2.1.

Corollary 2.3 Each of the initial value problems (1.9)-(1.11) has a unique positive solu-
tion x ∈ C(I), x′ ∈ C(Iσ) and x′ ∈ X.

3 Lyapunov uniform stability

Consider the initial value problem (1.5)-(1.6).

Definition 3.1 The solution of the problem (1.5)-(1.6) is stable if, ∀ ε > 0 and to > 0,
there exists δ(ε, to) > 0 such that for t ≥ to

|| xo − x∗o || < δ(ε, to) ⇒ || x(t)− x∗(t) || < ε.

If δ depends only on ε, then the solution is uniformly stable, where x∗(t) is the solution
of the initial value problem

Dαx(t) =
n∑

k=0

ak(t) fk(x(t))., t > 0, and x(0) = x∗o. (3.1)

Now we have the following theorem;

Theorem 3.2 The solution of the initial value problem (1.5)-(1.6) is uniformly stable.

Proof. Let x(t) and x∗(t) are the solutions of the problems (1.5)-(1.6) and (3.1) respec-
tively. Then we can get

|| x(t)− x∗(t) || ≤ || xo − x∗o ||+
K

Nα
|| x(t)− x∗(t) || ⇒

|| x(t)− x∗(t) || ≤ 1

1− K
Nα

|| xo − x∗o ||, K < Nα,

from which ( by definition 3.1 ) we deduce that the solution of the problem (1.5)-(1.6) is
uniformly stable and the theorem is proved.

Now let fk(x(t)) = xk(t), then the following corollary can be proved;
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Corollary 3.3 The solution of the problem (1.7) consequently the solutions of the problems
(1.3), (1.4) and (1.8)-(1.11) are uniformly stable.

4 Equilibrium points and local stability

Consider the initial value problem

d

dt
x(t) = F (x(t)) =

n∑

k=0

ak(t) fk(x(t)), t > 0 and x(0) = xo. (4.1)

To evaluate the equilibrium points of (4.1) let

d

dt
x(t) = 0,

then the equilibrium points of the problem (4.1) are the solutions of the algebraic equation

F (xeq) = 0.

To evaluate the asymptotic stability, let

x(t) = xeq + ε(t), then
d

dt
(xeq + ε) = F (xeq + ε) ⇒ d

dt
ε(t) = F (xeq + ε)

but
F (xeq + ε) ' F (xeq) + F ′(xeq) ε + · · · ⇒ F (xeq + ε) ' F ′(xeq) ε

where F (xeq) = 0, then

d

dt
ε(t) = F ′(xeq) ε(t), t > 0, and ε(0) = xo − xeq. (4.2)

Now let the solution ε(t) of (4.2) be exists. So if ε(t) is increasing, then the equilibrium
point xeq is unstable and if ε(t) is decreasing, then the equilibrium point xeq is locally
asymptotically stable.

Now we have the following theorem;

Theorem 4.1 Let the solution x ∈ C(I) of the initial value problem (1.5)-(1.6) be exists.
Then the equilibrium points of the problem (1.5)-(1.6) are the same as the ones of the
problem (4.1) i.e., are the solutions of the algebraic equation

F (x(t)) =
n∑

k=0

ak(t) fk(x(t)) = 0
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Proof. Consider the differential equation

Dαx(t) = F (x(t)).

Then from the properties of the fractional integration we have

I1−α d

dt
x(t) = F (x(t)) ⇒ I

d

dt
x(t) = IαF (x(t)) ⇒ d

dt
x(t) =

d

dt
IαF (x(t)).

Also ( note that IαF (x(t))|t =0 = 0) we have

d

dt
x(t) =

d

dt
IαF (x(t)) ⇒ I1−α d

dt
x(t) = I1−α d

dt
IαF (x(t)) =

d

dt
I1−α+αF (x(t)) = F (x(t)).

Then we deduce that the two differential equations

Dαx(t) = F (x(t)) and
d

dt
x(t) =

d

dt
IαF (x(t))

are equivalent.
So the equilibrium points of the problem (1.5)-(1.6) are the solutions of the algebraic
equation

d

dt
x(t) =

d

dt
IαF (x(t)) = 0 ⇒ IαF (x(t)) = constant = C.

But
0 = IαF (x(t))|t =0 = C|t =0 ⇒ C = 0 ⇒ IαF (x(t)) = 0 ⇒

IF (x(t)) = I1−αIαF (x(t)) = I1−α 0 = 0 ⇒
∫ t

0

F (x(s)) ds = 0 ⇒ F (x) = 0.

and the equilibrium points of the problem (1.5)-(1.6) are the solutions of the algebraic
equations

F (xeq) = 0

which completes the proof.

Consider now the initial value problem (1.5)-(1.6)

Dαx(t) = F (x(t)) =
n∑

k=0

ak(t) fk(x(t)), t > 0 and x(0) = xo.

To evaluate the equilibrium points let

F (x(t)) = 0, then F (xeq) = 0.

To evaluate the asymptotic stability, let

F (t) = xeq + ε(t), then Dα(xeq + ε) = F (xeq + ε) ⇒ Dα ε(t) = F (xeq + ε)
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but
F (xeq + ε) ' F (xeq) + F ′(xeq) ε + · · · ⇒ F (xeq + ε) ' F ′(xeq) ε

where F (xeq) = 0, then

Dα ε(t) = F ′(xeq) ε(t), t > 0, and ε(0) = xo − xeq. (4.3)

Now let the solution ε(t) of (4.3) be exists. So if ε(t) is increasing, then the equilibrium
point xeq is unstable and if ε(t) is decreasing, then the equilibrium point xeq is
locally asymptotically stable.

4.1 Law of mass action (second-order chemical reaction)

For the law of mass action (second-order chemical reaction) we find that the equilibrium
points are a1, , a2. If a1 < a2 ≤ b, we find that the local stability at xeq = a1

is asymptotical and at xeq = a2 is unstable. If b ≥ a1 > a2, we find that the local
stability at xeq = a1 is unstable and at xeq = a2 is asymptotical.

4.2 Law of mass action (third-order chemical reaction)

For the law of mass action (third-order chemical reaction we find that the equilibrium
points are a1 , a2, a3. If a1 < a2 < a3 ≤ b or b ≥ a1 > a2 > a3, we find that
the local stability at xeq = a1 is asymptotical, at xeq = a2 is unstable and at xeq = a3

is asymptotically stable.
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