On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications

Ahmed M. A. El-Sayed
Faculty of Science, Alexandria University, Alexandria, Egypt
email: amasayed@hotmail.com, amasayed@maktoob.com

Abstract

We are concerned here with a class of nonlinear fractional-order differential equations. We study the existence of a unique positive solution, its uniform stability and its global stability at the equilibrium points. The fractional-order logistic equation, replicator (hawk-dove (HD) game) equation, law of mass actions and some other examples will be considered as applications.

Keywords: Fractional-order differential equations; Global stability; Lyapunov stability; Equilibrium points; Logistic equation; Replicator equation; Riccati's equation; Law of mass action.

1 Introduction

First of all we give the definition of fractional-order integration and fractional-order differentiation

Definition 1.1 The fractional integral of order $\beta \in R^{+}$of the function $f(t), t \geq a$ is defined by ([8], [9], [12] and [13])

$$
\begin{equation*}
I_{a}^{\beta} f(t)=\int_{a}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) d s \tag{1.1}
\end{equation*}
$$

The (Caputo) fractional derivative of order $\alpha \in(n-1, n)$ of $f(t), t \geq a$ is defined by

$$
\begin{equation*}
D_{a}^{\alpha} f(t)=I_{a}^{n-\alpha} D^{n} f(t), \quad D=\frac{d}{d t} . \tag{1.2}
\end{equation*}
$$

Let $\alpha \in(0,1]$. The uniform stability of the solution of the initial value problems of the non-autonomous systems of fractional order

$$
D_{t_{0}}^{\alpha} x(t)=A(t) x(t)+f(t), \quad t>t_{o} \quad \text { and } \quad x\left(t_{o}\right)=x_{o}
$$

and

$$
\frac{d}{d t} x(t)=A(t) \frac{d}{d t} I_{t_{0}}^{\alpha} x(t)+f(t), \quad t>t_{o} \quad \text { and } \quad x\left(t_{o}\right)=x_{o}
$$

has been studied in [1].
The equilibrium points of the initial value problems of the logistic equation

$$
\begin{equation*}
D^{\alpha} x(t)=\rho x(t)(1-x(t)), \quad t, \rho>0, \quad \text { and } \quad x(0)=x_{o}, \tag{1.3}
\end{equation*}
$$

and of the fractional-order replicator (hawk-dove (HD) game) equation

$$
\begin{equation*}
D^{\alpha} x(t)=\rho x(t)(1-x(t))(A-B x(t)), \quad A, B, t, \rho>0, \quad \text { and } \quad x(0)=x_{o} \tag{1.4}
\end{equation*}
$$

have been studied in [7] and [2] respectively. The authors in [7] and [2] evaluated the equilibrium points from the equation $D^{\alpha} x(t)=0$ not from the equation $\frac{d}{d t} x(t)=0$ as usual. Theorem 3 here proved that these results are true and Theorem 2 proved the global stability of the solutions of (1.3) and (1.4).

Now let $a_{k}(t), t \in I=[0, T], k=0,1,2, \cdots$ are given functions. We are concerned here with the initial value problem of the nonlinear fractional-order differential equation

$$
\begin{equation*}
D^{\alpha} x(t)=\sum_{k=0}^{n} a_{k}(t) f_{k}(x(t)) \tag{1.5}
\end{equation*}
$$

with the initial data

$$
\begin{equation*}
x(0)=x_{o} . \tag{1.6}
\end{equation*}
$$

The initial value problem (1.5) - (1.6) is a general case of the initial value problem

$$
\begin{equation*}
D^{\alpha} x(t)=\sum_{k=0}^{n} a_{k}(t) x^{k}(t), \quad t>0 \quad \text { and } \quad x(0)=x_{o} \tag{1.7}
\end{equation*}
$$

which has many applications. For examples the initial value problem of the fractional-order logistic equation (1.3), replicator equation (1.4), Ricati's equation [11]

$$
\begin{equation*}
D^{\alpha} x(t)=a_{o}(t)+a_{1}(t) x(t)+a_{2}(t) x^{2}(t), \quad t>0 \quad \text { and } \quad x(0)=x_{o} \tag{1.8}
\end{equation*}
$$

the fractional-order law of mass action (second-order chemical reaction) [10]

$$
\begin{equation*}
D^{\alpha} x(t)=\rho\left(a_{1}-x(t)\right)\left(a_{2}-x(t)\right), \quad \rho, \quad t>0 \quad \text { and } \quad x(0)=x_{o}, \tag{1.9}
\end{equation*}
$$

the fractional-order law of mass action (third-order chemical reaction) [10]

$$
\begin{equation*}
D^{\alpha} x(t)=\rho\left(a_{1}-x(t)\right)\left(a_{2}-x(t)\right)\left(a_{3}-x(t)\right), \quad \rho, \quad t>0 \quad \text { and } \quad x(0)=x_{o} \tag{1.10}
\end{equation*}
$$

and the fractional-order Stefan's law of radiation

$$
\begin{equation*}
D^{\alpha} x(t)=\rho\left(x^{4}(t)-a\right), \quad \rho, \quad t>0 \quad \text { and } \quad x(0)=x_{o}, \tag{1.11}
\end{equation*}
$$

The existence of a unique positive solution $x \in C[0, T]$ of the problem (1.5)-(1.6) (under certain conditions) will be proved.
The stability of the solution of the problem (1.5)-(1.6) will be studied, also we prove that the equilibrium points of equation (1.5) are the same as the ones of the differential equation

$$
\frac{d}{d t} x(t)=\sum_{k=0}^{n} a_{k}(t) f_{k}(x(t)) .
$$

As applications, the initial value problems (1.3), (1.4) and (1.8) -(1.10) will be studied.

2 Existence and uniqueness

Let $I=[0, T], T<\infty$ and $C(I)$, be the class of all continuous functions defined on I, with norm

$$
\begin{equation*}
\|x\|=\sup _{t}\left|e^{-N t} x(t)\right|, \quad N>0 \tag{2.1}
\end{equation*}
$$

which is equivalent to the sup-norm $\|x\|=\sup _{t}|x(t)|$. When $t>\sigma \geq 0$ we write $C\left(I_{\sigma}\right)$.
Let also $X=\left\{x \in L_{1}[0, T], e^{-N t} x(t) \in L_{1}[0, T]\right\}$ with norm $\|x\|_{X}=\left\|e^{-N t} x(t)\right\|_{L_{1}}$ which is equivalent to the usual norm $\|x\|_{L_{1}}=\int_{0}^{T}|x(s)| d s$ of $L_{1}[0, T]$.

Consider now the initial value problem (1.5)-(1.6) with the following assumptions;
(1) $a_{k}(t) \in C^{1}[0, T], k=0,1,2, \cdots$, the space of continuously differentiable functions on $I=[0, T], a_{k}>\sup \left|a_{k}(t)\right|$ and $a_{k}^{\prime}>\sup \left|\frac{d}{d t} a_{k}(t)\right|$.
(2) $F: D \rightarrow R^{+}, \forall t \in I, D \subset R^{+}$where $F(x(t))=\sum_{k=0}^{n} a_{k}(t) f_{k}(x(t)$.
(3) $\frac{\partial}{\partial x} f_{k}(x)$ exists and bounded on D.

Condition (3) implies that the functions f_{k} satisfy the Lipschitz condition

$$
\begin{equation*}
\left|f_{k}(x)-f_{k}(y)\right|<C_{k}|x-y|, \quad C_{k} \geq\left|\frac{\partial}{\partial x} f_{k}(x)\right| \tag{2.2}
\end{equation*}
$$

Now we have the following theorem

Theorem 2.1 If the assumptions (1)-(3) are satisfied, then the initial value problem (1.5)(1.6) has a unique positive solution $x \in C(I), x^{\prime} \in C\left(I_{\sigma}\right)$ and $x^{\prime} \in X$. Moreover if $a_{k}^{\prime}(t) \neq 0$ and $a_{k}(0)=0$ or $\sum_{k=0}^{n} a_{k}(0) f\left(x_{o}\right)=0$, then $x^{\prime} \in C(I)$.

Proof. From the properties of the fractional calculus and the problem (1.5)-(1.6) we have

$$
I^{1-\alpha} \frac{d}{d t} x(t)=\sum_{k=0}^{n} a_{k}(t) f_{k}(x(t))
$$

Integrating α-times we obtain

$$
\begin{equation*}
x(t)=x_{o}+I^{\alpha} \sum_{k=0}^{n} a_{k}(t) f_{k}(x(t)) . \tag{2.3}
\end{equation*}
$$

Now let the operator $A: C(I) \rightarrow C(I)$ be defined by

$$
\begin{equation*}
A x(t)=x_{o}+I^{\alpha} \sum_{k=0}^{n} a_{k}(t) f_{k}(x(t)) \tag{2.4}
\end{equation*}
$$

The operator A transforms every positive function $x \in C(I)$ into a function of the same type.
Now we can obtain

$$
\begin{aligned}
& \left.\left|e^{-N t}(A x-A y)\right| \leq \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} \sum_{k=0}^{n}\left|a_{k}(t)\right| \right\rvert\, e^{-N s}\left(f_{k}(x(s))-f_{k}(y(s)) \mid d s\right. \\
& \left.\quad \leq K \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} \right\rvert\, e^{-N s}\left(x(s)-y(s)\left|d s, \quad K>\sum_{k=0}^{n} C_{k}\right| a_{k}(t) \mid\right.
\end{aligned}
$$

from which we obtain

$$
\left|e^{-N t}(A x-A y)\right| \leq\|x-y\| K \int_{0}^{t} \frac{s^{\alpha-1} e^{-N s}}{\Gamma(\alpha)} d s<\frac{K}{N^{\alpha}}\|x-y\|
$$

Choose N such that $N^{\alpha}>K$ we deduce that

$$
\|A x-A y\|<\|x-y\|
$$

and the operator A has a unique fixed point. Consequently the integral equation (2.3) has a unique positive solution $x \in C(I)$. Also we can deduce that ([6])

$$
\left.\left(I^{\alpha} \sum_{k=0}^{n} a_{k}(t) f_{k}(x(t))\right)\right|_{t=0}=0
$$

Now from Eq. (2.3) we formally have

$$
\frac{d}{d t} x(t)=\sum_{k=0}^{n}\left\{a_{k}(0) f_{k}\left(x_{o}\right) \frac{t^{\alpha-1}}{\Gamma(\alpha)}+I^{\alpha} a_{k}(t) \frac{\partial}{\partial x} f_{k}(x(t)) \frac{d}{d t} x(t)+\frac{d}{d t} a_{k}(t) f_{k}(x(t))\right\}
$$

and

$$
\begin{align*}
\left|e^{-N t} \frac{d}{d t} x(t)\right|<\sum_{k=0}^{n} & \left\{\left|a_{k}(0) f_{k}\left(x_{o}\right)\right| e^{-N t} \frac{\sigma^{\alpha-1}}{\Gamma(\alpha)}+a_{k}^{\prime} \int_{0}^{t} \frac{(t-s)^{\alpha-1} e^{-N(t-s)}}{\Gamma(\alpha)}\left|e^{-N s} f_{k}(x(s))\right| d s\right\} \\
& +K \int_{0}^{t} \frac{(t-s)^{\alpha-1} e^{-N(t-s)}}{\Gamma(\alpha)}\left|e^{-N s} \frac{d}{d t} x(s)\right| d s \tag{2.5}
\end{align*}
$$

then

$$
\begin{gathered}
\left\|\frac{d}{d t} x(t)\right\|<\sum_{k=0}^{n}\left\{a_{k}(0) f_{k}\left(x_{o}\right) \frac{\sigma^{\alpha-1}}{\Gamma(\alpha)}+a_{k}^{\prime}\left\|f_{k}(x(t))\right\|\right\}+\frac{K}{N^{\alpha}}\left\|\frac{d}{d t} x(t)\right\| \Rightarrow \\
\left\|\frac{d}{d t} x(t)\right\|<\frac{1}{1-\frac{K}{N^{\alpha}}} \sum_{k=0}^{n}\left\{a_{k}(0) f_{k}\left(x_{o}\right) \frac{\sigma^{\alpha-1}}{\Gamma(\alpha)}+a_{k}^{\prime}\left\|f_{k}(x(t))\right\|\right\}
\end{gathered}
$$

from which we deduce that $x^{\prime} \in C\left(I_{\sigma}\right)$.
Now if $a_{k}(0)=0$ or $\sum_{k=0}^{n} a_{k}(0) f\left(x_{o}\right)=0$, then from (2.5) we obtain

$$
\left\|\frac{d}{d t} x(t)\right\|<\frac{1}{1-\frac{K}{N^{\alpha}}} \sum_{k=0}^{n} a_{k}^{\prime}\left\|f_{k}(x(t))\right\|, \quad t \in I \quad \Rightarrow \quad x^{\prime} \in C(I) .
$$

Also from (2.5) we can get

$$
\left\|\frac{d}{d t} x(t)\right\|_{X}<\frac{1}{1-\frac{K}{N^{\alpha}}} \sum_{k=0}^{n}\left\{a_{k}(0) f_{k}\left(x_{o}\right)+a_{k}^{\prime}\left\|f_{k}(x(t))\right\|_{X}\right\} \frac{1}{N^{\alpha}}+\frac{K}{N^{\alpha}}\left\|\frac{d}{d t} x(t)\right\|_{X}
$$

which implies that $x^{\prime} \in X$.
Now let $x(t)$ be the solution of the integral equation (2.3), then we have

$$
\left.x(t)\right|_{t=0}=x_{o}+\left.\left(I^{\alpha} \sum_{k=0}^{n} a_{k}(t) f_{k}(x(t))\right)\right|_{t=0}=x_{o} .
$$

and

$$
\begin{gathered}
D^{\alpha} x(t)=I^{1-\alpha} \frac{d}{d t} x(t)=I^{1-\alpha} \frac{d}{d t} I^{\alpha} \sum_{k=0}^{n} a_{k}(t) f_{k}(x(t))= \\
\frac{d}{d t} I^{1-\alpha} I^{\alpha} \sum_{k=0}^{n} a_{k}(t) f_{k}(x(t))=\sum_{k=0}^{n} a_{k}(t) f_{k}(x(t))
\end{gathered}
$$

which proves the equivalence between the integral equation (2.3) and the initial value problem (1.5)-(1.6) and completes the proof of the theorem.
Consider now the initial value problem (1.7). Let $D=\{x \in R: 0<x \leq b\}$ and $f_{k}(x(t))=x^{k}(t)$, then we have

$$
\left|\sum_{k=1}^{n} a_{k}(t) k x^{k-1}(t)\right| \leq \sum_{k=1}^{n} a_{k} k b^{k-1}=K, \quad \text { on } \mathrm{D}, \forall t \in I .
$$

Applying Theorem 2.1 we can prove the following corollary;

Corollary 2.2 The initial value problem (1.7) (consequently the problem (1.8)) has a unique positive solution $x \in C(I), \quad x^{\prime} \in C\left(I_{\sigma}\right)$ and $x^{\prime} \in X$. If $a_{k}^{\prime}(t) \neq 0$ and $a_{k}(0)=0$ or $\sum_{k=0}^{n} a_{k}(0) x_{o}^{k}=0$, then $x^{\prime} \in C(I)$.

Now let $a_{k}(t)=a_{k}$ (independent of t) in (1.7), then we have the following corollary of Theorem 2.1.

Corollary 2.3 Each of the initial value problems (1.9)-(1.11) has a unique positive solution $x \in C(I), \quad x^{\prime} \in C\left(I_{\sigma}\right)$ and $x^{\prime} \in X$.

3 Lyapunov uniform stability

Consider the initial value problem (1.5)-(1.6).

Definition 3.1 The solution of the problem (1.5)-(1.6) is stable if, $\forall \epsilon>0$ and $t_{o}>0$, there exists $\delta\left(\epsilon, t_{o}\right)>0$ such that for $t \geq t_{o}$

$$
\left\|x_{o}-x_{o}^{*}\right\|<\delta\left(\epsilon, t_{o}\right) \quad \Rightarrow \quad\left\|x(t)-x^{*}(t)\right\|<\epsilon
$$

If δ depends only on ϵ, then the solution is uniformly stable, where $x^{*}(t)$ is the solution of the initial value problem

$$
\begin{equation*}
D^{\alpha} x(t)=\sum_{k=0}^{n} a_{k}(t) f_{k}(x(t)) ., \quad t>0, \quad \text { and } \quad x(0)=x_{o}^{*} . \tag{3.1}
\end{equation*}
$$

Now we have the following theorem;
Theorem 3.2 The solution of the initial value problem (1.5)-(1.6) is uniformly stable.

Proof. Let $x(t)$ and $x^{*}(t)$ are the solutions of the problems (1.5)-(1.6) and (3.1) respectively. Then we can get

$$
\begin{gathered}
\left\|x(t)-x^{*}(t)\right\| \leq\left\|x_{o}-x_{o}^{*}\right\|+\frac{K}{N^{\alpha}}\left\|x(t)-x^{*}(t)\right\| \Rightarrow \\
\left\|x(t)-x^{*}(t)\right\| \leq \frac{1}{1-\frac{K}{N^{\alpha}}}\left\|x_{o}-x_{o}^{*}\right\|, \quad K<N^{\alpha},
\end{gathered}
$$

from which (by definition 3.1) we deduce that the solution of the problem (1.5)-(1.6) is uniformly stable and the theorem is proved.

Now let $f_{k}(x(t))=x^{k}(t)$, then the following corollary can be proved;

Corollary 3.3 The solution of the problem (1.7) consequently the solutions of the problems (1.3), (1.4) and (1.8)-(1.11) are uniformly stable.

4 Equilibrium points and local stability

Consider the initial value problem

$$
\begin{equation*}
\frac{d}{d t} x(t)=F(x(t))=\sum_{k=0}^{n} a_{k}(t) f_{k}(x(t)), \quad t>0 \text { and } x(0)=x_{o} \tag{4.1}
\end{equation*}
$$

To evaluate the equilibrium points of (4.1) let

$$
\frac{d}{d t} x(t)=0
$$

then the equilibrium points of the problem (4.1) are the solutions of the algebraic equation

$$
F\left(x_{e q}\right)=0 .
$$

To evaluate the asymptotic stability, let

$$
x(t)=x_{e q}+\varepsilon(t), \quad \text { then } \frac{d}{d t}\left(x_{e q}+\varepsilon\right)=F\left(x_{e q}+\varepsilon\right) \Rightarrow \quad \frac{d}{d t} \varepsilon(t)=F\left(x_{e q}+\varepsilon\right)
$$

but

$$
F\left(x_{e q}+\varepsilon\right) \simeq F\left(x_{e q}\right)+F^{\prime}\left(x_{e q}\right) \varepsilon+\cdots \Rightarrow F\left(x_{e q}+\varepsilon\right) \simeq F^{\prime}\left(x_{e q}\right) \varepsilon
$$

where $F\left(x_{e q}\right)=0$, then

$$
\begin{equation*}
\frac{d}{d t} \varepsilon(t)=F^{\prime}\left(x_{e q}\right) \varepsilon(t), t>0, \quad \text { and } \quad \varepsilon(0)=x_{o}-x_{e q} . \tag{4.2}
\end{equation*}
$$

Now let the solution $\varepsilon(t)$ of (4.2) be exists. So if $\varepsilon(t)$ is increasing, then the equilibrium point $x_{e q}$ is unstable and if $\varepsilon(t)$ is decreasing, then the equilibrium point $x_{e q}$ is locally asymptotically stable.

Now we have the following theorem;
Theorem 4.1 Let the solution $x \in C(I)$ of the initial value problem (1.5)-(1.6) be exists. Then the equilibrium points of the problem (1.5)-(1.6) are the same as the ones of the problem (4.1) i.e., are the solutions of the algebraic equation

$$
F(x(t))=\sum_{k=0}^{n} a_{k}(t) f_{k}(x(t))=0
$$

Proof. Consider the differential equation

$$
D^{\alpha} x(t)=F(x(t))
$$

Then from the properties of the fractional integration we have

$$
I^{1-\alpha} \frac{d}{d t} x(t)=F(x(t)) \Rightarrow I \frac{d}{d t} x(t)=I^{\alpha} F(x(t)) \Rightarrow \frac{d}{d t} x(t)=\frac{d}{d t} I^{\alpha} F(x(t))
$$

Also (note that $\left.I^{\alpha} F(x(t))\right|_{t=0}=0$) we have

$$
\frac{d}{d t} x(t)=\frac{d}{d t} I^{\alpha} F(x(t)) \Rightarrow I^{1-\alpha} \frac{d}{d t} x(t)=I^{1-\alpha} \frac{d}{d t} I^{\alpha} F(x(t))=\frac{d}{d t} I^{1-\alpha+\alpha} F(x(t))=F(x(t))
$$

Then we deduce that the two differential equations

$$
D^{\alpha} x(t)=F(x(t)) \quad \text { and } \quad \frac{d}{d t} x(t)=\frac{d}{d t} I^{\alpha} F(x(t))
$$

are equivalent.
So the equilibrium points of the problem (1.5)-(1.6) are the solutions of the algebraic equation

$$
\frac{d}{d t} x(t)=\frac{d}{d t} I^{\alpha} F(x(t))=0 \Rightarrow I^{\alpha} F(x(t))=\text { constant }=C .
$$

But

$$
\begin{gathered}
0=\left.I^{\alpha} F(x(t))\right|_{t=0}=\left.C\right|_{t=0} \Rightarrow C=0 \Rightarrow I^{\alpha} F(x(t))=0 \Rightarrow \\
I F(x(t))=I^{1-\alpha} I^{\alpha} F(x(t))=I^{1-\alpha} 0=0 \quad \Rightarrow \quad \int_{0}^{t} F(x(s)) d s=0 \quad \Rightarrow \quad F(x)=0 .
\end{gathered}
$$

and the equilibrium points of the problem (1.5)-(1.6) are the solutions of the algebraic equations

$$
F\left(x_{e q}\right)=0
$$

which completes the proof.
Consider now the initial value problem (1.5)-(1.6)

$$
D^{\alpha} x(t)=F(x(t))=\sum_{k=0}^{n} a_{k}(t) f_{k}(x(t)), \quad t>0 \text { and } x(0)=x_{o} .
$$

To evaluate the equilibrium points let

$$
F(x(t))=0, \quad \text { then } \quad F\left(x_{e q}\right)=0
$$

To evaluate the asymptotic stability, let

$$
F(t)=x_{e q}+\varepsilon(t), \quad \text { then } D^{\alpha}\left(x_{e q}+\varepsilon\right)=F\left(x_{e q}+\varepsilon\right) \Rightarrow D^{\alpha} \varepsilon(t)=F\left(x_{e q}+\varepsilon\right)
$$

but

$$
F\left(x_{e q}+\varepsilon\right) \simeq F\left(x_{e q}\right)+F^{\prime}\left(x_{e q}\right) \varepsilon+\cdots \Rightarrow F\left(x_{e q}+\varepsilon\right) \simeq F^{\prime}\left(x_{e q}\right) \varepsilon
$$

where $F\left(x_{e q}\right)=0$, then

$$
\begin{equation*}
D^{\alpha} \varepsilon(t)=F^{\prime}\left(x_{e q}\right) \varepsilon(t), t>0, \text { and } \varepsilon(0)=x_{o}-x_{e q} . \tag{4.3}
\end{equation*}
$$

Now let the solution $\varepsilon(t)$ of (4.3) be exists. So if $\varepsilon(t)$ is increasing, then the equilibrium point $x_{e q}$ is unstable and if $\varepsilon(t)$ is decreasing, then the equilibrium point $x_{e q}$ is locally asymptotically stable.

4.1 Law of mass action (second-order chemical reaction)

For the law of mass action (second-order chemical reaction) we find that the equilibrium points are a_{1}, a_{2}. If $a_{1}<a_{2} \leq b$, we find that the local stability at $x_{e q}=a_{1}$ is asymptotical and at $x_{e q}=a_{2}$ is unstable. If $b \geq a_{1}>a_{2}$, we find that the local stability at $x_{e q}=a_{1}$ is unstable and at $x_{e q}=a_{2}$ is asymptotical.

4.2 Law of mass action (third-order chemical reaction)

For the law of mass action (third-order chemical reaction we find that the equilibrium points are a_{1}, a_{2}, a_{3}. If $a_{1}<a_{2}<a_{3} \leq b$ or $b \geq a_{1}>a_{2}>a_{3}$, we find that the local stability at $x_{e q}=a_{1}$ is asymptotical, at $x_{e q}=a_{2}$ is unstable and at $x_{e q}=a_{3}$ is asymptotically stable.

References

[1] Sh. A. Abd El-Salam and A. M. A. El-Sayed, On the stability of some fractionalorder non-autonomous systems, Electronic Journal of Qualitative Theory of Differential Equations Vol. 6, 1-14, (2007).
[2] E. Ahmed, A. M. A. El-Sayed, E. M. El-Mesiry and H. A. A. El-Saka, Numerical solution for the fractional replicator equation, IJMPC, 19, 7, 1-9 (2005).
[3] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, On some Routh-Hurwitz condition for fractional order differential equations and their application in Lorentz, Rosiler, Chua and Chen systems. Physics Letters A, 358, 1, (2006).
[4] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models J. Math. Anal. Appl. Vol. 20 325-452 (2007).
[5] H.A.A El-Saka, H.A.A, E. Ahmed, M.I. Shehata and A.M.A El-Sayed, On stability, persistence and Hopf biforcationsin fractional order dynamical systems Nonlinear Dynamics Vol. 56 121-126 (2009).
[6] A.M.A. El-Sayed, F. M. Gaafar and H.H. Hashem, On the maximal and minimal solutions of arbitrary orders nonlinear functional integral and differential equations. Math Sci Res J 8(11) pp. 336-348 (2004).
[7] A. M. A. El-Sayed, E. M. El-Mesiry and H. A. A. El-Saka, On the fractional-order logistic equation, Applied Math. Letters Vol. 20 (817-823)(2007).
[8] R. Gorenflo and F.Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, in A. Carpinteri and F. Mainardi (Eds), Fractals and Fractional Calculus in Continuum Mechanics, Springer, 223-276, 1997, Wien.
[9] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North-Holland,2006.
[10] K. J. Laidler, J. H. Meiser and B. C. Sanctuary, Physical Chemistry Houghton Mifflin Comp. 4th. Ed. (2006).
[11] Sh. Momany and N. Shawagfeh, Decomposition for solving fractional Ricati differential equations, Appl. Math. and Compt. (2006).
[12] I. Podlubny and A. M. A. El-Sayed, On Two Definitions of Fractional Calculus, Solvak Academy of science-institute of experimental phys. UEF-03-96 ISBN, 80-7099-252-2 (1996).
[13] I. Podlubny, Fractional Differential Equations, Academic Press, (1999).

