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Abstract

In this paper we study the existence of solution for the differential equation of

arbitrary ( fractional ) orders % = f(t,D*z(t)), t € (0,1) with the nonlocal

condition x(0)+>"}"_ ;ay z(ty) = z, where f is L'—Caratheodory. The nonlocal
integral condition z(0) + fol x(s) ds = =z, will be studied.

Keywords: Fractional calculus, nonlocal condition, integral condition, Caratheodory the-
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1 Introduction

Problems with non-local conditions have been extensively studied by several authors in the
last two decades. The reader is referred to ([1]), ([2]) and references therein.

Recently, El-Sayed, Abd El-Salam [4] studied the existence of a unique solution of the
fractional order differential equation

D%x(t) = c(t) f(x(t)) + b(t), te€(0,1] and a € (0,1]

with the nonlocal condition

m

2(0)+ Y ag x(ty) = o
k=1
where z, € R, 0<t; <ta<...<tym <1, a#0, k=1,2,...,m and D® is the
fractional order operator.
In this work we study the existence of at least one solution for the nonlocal problem of the
arbitrary (fractional) order differential equation

dx

7 = f(t,D%(t)), te(0,1] and «a € (0,1] (1)
z(0) + i ag x(ty) = o, tx € (0,1] (2)
k=1
1
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when f is L!—Caratheodory.
As an application, we deduce the existence of solution for the nonlocal problem of the
differential (1) with the nonlocal integral condition

z(0) + /01 z(s) ds = x,. (3)

2 preliminaries

Let L'(I) denotes the class of Lebesgue integrable functions on the interval I = [0,1],

with the norm ||u|[;1 = [; |u(t)| dt and C(I) denotes the class of continuous functions
on the interval I , with the norm ||u|| = sup,c; |u(t)] and T'(.) denotes the gamma
function.

Definition 2.1 The fractional-order integral of the function f € Li[a,b] of order 3 € R*
is defined by (see [6]- [9])

t — )81
R A (O

Definition 2.2 The Caputo fractional-order derivative of order « € (0, 1] of the absolutely
continuous function f(t) is defined by (see [7]-[9]).

d

— ().

Dy f(t)y=1,
O R

Definition 2.3 The function f:[0,1] x R — R is called L'—Caratheodory if

(i) t — f(t,x) is measurable for each x € R,

(ii) z — f(t,z) is continuous for almost all ¢ € [0, 1],

(iii) there exists m € L'([0,1], D), D C R such that [f] < m.

Now we state Caratheodory Theorem (see[3]).

Theorem 2.1 Let f[0,1] x R — R be L'—Caratheodory, then the initial-value problem

dx(t)

Tat f(t,z(t)), forae. t>0, and z(0)= . (4)

has at least one solution = € AC|0,T].
Here we generalize Caratheodory theorem for the nonlocal problem (1)-(2).

3 Main results
Consider firstly the fractional-order integral equation

y(t) = I'*f(t.y(t), ()

Definition 3.1 The function gy is called a solution of the fractional-order integral equa-
tion (5), if it is continuous on [0, 1] and satisfies (5).
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Theorem 3.1 Let f :[0,1] x R —+ R be L!'—Caratheodory. If I'™® m(t) < M,
for @ > 0, then there exists at least one solution y € C[0,1] of the fractional-order

functional integral equation (5).
Proof. Since I'=* m(t) < M, then

—« t (t — 8)_a
L7 Sy | < [ ey et s
t ot — s)l=@
S l wm(s)ds S .1\4-7 CLZO

Define the sequence {y,(t)}, t € [0,1]

i) = [ Hsns) ds

which can be written in the operator form

Ynt1(t) = AR f@), yn(t)).

Then
t _ 5~ a-8
1—a-28 B (t S)
|y ()| < T | I ﬂaydm|§ﬂ44 Ti—a — 3) ds
()~ =7 Myt ?
= AIHQ—(x—B)S r'2 - a - p)

For t1, to € [0,1] such that t; < to, then

to — 8)_a

mirlt) = gt =[RS gy as - [T (o) s

a9 5l = 9

= ./0 ﬁ f(s,yn(s)) ds + A ﬁ f(s,yn(s)) ds
bt — s

- [ o as

IN

/Ot1 (= 97 F(5,yn(s) ds + # e - 9 F(s,yn(s)) ds

I(l—a) v I(l-a)

oty — s)7®
- /0 m f(s,yn(s)) ds.

Therefore

| Yns1(t2) — yngp1(t1) | < /: % m(s) ds < /: % m(6) df
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to (t2 _ 9)—0{—IB

S M t1 F(l—a—ﬁ)da
(tQ _ tl)l—a - B
= YT -9

Hence [to — t1| < 6 = |ynt1(t2) — yn+1(t1) | < €(d) and {y,(t)} is a sequence of
equi-continuous and uniformly bounded functions. By Arzela-Ascoli Theorem, there exists
a subsequence {yn, (t)} of continuous functions which converges uniformly to a continuous
function y as k — oo.
Now we show that this limit function is the required solution.
Since

| f(8:9mi(5)) | < m(s) € L,

and f(s,yn,(s)) is continuous in the second argument,

Le. f(s,ync(s)) = f(s,u(s)) as k — oo,

therefore the sequence {(t — s)™ @ f(s,yn,(s))}, a € (0,1) satisfies Lebesgue dominated
convergence theorem. Hence

P ds = [ ptsu) s = vl

0

t _ -«
T A ) B
k — o0.Jo F(l — a)

Which proves the existence of at least one solution y € C0,1] of the fractional-order
functional integral equation (5).

Theorem 3.2 Let the assumptions of Theorem 3.1 are satisfied. Then nonlocal prob-
lem (1)- (2) has at least one positive solution z € C[0,1].
Proof. Consider the nonlocal fractional differential equation

dz o
z(0) + i ap z(ty) = o.
k=1
Let y(t) = D%x(t), then
R
y(t) = I v (6)
y(t) = I f(ty(t)). (7)

and y is the solution of the fractional-order integral equation (5).
Operating by I on both sides of equation(6), we get
dx(t)

I%y(t) = 1 i z(t) —x(0) =
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a(t) = (0) + I y(?). (8)
Substituting for the value of z(0) from (2), we get

m

a(t) = w0 — Y apa(ty) + 1% y(t) 9)
k=1

and .
m(tk) = Ty — Z Qg x(tk) + Ia y(t)lt:tk. (10)

k=1

Now from (9) and (10) we can get
(1 + i ag) o(t) = zy — i ag I y(@)le=e, + (1 + i ar) 1% y(t).
k=1 k=1 k=1

Letting a = (1 + 37, ax)~!, we deduce that the nonlocal problem (1)-(2) transformed
to the integral equation

ot) = a (oo — 3 ap I yWls) + I°y(0) (1)
k=1

which, by Theorem 3.1, has at least one solution z € C|0,1].
Now

Do oar It y()|i=r, < Y arx 1% y(t)
=1 k=1

and
m m
a Z ag I y(t)|i=t, < a Z ar, 1% y(t)
k=1 k=1

which gives
m
a Y ap I y(t)|i=r, < 1% y(t)
k=1
and the solution

1) = aleo — > @ I yM)ln) + I* y(0)
k=1

is positive.
Substituting from (7) into (11), we obtain

m t
ot) = @l = 3 @l yOlw) + [ flsyls) ds (12)
k=1
Differentiating both sides of (12), we get

dx

o= Hy) = £t D).
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Putting ¢t =0, in (11), we get

20 =a (e — 3 ar (@lt) - 2(0)))
k=1
and . .
2(0)=a(xo — Y apa(ty) —2(0)) ax) =
k=1 k=1

z(0)=a (1 + i ap) Y xg —
k=1

Since a = (1 + >_jL; a), it follows that
z(0) = xy — Z ar x(tg).
k=1

This completes the proof of the equivalence between the the integral equation (11) and the
nonlocal problem (1)-(2).

4 Nonlocal integral condition

Let € C[0,1] be the solution of the nonlocal problem (1)-(2).
Let ap = 7 — k-1, tk € (Th—1,7%), 0 = 70 < 71 < T2,... < T, = 1 then the nonlocal
condition (2) will be

xz(0) + i (1 — Th—1) x(tr) = 0.
k=1

From the continuity of the solution z of the nonlocal problem (1)-(2) we can obtain

m

Tim > (- ) alt) = /0 " us) ds.

k=1

and the nonlocal condition (2) transformed to the integral one

z(0) + /01 z(s) ds = x,.

Also from the continuity of the function I%y(t), where vy is the solution of the integral
equation (5), we deduce that the solution (11) will be

o) = 3o~ [ 1w d) + 1),
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Now, we have the following Theorem
Theorem 3.1 Let the assumptions of Theorem 3.2 are satisfied. Then there exist at least
one solution x € C[0,1] of the nonlocal problem with integral condition,

dx(t)
dt

= f(t,D%(t)), te (0,1],
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