A nonlocal problem of an arbitrary (fractional) orders differential equation

El-Sayed, A.M.A and Bin-Taher E.O Faculty of Science, Alexandria University, Alexandria, Egypt E-mails. amasayed@hotmail.com and ebtsamsam@yahoo.com

Abstract

In this paper we study the existence of solution for the differential equation of arbitrary (fractional) orders $\frac{dx}{dt} = f(t, D^{\alpha}x(t)), t \in (0, 1)$ with the nonlocal condition $x(0) + \sum_{k=1}^{m} a_k x(t_k) = x_o$ where f is L^1 -Caratheodory. The nonlocal integral condition $x(0) + \int_o^1 x(s) ds = x_o$ will be studied.

Keywords: Fractional calculus, nonlocal condition, integral condition, Caratheodory theorem.

1 Introduction

Problems with non-local conditions have been extensively studied by several authors in the last two decades. The reader is referred to ([1]), ([2]) and references therein.

Recently, El-Sayed, Abd El-Salam [4] studied the existence of a unique solution of the fractional order differential equation

$$D^{\alpha}x(t) = c(t)f(x(t)) + b(t), \quad t \in (0,1] \text{ and } \alpha \in (0,1]$$

with the nonlocal condition

$$x(0) + \sum_{k=1}^{m} a_k x(t_k) = x_o.$$

where $x_o \in \Re$, $0 < t_1 < t_2 < \ldots < t_m < 1$, $a_k \neq 0$, $k = 1, 2, \ldots, m$ and D^{α} is the fractional order operator.

In this work we study the existence of at least one solution for the nonlocal problem of the arbitrary (fractional) order differential equation

$$\frac{dx}{dt} = f(t, D^{\alpha}x(t)), \quad t \in (0, 1] \text{ and } \alpha \in (0, 1]$$

$$\tag{1}$$

$$x(0) + \sum_{k=1}^{m} a_k x(t_k) = x_o, \quad t_k \in (0, 1]$$
(2)

when f is L^1 -Caratheodory.

As an application, we deduce the existence of solution for the nonlocal problem of the differential (1) with the nonlocal integral condition

$$x(0) + \int_0^1 x(s) \, ds = x_o. \tag{3}$$

2 preliminaries

Let $L^1(I)$ denotes the class of Lebesgue integrable functions on the interval I = [0, 1], with the norm $||u||_{L^1} = \int_I |u(t)| dt$ and C(I) denotes the class of continuous functions on the interval I, with the norm $||u|| = \sup_{t \in I} |u(t)|$ and $\Gamma(.)$ denotes the gamma function.

Definition 2.1 The fractional-order integral of the function $f \in L_1[a, b]$ of order $\beta \in R^+$ is defined by (see [6]- [9])

$$I_a^\beta f(t) = \int_a^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) \ ds$$

Definition 2.2 The Caputo fractional-order derivative of order $\alpha \in (0, 1]$ of the absolutely continuous function f(t) is defined by (see [7]-[9]).

$$D_a^{\alpha} f(t) = I_a^{1 - \alpha} \frac{d}{dt} f(t).$$

Definition 2.3 The function $f: [0,1] \times R \to R$ is called L^1 -Caratheodory if (i) $t \to f(t,x)$ is measurable for each $x \in R$,

(ii) $x \to f(t, x)$ is continuous for almost all $t \in [0, 1]$,

(iii) there exists $m \in L^1([0,1], D)$, $D \subset R$ such that $|f| \leq m$.

Now we state Caratheodory Theorem (see[3]).

Theorem 2.1 Let $f[0,1] \times R \to R$ be L^1 -Caratheodory, then the initial-value problem

$$\frac{dx(t)}{dt} = f(t, x(t)), \quad \text{for a.e. } t > 0, \quad \text{and} \quad x(0) = x_0.$$
(4)

has at least one solution $x \in AC[0, T]$.

Here we generalize Caratheodory theorem for the nonlocal problem (1)-(2).

3 Main results

Consider firstly the fractional-order integral equation

$$y(t) = I^{1-\alpha} f(t, y(t)),$$
 (5)

Definition 3.1 The function y is called a solution of the fractional-order integral equation (5), if it is continuous on [0, 1] and satisfies (5).

Theorem 3.1 Let $f : [0,1] \times R \to R$ be L^1 -Caratheodory. If $I_a^{1-\alpha} m(t) \leq M$, for $a \geq 0$, then there exists at least one solution $y \in C[0,1]$ of the fractional-order functional integral equation (5).

(ISSN 2090-4320)

Proof. Since $I_a^{1-\alpha} m(t) \leq M$, then

$$|I_a^{1-\alpha} f(t, y(t))| \leq \int_a^t \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} |f(s, y(s))| ds$$
$$\leq \int_a^t \frac{(t-s)^{1-\alpha}}{\Gamma(1-\alpha)} m(s) ds \leq M, \ a \geq 0$$

Define the sequence $\{y_n(t)\}, t \in [0,1]$

$$y_{n+1}(t) = \int_0^t \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f(s, y_n(s)) ds,$$

which can be written in the operator form

$$y_{n+1}(t) = I^{1-\alpha - \beta} I^{\beta} f(t), \quad y_n(t))$$

Then

$$|y_{n+1}(t)| \leq I^{1-\alpha-\beta} |I^{\beta} f(t, y_n(t))| \leq M \int_0^t \frac{(t-s)^{-\alpha-\beta}}{\Gamma(1-\alpha-\beta)} ds$$
$$\leq M \frac{(t)^{1-\alpha-\beta}}{\Gamma(2-\alpha-\beta)} \leq \frac{M b^{1-\alpha-\beta}}{\Gamma(2-\alpha-\beta)}.$$

For $t_1, t_2 \in [0,1]$ such that $t_1 < t_2$, then

$$y_{n+1}(t_2) - y_{n+1}(t_1) = \int_0^{t_2} \frac{(t_2 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds - \int_0^{t_1} \frac{(t_1 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds$$

$$= \int_0^{t_1} \frac{(t_2 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds + \int_{t_1}^{t_2} \frac{(t_2 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds$$

$$- \int_0^{t_1} \frac{(t_1 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds + \int_{t_1}^{t_2} \frac{(t_2 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds$$

$$\leq \int_0^{t_1} \frac{(t_1 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds + \int_{t_1}^{t_2} \frac{(t_2 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds$$

$$- \int_0^{t_1} \frac{(t_1 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds + \int_{t_1}^{t_2} \frac{(t_2 - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_n(s)) \, ds$$

Therefore

$$|y_{n+1}(t_2) - y_{n+1}(t_1)| \leq \int_{t_1}^{t_2} \frac{(t_2 - s)^{-\alpha}}{\Gamma(1 - \alpha)} m(s) \, ds \leq \int_{t_1}^{t_2} \frac{(t_2 - \theta)^{-\alpha}}{\Gamma(1 - \alpha)} m(\theta) \, d\theta$$

$$\leq M \int_{t_1}^{t_2} \frac{(t_2 - \theta)^{-\alpha - \beta}}{\Gamma(1 - \alpha - \beta)} d\theta$$
$$\leq M \frac{(t_2 - t_1)^{1 - \alpha - \beta}}{\Gamma(2 - \alpha - \beta)}.$$

Hence $|t_2 - t_1| < \delta \Rightarrow |y_{n+1}(t_2) - y_{n+1}(t_1)| < \epsilon(\delta)$ and $\{y_n(t)\}$ is a sequence of equi-continuous and uniformly bounded functions. By Arzela-Ascoli Theorem, there exists a subsequence $\{y_{n_k}(t)\}$ of continuous functions which converges uniformly to a continuous function y as $k \to \infty$.

Now we show that this limit function is the required solution. Since

$$| f(s, y_{n_k}(s)) | \leq m(s) \in L_1,$$

and $f(s, y_{n_k}(s))$ is continuous in the second argument,

i.e.
$$f(s, y_{n_k}(s)) \rightarrow f(s, y(s))$$
 as $k \rightarrow \infty$,

therefore the sequence $\{(t - s)^{-\alpha} f(s, y_{n_k}(s))\}$, $\alpha \in (0, 1)$ satisfies Lebesgue dominated convergence theorem. Hence

$$\lim_{k \to \infty} \int_0^t \frac{(t - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y_{n_k}(s)) \, ds = \int_0^t \frac{(t - s)^{-\alpha}}{\Gamma(1 - \alpha)} f(s, y(s)) \, ds = y(t).$$

Which proves the existence of at least one solution $y \in C[0,1]$ of the fractional-order functional integral equation (5).

Theorem 3.2 Let the assumptions of Theorem 3.1 are satisfied. Then nonlocal problem (1)- (2) has at least one positive solution $x \in C[0, 1]$.

Proof. Consider the nonlocal fractional differential equation

$$\frac{dx}{dt} = f(t, D^{\alpha}x(t)),$$
$$x(0) + \sum_{k=1}^{m} a_k x(t_k) = x_{\alpha}$$

Let $y(t) = D^{\alpha}x(t)$, then

$$y(t) = I^{1-\alpha} \frac{dx(t)}{dt}, \tag{6}$$

$$y(t) = I^{1-\alpha} f(t, y(t)).$$
 (7)

and y is the solution of the fractional-order integral equation (5). Operating by I^{α} on both sides of equation(6), we get

$$I^{\alpha}y(t) = I\frac{dx(t)}{dt} = x(t) - x(0) \Rightarrow$$

$$x(t) = x(0) + I^{\alpha} y(t).$$
(8)

Substituting for the value of x(0) from (2), we get

$$x(t) = x_0 - \sum_{k=1}^m a_k x(t_k) + I^{\alpha} y(t)$$
(9)

and

$$x(t_k) = x_0 - \sum_{k=1}^m a_k x(t_k) + I^{\alpha} y(t)|_{t=t_k}.$$
 (10)

Now from (9) and (10) we can get

$$(1 + \sum_{k=1}^{m} a_k) x(t) = x_0 - \sum_{k=1}^{m} a_k I^{\alpha} y(t)|_{t=t_k} + (1 + \sum_{k=1}^{m} a_k) I^{\alpha} y(t).$$

Letting $a = (1 + \sum_{k=1}^{m} a_k)^{-1}$, we deduce that the nonlocal problem (1)-(2) transformed to the integral equation

$$x(t) = a (x_0 - \sum_{k=1}^m a_k I^{\alpha} y(t)|_{t=t_k}) + I^{\alpha} y(t)$$
(11)

which, by Theorem 3.1, has at least one solution $x \in C[0, 1]$. Now

$$\sum_{k=1}^{m} a_k I^{\alpha} y(t)|_{t=t_k} \leq \sum_{k=1}^{m} a_k I^{\alpha} y(t)$$

and

$$a \sum_{k=1}^{m} a_k I^{\alpha} y(t)|_{t=t_k} \leq a \sum_{k=1}^{m} a_k I^{\alpha} y(t)$$

which gives

$$a \sum_{k=1}^{m} a_k I^{\alpha} y(t)|_{t=t_k} \leq I^{\alpha} y(t)$$

and the solution

$$x(t) = a (x_0 - \sum_{k=1}^m a_k I^{\alpha} y(t)|_{t=t_k}) + I^{\alpha} y(t)$$

is positive.

Substituting from (7) into (11), we obtain

$$x(t) = a (x_0 - \sum_{k=1}^m a_k I^{\alpha} y(t)|_{t=t_k}) + \int_0^t f(s, y(s)) ds.$$
 (12)

Differentiating both sides of (12), we get

$$\frac{dx}{dt} = f(t, y(t)) = f(t, D^{\alpha}x(t)).$$

Putting t = 0, in (11), we get

$$x(0) = a (x_0 - \sum_{k=1}^{m} a_k (x(t_k) - x(0)))$$

and

$$\begin{aligned} x(0) &= a \left(x_0 - \sum_{k=1}^m a_k x(t_k) - x(0) \sum_{k=1}^m a_k \right) \Rightarrow \\ x(0) &+ x(0) \sum_{k=1}^m a_k = a \left(x_0 - \sum_{k=1}^m a_k x(t_k) \right) \Rightarrow \\ x(0) &= a \left(1 + \sum_{k=1}^m a_k \right)^{-1} \left(x_0 - \sum_{k=1}^m a_k x(t_k) \right). \end{aligned}$$

Since $a = (1 + \sum_{k=1}^{m} a_k)$, it follows that

$$x(0) = x_0 - \sum_{k=1}^m a_k x(t_k).$$

This completes the proof of the equivalence between the the integral equation (11) and the nonlocal problem (1)-(2).

4 Nonlocal integral condition

Let $x \in C[0,1]$ be the solution of the nonlocal problem (1)-(2). Let $a_k = \tau_k - \tau_{k-1}$, $t_k \in (\tau_{k-1}, \tau_k)$, $0 = \tau_0 < \tau_1 < \tau_2$, ... $< \tau_n = 1$ then the nonlocal condition (2) will be

$$x(0) + \sum_{k=1}^{m} (\tau_k - \tau_{k-1}) x(t_k) = x_o.$$

From the continuity of the solution x of the nonlocal problem (1)-(2) we can obtain

$$\lim_{m \to \infty} \sum_{k=1}^{m} (\tau_k - \tau_{k-1}) x(t_k) = \int_0^1 x(s) \, ds.$$

and the nonlocal condition (2) transformed to the integral one

$$x(0) + \int_0^1 x(s) \, ds = x_o.$$

Also from the continuity of the function $I^{\alpha}y(t)$, where y is the solution of the integral equation (5), we deduce that the solution (11) will be

$$x(t) = \frac{1}{2} (x_o - \int_0^1 I^{\alpha} y(t) dt) + I^{\alpha} y(t).$$

Now, we have the following Theorem

Theorem 3.1 Let the assumptions of Theorem 3.2 are satisfied. Then there exist at least one solution $x \in C[0, 1]$ of the nonlocal problem with integral condition,

$$\frac{dx(t)}{dt} = f(t, D^{\alpha}x(t)), \quad t \in (0, 1],$$
$$x(0) + \int_0^1 x(s) \, ds = x_o.$$

References

- Boucherif, A. First-Order Differential Inclusions with Nonlocal Initial Conditions, Applied Mathematics Letters, 15 (2002) 409-414.
- [2] Gatsori, E. Ntouyas, S. K. and Sficas, Y. G. On a nonlocal Cauchy problem for Differential Inclusions, *Abstract and Applied Analysis*, 5 (2004) 425-434.
- [3] Curtain, R. F. and Pritchard, A. J. Functional Analysis in Modern Applied Mathematics Academic press. 1977.
- [4] El-Sayed, A. M. A. and Abd El-Salam, Sh. A. On the stability of a fractional order differential equation with nonlocal initial condition, EJQTDE, 29(2008)1-8.
- [5] Guerekata, G. M. A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear Analysis 70 (2009) 1873-1876.
- [6] Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York (1993).
- [7] Podlubny, I. and EL-Sayed, A. M. A. On two definitions of fractional calculus, Preprint UEF 03-96 (ISBN 80-7099-252-2), Slovak Academy of Science-Institute of Experimental phys. (1996).
- [8] Podlubny, I. Fractional Differential Equations, Acad. press, San Diego-New York-London (1999).
- [9] Samko, S., Kilbas, A. and Marichev, O. L. Fractional Integrals and Derivatives, Gordon and Breach Science Publisher (1993).