A nonlocal problem of an arbitrary (fractional) orders differential equation

El-Sayed, A.M.A and Bin-Taher E.O
Faculty of Science, Alexandria University, Alexandria, Egypt
E-mails. amasayed@hotmail.com and ebtsamsam@yahoo.com

Abstract

In this paper we study the existence of solution for the differential equation of arbitrary (fractional) orders $\frac{d x}{d t}=f\left(t, D^{\alpha} x(t)\right), t \in(0,1)$ with the nonlocal condition $x(0)+\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)=x_{o}$ where f is L^{1}-Caratheodory. The nonlocal integral condition $x(0)+\int_{o}^{1} x(s) d s=x_{o}$ will be studied.

Keywords: Fractional calculus, nonlocal condition, integral condition, Caratheodory theorem.

1 Introduction

Problems with non-local conditions have been extensively studied by several authors in the last two decades. The reader is referred to ([1]), ([2]) and references therein.
Recently, El-Sayed, Abd El-Salam [4] studied the existence of a unique solution of the fractional order differential equation

$$
D^{\alpha} x(t)=c(t) f(x(t))+b(t), \quad t \in(0,1] \quad \text { and } \quad \alpha \in(0,1]
$$

with the nonlocal condition

$$
x(0)+\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)=x_{o}
$$

where $x_{o} \in \Re, \quad 0<t_{1}<t_{2}<\ldots<t_{m}<1, \quad a_{k} \neq 0, \quad k=1,2, \ldots, m$ and D^{α} is the fractional order operator.
In this work we study the existence of at least one solution for the nonlocal problem of the arbitrary (fractional) order differential equation

$$
\begin{gather*}
\frac{d x}{d t}=f\left(t, D^{\alpha} x(t)\right), \quad t \in(0,1] \quad \text { and } \alpha \in(0,1] \tag{1}\\
x(0)+\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)=x_{o}, \quad t_{k} \in(0,1] \tag{2}
\end{gather*}
$$

when f is L^{1}-Caratheodory.
As an application, we deduce the existence of solution for the nonlocal problem of the differential (1) with the nonlocal integral condition

$$
\begin{equation*}
x(0)+\int_{0}^{1} x(s) d s=x_{o} . \tag{3}
\end{equation*}
$$

2 preliminaries

Let $L^{1}(I)$ denotes the class of Lebesgue integrable functions on the interval $I=[0,1]$, with the norm $\|u\|_{L^{1}}=\int_{I}|u(t)| d t$ and $C(I)$ denotes the class of continuous functions on the interval I, with the norm $\|u\|=\sup _{t \in I}|u(t)|$ and $\Gamma($.$) denotes the gamma$ function.
Definition 2.1 The fractional-order integral of the function $f \in L_{1}[a, b]$ of order $\beta \in R^{+}$ is defined by (see [6]- [9])

$$
I_{a}^{\beta} f(t)=\int_{a}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) d s
$$

Definition 2.2 The Caputo fractional-order derivative of order $\alpha \in(0,1]$ of the absolutely continuous function $f(t)$ is defined by (see [7]-[9]).

$$
D_{a}^{\alpha} f(t)=I_{a}^{1-\alpha} \frac{d}{d t} f(t) .
$$

Definition 2.3 The function $f:[0,1] \times R \rightarrow R$ is called L^{1}-Caratheodory if
(i) $t \rightarrow f(t, x)$ is measurable for each $x \in R$,
(ii) $x \rightarrow f(t, x)$ is continuous for almost all $t \in[0,1]$,
(iii) there exists $m \in L^{1}([0,1], D), D \subset R$ such that $|f| \leq m$.

Now we state Caratheodory Theorem (see[3]).
Theorem 2.1 Let $f[0,1] \times R \rightarrow R$ be L^{1}-Caratheodory, then the initial-value problem

$$
\begin{equation*}
\frac{d x(t)}{d t}=f(t, x(t)), \quad \text { for a.e. } t>0, \quad \text { and } \quad x(0)=x_{0} . \tag{4}
\end{equation*}
$$

has at least one solution $x \in A C[0, T]$.
Here we generalize Caratheodory theorem for the nonlocal problem (1)-(2).

3 Main results

Consider firstly the fractional-order integral equation

$$
\begin{equation*}
y(t)=I^{1-\alpha} f(t, y(t)), \tag{5}
\end{equation*}
$$

Definition 3.1 The function y is called a solution of the fractional-order integral equation (5), if it is continuous on $[0,1]$ and satisfies (5).

Theorem 3.1 Let $f:[0,1] \times R \rightarrow R$ be L^{1}-Caratheodory. If $I_{a}^{1-\alpha} m(t) \leq M$, for $a \geq 0$, then there exists at least one solution $y \in C[0,1]$ of the fractional-order functional integral equation (5).
Proof. Since $I_{a}^{1-\alpha} m(t) \leq M$, then

$$
\begin{aligned}
\left|I_{a}^{1-\alpha} f(t, y(t))\right| & \leq \int_{a}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)}|f(s, y(s))| d s \\
& \leq \int_{a}^{t} \frac{(t-s)^{1-\alpha}}{\Gamma(1-\alpha)} m(s) d s \leq M, \quad a \geq 0
\end{aligned}
$$

Define the sequence $\left\{y_{n}(t)\right\}, t \in[0,1]$

$$
y_{n+1}(t)=\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n}(s)\right) d s
$$

which can be written in the operator form

$$
\left.y_{n+1}(t)=I^{1-\alpha-\beta} I^{\beta} f(t), \quad y_{n}(t)\right)
$$

Then

$$
\begin{aligned}
\left|y_{n+1}(t)\right| & \leq I^{1-\alpha-\beta}\left|I^{\beta} f\left(t, y_{n}(t)\right)\right| \leq M \int_{0}^{t} \frac{(t-s)^{-\alpha-\beta}}{\Gamma(1-\alpha-\beta)} d s \\
& \leq M \frac{(t)^{1-\alpha-\beta}}{\Gamma(2-\alpha-\beta)} \leq \frac{M b^{1-\alpha-\beta}}{\Gamma(2-\alpha-\beta)}
\end{aligned}
$$

For $t_{1}, t_{2} \in[0,1]$ such that $t_{1}<t_{2}$, then

$$
\begin{aligned}
y_{n+1}\left(t_{2}\right)-y_{n+1}\left(t_{1}\right) & =\int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n}(s)\right) d s-\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n}(s)\right) d s \\
& =\int_{0}^{t_{1}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n}(s)\right) d s+\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n}(s)\right) d s \\
& -\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n}(s)\right) d s \\
& \leq \int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n}(s) d s+\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n}(s)\right) d s\right. \\
& -\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n}(s)\right) d s .
\end{aligned}
$$

Therefore

$$
\left|y_{n+1}\left(t_{2}\right)-y_{n+1}\left(t_{1}\right)\right| \leq \int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} m(s) d s \leq \int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-\theta\right)^{-\alpha}}{\Gamma(1-\alpha)} m(\theta) d \theta
$$

$$
\begin{aligned}
& \leq M \int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-\theta\right)^{-\alpha-\beta}}{\Gamma(1-\alpha-\beta)} d \theta \\
& \leq M \frac{\left(t_{2}-t_{1}\right)^{1-\alpha-\beta}}{\Gamma(2-\alpha-\beta)} .
\end{aligned}
$$

Hence $\left|t_{2}-t_{1}\right|<\delta \Rightarrow\left|y_{n+1}\left(t_{2}\right)-y_{n+1}\left(t_{1}\right)\right|<\epsilon(\delta)$ and $\left\{y_{n}(t)\right\}$ is a sequence of equi-continuous and uniformly bounded functions. By Arzela-Ascoli Theorem, there exists a subsequence $\left\{y_{n_{k}}(t)\right\}$ of continuous functions which converges uniformly to a continuous function y as $k \rightarrow \infty$.
Now we show that this limit function is the required solution.
Since

$$
\left|f\left(s, y_{n_{k}}(s)\right)\right| \leq m(s) \in L_{1},
$$

and $f\left(s, y_{n_{k}}(s)\right)$ is continuous in the second argument,

$$
\text { i.e. } f\left(s, y_{n_{k}}(s)\right) \rightarrow f(s, y(s)) \quad \text { as } \quad k \rightarrow \infty \text {, }
$$

therefore the sequence $\left\{(t-s)^{-\alpha} f\left(s, y_{n_{k}}(s)\right)\right\}, \alpha \in(0,1)$ satisfies Lebesgue dominated convergence theorem. Hence

$$
\lim _{k \rightarrow \infty} \int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f\left(s, y_{n_{k}}(s)\right) d s=\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f(s, y(s)) d s=y(t) .
$$

Which proves the existence of at least one solution $y \in C[0,1]$ of the fractional-order functional integral equation (5).

Theorem 3.2 Let the assumptions of Theorem 3.1 are satisfied. Then nonlocal problem (1)- (2) has at least one positive solution $x \in C[0,1]$.
Proof. Consider the nonlocal fractional differential equation

$$
\begin{aligned}
& \frac{d x}{d t}=f\left(t, D^{\alpha} x(t)\right), \\
& x(0)+\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)=x_{\circ} .
\end{aligned}
$$

Let $y(t)=D^{\alpha} x(t)$, then

$$
\begin{gather*}
y(t)=I^{1-\alpha} \frac{d x(t)}{d t} \tag{6}\\
y(t)=I^{1-\alpha} f(t, y(t)) \tag{7}
\end{gather*}
$$

and y is the solution of the fractional-order integral equation (5).
Operating by I^{α} on both sides of equation(6), we get

$$
I^{\alpha} y(t)=I \frac{d x(t)}{d t}=x(t)-x(0) \Rightarrow
$$

$$
\begin{equation*}
x(t)=x(0)+I^{\alpha} y(t) \tag{8}
\end{equation*}
$$

Substituting for the value of $x(0)$ from (2), we get

$$
\begin{equation*}
x(t)=x_{0}-\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)+I^{\alpha} y(t) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
x\left(t_{k}\right)=x_{0}-\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)+\left.I^{\alpha} y(t)\right|_{t=t_{k}} . \tag{10}
\end{equation*}
$$

Now from (9) and (10) we can get

$$
\left(1+\sum_{k=1}^{m} a_{k}\right) x(t)=x_{0}-\left.\sum_{k=1}^{m} a_{k} I^{\alpha} y(t)\right|_{t=t_{k}}+\left(1+\sum_{k=1}^{m} a_{k}\right) I^{\alpha} y(t) .
$$

Letting $a=\left(1+\sum_{k=1}^{m} a_{k}\right)^{-1}$, we deduce that the nonlocal problem (1)-(2) transformed to the integral equation

$$
\begin{equation*}
x(t)=a\left(x_{0}-\left.\sum_{k=1}^{m} a_{k} I^{\alpha} y(t)\right|_{t=t_{k}}\right)+I^{\alpha} y(t) \tag{11}
\end{equation*}
$$

which, by Theorem 3.1, has at least one solution $x \in C[0,1]$.
Now

$$
\left.\sum_{k=1}^{m} a_{k} I^{\alpha} y(t)\right|_{t=t_{k}} \leq \sum_{k=1}^{m} a_{k} I^{\alpha} y(t)
$$

and

$$
\left.a \sum_{k=1}^{m} a_{k} I^{\alpha} y(t)\right|_{t=t_{k}} \leq a \sum_{k=1}^{m} a_{k} I^{\alpha} y(t)
$$

which gives

$$
\left.a \sum_{k=1}^{m} a_{k} I^{\alpha} y(t)\right|_{t=t_{k}} \leq I^{\alpha} y(t)
$$

and the solution

$$
x(t)=a\left(x_{0}-\left.\sum_{k=1}^{m} a_{k} I^{\alpha} y(t)\right|_{t=t_{k}}\right)+I^{\alpha} y(t)
$$

is positive.
Substituting from (7) into (11), we obtain

$$
\begin{equation*}
x(t)=a\left(x_{0}-\left.\sum_{k=1}^{m} a_{k} I^{\alpha} y(t)\right|_{t=t_{k}}\right)+\int_{0}^{t} f(s, y(s)) d s \tag{12}
\end{equation*}
$$

Differentiating both sides of (12), we get

$$
\frac{d x}{d t}=f(t, y(t))=f\left(t, D^{\alpha} x(t)\right) .
$$

Putting $t=0$, in (11), we get

$$
x(0)=a\left(x_{0}-\sum_{k=1}^{m} a_{k}\left(x\left(t_{k}\right)-x(0)\right)\right)
$$

and

$$
\begin{gathered}
x(0)=a\left(x_{0}-\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)-x(0) \sum_{k=1}^{m} a_{k}\right) \Rightarrow \\
x(0)+x(0) \sum_{k=1}^{m} a_{k}=a\left(x_{0}-\sum_{k=1}^{m} a_{k} x\left(t_{k}\right) \Rightarrow\right. \\
x(0)=a\left(1+\sum_{k=1}^{m} a_{k}\right)^{-1}\left(x_{0}-\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)\right) .
\end{gathered}
$$

Since $a=\left(1+\sum_{k=1}^{m} a_{k}\right)$, it follows that

$$
x(0)=x_{0}-\sum_{k=1}^{m} a_{k} x\left(t_{k}\right) .
$$

This completes the proof of the equivalence between the the integral equation (11) and the nonlocal problem (1)-(2).

4 Nonlocal integral condition

Let $x \in C[0,1]$ be the solution of the nonlocal problem (1)-(2).
Let $a_{k}=\tau_{k}-\tau_{k-1}, \quad t_{k} \in\left(\tau_{k-1}, \tau_{k}\right), 0=\tau_{0}<\tau_{1}<\tau_{2}, \ldots<\tau_{n}=1$ then the nonlocal condition (2) will be

$$
x(0)+\sum_{k=1}^{m}\left(\tau_{k}-\tau_{k-1}\right) x\left(t_{k}\right)=x_{o} .
$$

From the continuity of the solution x of the nonlocal problem (1)-(2) we can obtain

$$
\lim _{m \rightarrow \infty} \sum_{k=1}^{m}\left(\tau_{k}-\tau_{k-1}\right) x\left(t_{k}\right)=\int_{0}^{1} x(s) d s
$$

and the nonlocal condition (2) transformed to the integral one

$$
x(0)+\int_{0}^{1} x(s) d s=x_{o} .
$$

Also from the continuity of the function $I^{\alpha} y(t)$, where y is the solution of the integral equation (5), we deduce that the solution (11) will be

$$
x(t)=\frac{1}{2}\left(x_{o}-\int_{0}^{1} I^{\alpha} y(t) d t\right)+I^{\alpha} y(t) .
$$

Now, we have the following Theorem
Theorem 3.1 Let the assumptions of Theorem 3.2 are satisfied. Then there exist at least one solution $x \in C[0,1]$ of the nonlocal problem with integral condition,

$$
\begin{gathered}
\frac{d x(t)}{d t}=f\left(t, D^{\alpha} x(t)\right), \quad t \in(0,1] \\
x(0)+\int_{0}^{1} x(s) d s=x_{o}
\end{gathered}
$$

References

[1] Boucherif, A. First-Order Differential Inclusions with Nonlocal Initial Conditions, $A p$ plied Mathematics Letters, 15 (2002) 409-414.
[2] Gatsori, E. Ntouyas,S. K. and Sficas,Y. G. On a nonlocal Cauchy problem for Differential Inclusions, Abstract and Applied Analysis, 5 (2004) 425-434.
[3] Curtain, R. F. and Pritchard, A. J. Functional Analysis in Modern Applied Mathematics Academic press. 1977.
[4] El-Sayed, A. M. A. and Abd El-Salam, Sh. A. On the stability of a fractional order differential equation with nonlocal initial condtion, EJQTDE, 29(2008)1-8.
[5] Guerekata, G. M. A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear Analysis 70 (2009) 1873-1876.
[6] Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York (1993).
[7] Podlubny, I. and EL-Sayed, A. M. A. On two definitions of fractional calculus, Preprint UEF 03-96 (ISBN 80-7099-252-2), Slovak Academy of Science-Institute of Experimental phys. (1996).
[8] Podlubny, I. Fractional Differential Equations, Acad. press, San Diego-New YorkLondon (1999).
[9] Samko, S., Kilbas, A. and Marichev, O. L. Fractional Integrals and Derivatives, Gordon and Breach Science Publisher (1993).

