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Abstract

In this paper we study the existence of solution for the differential equation of
arbitrary ( fractional ) orders dx

dt = f(t,Dαx(t)), t ∈ (0, 1) with the nonlocal
condition x(0)+

∑m
k = 1 ak x(tk) = xo where f is L1−Caratheodory. The nonlocal

integral condition x(0) +
∫ 1

o
x(s) ds = xo will be studied.

Keywords: Fractional calculus, nonlocal condition, integral condition, Caratheodory the-
orem.

1 Introduction

Problems with non-local conditions have been extensively studied by several authors in the
last two decades. The reader is referred to ([1]), ([2]) and references therein.
Recently, El-Sayed, Abd El-Salam [4] studied the existence of a unique solution of the
fractional order differential equation

Dαx(t) = c(t)f(x(t)) + b(t), t ∈ (0, 1] and α ∈ (0, 1]

with the nonlocal condition

x(0) +
m∑

k = 1

ak x(tk) = xo.

where xo ∈ ℜ, 0 < t1 < t2 < . . . < tm < 1, ak ̸= 0, k = 1, 2, . . . ,m and Dα is the
fractional order operator.
In this work we study the existence of at least one solution for the nonlocal problem of the
arbitrary (fractional) order differential equation

dx

dt
= f(t,Dαx(t)), t ∈ (0, 1] and α ∈ (0, 1] (1)

x(0) +
m∑

k = 1

ak x(tk) = xo, tk ∈ (0, 1] (2)
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when f is L1−Caratheodory.
As an application, we deduce the existence of solution for the nonlocal problem of the
differential (1) with the nonlocal integral condition

x(0) +

∫ 1

0
x(s) ds = xo. (3)

2 preliminaries

Let L1(I) denotes the class of Lebesgue integrable functions on the interval I = [0, 1],
with the norm ||u||L1 =

∫
I |u(t)| dt and C(I) denotes the class of continuous functions

on the interval I , with the norm ||u|| = supt∈I |u(t)| and Γ(.) denotes the gamma
function.
Definition 2.1 The fractional-order integral of the function f ∈ L1[a, b] of order β ∈ R+

is defined by (see [6]- [9])

Iβa f(t) =

∫ t

a

(t − s)β − 1

Γ(β)
f(s) ds

Definition 2.2 The Caputo fractional-order derivative of order α ∈ (0, 1] of the absolutely
continuous function f(t) is defined by (see [7]-[9]).

Dα
a f(t) = I1 − α

a

d

dt
f(t).

Definition 2.3 The function f : [0, 1]×R → R is called L1−Caratheodory if
(i) t → f(t, x) is measurable for each x ∈ R,
(ii) x → f(t, x) is continuous for almost all t ∈ [0, 1],
(iii) there exists m ∈ L1([0, 1], D), D ⊂ R such that |f | ≤ m.
Now we state Caratheodory Theorem (see[3]).
Theorem 2.1 Let f [0, 1]×R → R be L1−Caratheodory, then the initial-value problem

dx(t)

dt
= f(t, x(t)), for a.e. t > 0, and x(0) = x0. (4)

has at least one solution x ∈ AC[0, T ].
Here we generalize Caratheodory theorem for the nonlocal problem (1)-(2).

3 Main results

Consider firstly the fractional-order integral equation

y(t) = I1−αf(t, y(t)), (5)

Definition 3.1 The function y is called a solution of the fractional-order integral equa-
tion (5), if it is continuous on [0, 1] and satisfies (5).
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Theorem 3.1 Let f : [0, 1] × R → R be L1−Caratheodory. If I1−α
a m(t) ≤ M ,

for a ≥ 0, then there exists at least one solution y ∈ C[0, 1] of the fractional-order
functional integral equation (5).
Proof. Since I1−α

a m(t) ≤ M , then

| I1−α
a f(t, y(t)) | ≤

∫ t

a

(t − s)−α

Γ(1− α)
| f(s, y(s)) | ds

≤
∫ t

a

(t − s)1−α

Γ(1− α)
m(s) ds ≤ M, a ≥ 0.

Define the sequence {yn(t)}, t ∈ [0, 1]

yn+1(t) =

∫ t

0

(t − s)− α

Γ(1 − α)
f(s, yn(s)) ds,

which can be written in the operator form

yn+1(t) = I1−α − β Iβ f(t), yn(t)).

Then

| yn+1(t) | ≤ I1 − α − β | Iβ f(t, yn(t))| ≤ M

∫ t

0

(t − s)− α − β

Γ(1− α − β)
ds

≤ M
(t)1 − α − β

Γ(2 − α − β)
≤ M b1 − α − β

Γ(2 − α − β)
.

For t1, t2 ∈ [0, 1] such that t1 < t2, then

yn+1(t2) − yn+1(t1) =

∫ t2

0

(t2 − s)−α

Γ(1− α)
f(s, yn(s)) ds −

∫ t1

0

(t1 − s)−α

Γ(1− α)
f(s, yn(s)) ds

=

∫ t1

0

(t2 − s)−α

Γ(1− α)
f(s, yn(s)) ds +

∫ t2

t1

(t2 − s)−α

Γ(1− α)
f(s, yn(s)) ds

−
∫ t1

0

(t1 − s)−α

Γ(1− α)
f(s, yn(s)) ds

≤
∫ t1

0

(t1 − s)−α

Γ(1− α)
f(s, yn(s) ds +

∫ t2

t1

(t2 − s)−α

Γ(1− α)
f(s, yn(s)) ds

−
∫ t1

0

(t1 − s)−α

Γ(1− α)
f(s, yn(s)) ds.

Therefore

| yn+1(t2) − yn+1(t1) | ≤
∫ t2

t1

(t2 − s)−α

Γ(1− α)
m(s) ds ≤

∫ t2

t1

(t2 − θ)−α

Γ(1− α)
m(θ) dθ
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≤ M

∫ t2

t1

(t2 − θ)−α−β

Γ(1− α − β)
dθ

≤ M
(t2 − t1)

1−α − β

Γ(2− α − β)
.

Hence | t2 − t1 | < δ ⇒ | yn+1(t2) − yn+1(t1) | < ϵ(δ) and {yn(t)} is a sequence of
equi-continuous and uniformly bounded functions. By Arzela-Ascoli Theorem, there exists
a subsequence {ynk

(t)} of continuous functions which converges uniformly to a continuous
function y as k → ∞.
Now we show that this limit function is the required solution.
Since

| f(s, ynk
(s)) | ≤ m(s) ∈ L1,

and f(s, ynk
(s)) is continuous in the second argument,

i.e. f(s, ynk
(s)) → f(s, y(s)) as k → ∞,

therefore the sequence {(t − s)− α f(s, ynk
(s))} , α ∈ (0, 1) satisfies Lebesgue dominated

convergence theorem. Hence

lim
k → ∞

∫ t

0

(t − s)− α

Γ(1 − α)
f(s, ynk

(s)) ds =

∫ t

0

(t − s)− α

Γ(1 − α)
f(s, y(s)) ds = y(t).

Which proves the existence of at least one solution y ∈ C[0, 1] of the fractional-order
functional integral equation (5).

Theorem 3.2 Let the assumptions of Theorem 3.1 are satisfied. Then nonlocal prob-
lem (1)- (2) has at least one positive solution x ∈ C[0, 1].
Proof. Consider the nonlocal fractional differential equation

dx

dt
= f(t,Dαx(t)),

x(0) +
m∑

k = 1

ak x(tk) = x◦.

Let y(t) = Dαx(t), then

y(t) = I1−αdx(t)

dt
, (6)

y(t) = I1−αf(t, y(t)). (7)

and y is the solution of the fractional-order integral equation (5).
Operating by Iα on both sides of equation(6), we get

Iαy(t) = I
dx(t)

dt
= x(t)− x(0) ⇒
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x(t) = x(0) + Iα y(t). (8)

Substituting for the value of x(0) from (2), we get

x(t) = x0 −
m∑
k=1

ak x(tk) + Iα y(t) (9)

and

x(tk) = x0 −
m∑
k=1

ak x(tk) + Iα y(t)|t=tk . (10)

Now from (9) and (10) we can get

(1 +
m∑
k=1

ak) x(t) = x0 −
m∑
k=1

ak Iα y(t)|t=tk + (1 +
m∑
k=1

ak) I
α y(t).

Letting a = (1 +
∑m

k=1 ak)
−1, we deduce that the nonlocal problem (1)-(2) transformed

to the integral equation

x(t) = a ( x0 −
m∑
k=1

ak Iα y(t)|t=tk) + Iα y(t) (11)

which, by Theorem 3.1, has at least one solution x ∈ C[0, 1].
Now

m∑
k=1

ak Iα y(t)|t=tk ≤
m∑
k=1

ak Iα y(t)

and

a
m∑
k=1

ak Iα y(t)|t=tk ≤ a
m∑
k=1

ak Iα y(t)

which gives

a
m∑
k=1

ak Iα y(t)|t=tk ≤ Iα y(t)

and the solution

x(t) = a (x0 −
m∑
k=1

ak Iα y(t)|t=tk) + Iα y(t)

is positive.
Substituting from (7) into (11), we obtain

x(t) = a ( x0 −
m∑
k=1

ak Iα y(t)|t=tk) +

∫ t

0
f(s, y(s)) ds. (12)

Differentiating both sides of (12), we get

dx

dt
= f(t, y(t)) = f(t,Dαx(t)).
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Putting t = 0, in (11), we get

x(0) = a ( x0 −
m∑
k=1

ak (x(tk)− x(0)))

and

x(0) = a ( x0 −
m∑
k=1

ak x(tk)− x(0)
m∑
k=1

ak) ⇒

x(0) + x(0)
m∑
k=1

ak = a ( x0 −
m∑
k=1

ak x(tk) ⇒

x(0) = a (1 +
m∑
k=1

ak)
−1( x0 −

m∑
k=1

ak x(tk)).

Since a = (1 +
∑m

k=1 ak), it follows that

x(0) = x0 −
m∑
k=1

ak x(tk).

This completes the proof of the equivalence between the the integral equation (11) and the
nonlocal problem (1)-(2).

4 Nonlocal integral condition

Let x ∈ C[0, 1] be the solution of the nonlocal problem (1)-(2).
Let ak = τk − τk−1, tk ∈ (τk−1, τk), 0 = τ0 < τ1 < τ2, ... < τn = 1 then the nonlocal
condition (2) will be

x(0) +
m∑
k=1

(τk − τk−1) x(tk) = xo.

From the continuity of the solution x of the nonlocal problem (1)-(2) we can obtain

lim
m→∞

m∑
k=1

(τk − τk−1) x(tk) =

∫ 1

0
x(s) ds.

and the nonlocal condition (2) transformed to the integral one

x(0) +

∫ 1

0
x(s) ds = xo.

Also from the continuity of the function Iαy(t), where y is the solution of the integral
equation (5), we deduce that the solution (11) will be

x(t) =
1

2
(xo −

∫ 1

0
Iα y(t) dt) + Iα y(t).
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Now, we have the following Theorem
Theorem 3.1 Let the assumptions of Theorem 3.2 are satisfied. Then there exist at least
one solution x ∈ C[0, 1] of the nonlocal problem with integral condition,

dx(t)

dt
= f(t,Dαx(t)), t ∈ (0, 1],

x(0) +

∫ 1

0
x(s) ds = xo.
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