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Abstract

Here we are concerned with the existence of at least one solution of a nonlocal
problem for the differential equation x

′
= f(t, x

′
) , when f satisfy the assumptions of

caratheodory theorem.
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1 Introduction

The first-order three-point boundary value problems:{
dx(t)
dt = f(t, x(t)),

Mx(a) +Nx(b) +Rx(c) = α.

was studied in ([8]) the existence and uniqueness of solutions for the three -point bound-
ary value problems, where f : [a, c] × ℜn → ℜn satisfies the Caratheodorys conditions,
and M,N , and R are constant square matrices of order n and α ∈ ℜn . The existence
of solutions is proven by the Leray-Schauder continuation theorem.
The nonlocal problem for first-order differential inclusion:{

dx(t)
dt ∈ F (t, x(t)), t ∈ (0, 1],

x(0) +
∑m

k=1 akx(tk) = x0.

was studied in [1]and [6],where F : J × ℜ → 2ℜ is a set-valued, J = [0, 1], x0 ∈ ℜ is
given, 0 < t1 < t2 < ... < tm < 1, and ak ̸= 0, k = 1, 2, ...,m.
The nonlocal problem for first-order differential equations:{

dx(t)
dt = f(t, x(t)), a.e. t ∈ [0, 1],
x(0) +

∑m
k=1 akx(tk) = 0.
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was studied in [2] the existence of solutions for nonlinear first order differential equations
with nonlocal conditions, where f : [0, 1]×ℜ → ℜ is a Caratheodory function, tk are given
points with 0 ≤ t1 ≤ t2 ≤ ... ≤ tm < 1 and ak are real numbers with 1+

∑m
k=1 ak ̸= 0 .

Also the nonlocal problem for the fractional-order differential equation:{
Dαx(t) = c(t)f(x(t)) + b(t), t ∈ (0, 1],

x(0) +
∑m

K=1 akx(tk) = x0.

has been studied in [5], where x0 ∈ ℜ and 0 < t1 < t2 < ... < tm < 1, and ak ̸= 0
k = 1, 2, ...,m.
Consider the initial value problem

dx(t)

dt
= f(t, x(t)), a.e, t > 0, and x(0) = x0. (1)

Theorem(Caratheodory) see [3]
Let f : [0, T ]×D ⊂ ℜ → ℜ be measurable in t for any x ∈ D and continuous in x ∈ D for
any t ∈ [0, T ]. If there exists m in L1[0, T ] such that |f(t, x)| ≤ m(t), (t, x) ∈ D, then
the problem (1) has at least one solution x ∈ AC[0, T ].

Here we generalize Caratheodory Theorem for the nonlocal problem

dx(t)

dt
= f(t,

dx(t)

dt
), a.e, t ∈ (0, 1], (2)

x(0) +
m∑
k=1

ak x(tk) = x0, tk ∈ (0, 1]. (3)

xo ∈ ℜ, k = 1, 2, 3, ...,m , 0 < t1, t2, ..., tm < 1.
The existence of at least one solution x ∈ AC[0, 1] will be studied when the function f
satisfies the Caratheodory Theorem.
Also we deduce the existence of solution for the nonlocal problem for equation (2) with the
nonlocal integral condition
In our proof we use the following two then

x(0) +

∫ 1

0
x(s) ds = xo. (4)

Theorem(Kolmogorov Compactness Criterion) see[4]
Let Ω ⊆ LP (0, 1), 1 ≤ P < ∞. If

(i) Ω is bounded Lp(0, 1),

(ii) xh → x as h → 0 uniformly with respect to x ∈ Ω, then Ω is relatively compact in
LP (0, 1), where

xh(t) =
1

h

∫ t+h

t
x(s) ds.
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Theorem(Schauder) see[7]
Let U be a convex subset of a Banach space X , and T : U → U is compact, continuous
map. Then T has at least one fixed point in U .

2 Existence of solution

Consider firstly the functional equation

y(t) = f(t, y(t)), t ∈ (0, 1] (5)

with the following assumptions :

(i) f : [0, 1]×D ⊂ ℜ → ℜ is measurable in t ∈ [0, 1], for any y ∈ D ⊂ ℜ and continuous
in y ∈ D , for t ∈ [0, 1] .

(ii) There exists a function m ∈ L1[0, 1] such that :

|f(t, y)| ≤ m(t) ; ∀(t, y) ∈ [0, 1]×D .

(iii) ∫ 1

0
m(t) dt ≤ M , M > 0.

Now we have the following theorem

Theorem 2.1 Assume the assumption (i) - (iii) are satisfied. Then equation (5) has at
least one solution y ∈ L1[0, 1].

Proof. Define the operator H by:

Hy(t) = f(t, y(t)), t ∈ (0, 1]. (6)

Let y ∈ Ω, Ω = {y ∈ ℜ : ||y|| < M}.
From assumption (i) and (iii), we obtain

||Hy||L1 =

∫ 1

0
|(Hy)(t)| dt

=

∫ 1

0
|f(t, y(t))| dt

≤
∫ 1

0
m(s) ds ≤ M.

Then Hy ∈ Ω, which implies that the operator H maps Ω into itself, Ω ⊆ L1[0, 1].
Assumption (ii) implies f ∈ L1[0, 1] and assumption (i) implies that H is continuous.
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It remains to show that H is compact to apply Schauder fixed point theorem
Now, Ω ⊆ L1[0, 1] , Ω is bounded in L1[0, 1], therefore H(Ω) is bounded in L1[0, 1],
i.e condition (i) of Kolmogorav compactness criterion is satisfied, it remains to show
that (Hy)h → (Hy), in L1[0, 1]
Let y ∈ Ω , we have the following estimation :

||(Hy)h − (Hy)||L1 =

∫ 1

0
|(Hy)h(t)− (Hy)(t)| dt

=

∫ 1

0
|1
h

∫ t+h

t
(Hy)(s) ds− (Hy)(t)| dt

≤
∫ 1

0
(
1

h

∫ t+h

t
|(Hy)(s)− (Hy)(t)| ds) dt

≤
∫ 1

0

1

h

∫ t+h

t
|f(s, y(s))− f(t, y(t))| ds dt

since f ∈ L1[0, 1], it follows that:

1

h

∫ t+h

t
|f(s, y(s))− f(t, y(t))| ds → 0 as h → 0, for t ∈ [0, 1]

Therefore:
(Hy)h → (Hy), uniformly as h → 0, Then by Kolmogorav compactness criterion,
H(Ω) is relatively compact.
That is H has a fixed point in Ω, then there exist at least one solution y ∈ L1[0, 1] such
that y(t) = f(t, y(t)); t ∈ [0, 1].

Now, consider the nonlocal problem

dx(t)

dt
= f(t,

dx(t)

dt
), a.e, t ∈ (0, 1],

x(0) +
m∑
k=1

ak x(tk) = x0, tk ∈ (0, 1].

Theorem 2.2 Let the assumption (i) - (iii) are satisfied. Then the nonlocal problem (2)-
(3) has at least one solution x ∈ AC[0, 1] .

Proof. Let

dx(t)

dt
= y(t), then y(t) = f(t, y(t)) (7)

and

x(t) = x(0) +

∫ t

0
y(s) ds. (8)
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Substituting for the value of x(0) +
∑m

k=1 akx(tk) = x0 into (8), we get

x(t) = x0 −
m∑
k=1

ak x(tk) +

∫ t

0
y(s) ds. (9)

If we t = tk in (9), we obtain

x(tk) = x0 −
m∑
k=1

ak x(tk) +

∫ tk

0
y(s) ds (10)

equation (9) and (10) implies that

x(tk) = x(t)−
∫ t

0
y(s) ds +

∫ tk

0
y(s) ds. (11)

Substitute from (11) into (9), we get

x(t) = x0 −
∑

ak[x(t)−
∫ t

0
y(s) ds+

∫ tk

0
y(s) ds] +

∫ t

0
y(s) ds

= x0 −
m∑
k=1

ak x(t) +
m∑
k=1

ak

∫ t

0
y(s) ds−

m∑
k=1

ak

∫ tk

0
y(s) ds+

∫ t

0
y(t) ds. (12)

which implies that

(1 +
m∑
k=1

ak)x(t) = x0 + (1 +
m∑
k=1

ak)

∫ t

0
y(s) ds−

m∑
k=1

ak

∫ tk

0
y(s) ds.

from which we obtain

x(t) = a(x0 −
m∑
k=1

ak

∫ tk

0
y(s) ds) +

∫ t

0
y(s) ds. (13)

where a = (1 +
∑m

k=1 ak)
−1

Now, form Theorem(2.1) and equation (13) we deduce that there exist at least one solution
x ∈ AC[0, 1] of equation (13)
For complete the proof, we prove that equation (13) satisfies nonlocal problem (2)-(3).
Differentiating (13), we get

dx

dt
= y(t) = f(t,

dx

dt
)

Let t = 0 in (13) ,we get

x(0) = a(x0 −
m∑
k=1

ak

∫ tk

0
y(s) ds). (14)

Let t = tk in (13) ,we get

x(tk) = a(x0 −
m∑
k=1

ak

∫ tk

0
y(s) ds) +

∫ tk

0
y(s) ds.
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then

m∑
k=1

akx(tk) =
m∑
k=1

aka(x0 −
m∑
k=1

ak

∫ tk

0
y(s) ds) +

m∑
k=1

ak

∫ tk

0
y(s) ds . (15)

Addition (14) and (15) we obtain

x(0)+
m∑
k=1

akx(tk) = a(x0−
m∑
k=1

ak

∫ tk

0
y(s) ds)+

m∑
k=1

aka(x0−
m∑
k=1

ak

∫ tk

0
y(s) ds)+

m∑
k=1

ak

∫ tk

0
y(s) ds.

= (1+
m∑

K=1

ak)ax0−a
m∑
k=1

ak(1+
m∑

K=1

ak)

∫ tk

0
y(s) ds+

m∑
K=1

ak

∫ tk

0
y(s) ds.

since a = (1 +
∑m

k=1 ak)
−1 , therefor

x(0) +
m∑
k=1

akx(tk) = x0

this complete the proof of the equivalent between the nonlocal problem (2)-(3) and the
integral equation (13) .
This implies that there exist at least one solution x ∈ AC[0, 1] of the nonlocal problem
(2)-(3).

3 Nonlocal integral condition

Let x ∈ AC[0, 1] be the solution of the nonlocal problem (2)-(3).
Let ak = ηk − ηk−1, tk ∈ (ηk−1, ηk), 0 = η0 < η1 < η2, ... < ηn = 1 then the nonlocal
condition (3) will be

x(0) +
m∑
k=1

(ηk − ηk−1) x(tk) = xo.

From the continuity of the solution x of the nonlocal problem (2)-(3) we can obtain

lim
m→∞

m∑
k=1

(ηk − ηk−1) x(tk) =

∫ 1

0
x(s) ds.

i.e the nonlocal condition (3) transformed to the integral one

x(0) +

∫ 1

0
x(s) ds = xo

Now, we have the following corollary to Theorem(2.2).
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Corollary 1 Let the assumption of Theorem (2.2) are satisfied. If x(0) = x0 = 0, then
there exist at least one solution x ∈ AC[0, 1] of the nonlocal problem with integral condition,

dx(t)

dt
= f(t,

dx(t)

dt
), a.e, t ∈ (0, 1],

∫ 1

0
x(s) ds = 0.
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