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Abstract 
In this paper we extend the applications of Schrödinger nuclear equation by using the perturbation 

theory and the basic theorems of integral equations to discuss the eigenvalues and eigenfunctions of 

linear integro- differential operator and consequently make a discussion on the stability of the solution. 

 

1. Introduction 

Cauchy problem and problems depending on Schrodinger equation have attracted the 

attention of many researchers. It is shown by means of the backlund transformation 

that the integrable initial boundary value problem on a semi-line for the nonlinear 

Schrodinger equation can be reduced to Cauchy problem for the same equation on the 

line [1]. Tabata and Eshima [2] gave an investigation of the equation of nonlinear 

partial differential equation blowing-up solutions to the Cauchy problem. A simple 

method for solving the Fredholm singular integro-differential equation with Cauchy 

kernel was proposed, based on a new reproducing kernel space [3]. Taylor- series 

expansion method and Galerkin method were used by Maleknejad and Arzhang [4] to 

obtain numerical solutions of the Fredholm singular integro-differential equation with 

Cauchy kernel. 

    In this paper, we discuss the asymptotic behavior of the eigenvalues and 

eigenfunctions  of the following integro-differential equation 

 

                
  

  
                       

 

 
                      (1.1) 

                              . 

 
The operator   is known as a linear integro- differential operator and   is a parameter. 

Equation (1.1), which takes the form      , arises in many mathematical physics 

problems. It is often true that, the special solutions are called eigenfunctions or 

characteristic functions. These eigenfunctions must not be identically zero and satisfy 

one or more supplementary conditions related to the problem being solved. The 

eigenfunctions exist only for special values of the parameter  ; these values of   are 

called eigenvalues or characteristic values. 

   We state some important lemmas and theorems, for the boundedness and 

orthogonality of the integro-differential operator of the Cauchy problem. The 

homogeneous integral equation with Schrödinger kernel is considered with its 

probability condition, some properties and relations for the Schrödinger kernel are 

stated and discussed. Furthermore, the iterated method is used to discuss the solution 

of the Schrödinger integral equation. We used the perturbation theory to obtain 

numerically the eigenvalues and eigenfunctions for the Schrödinger equation. Also, 
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some different cases for the eigenvalues and the corresponding eigenfunctions are 

considered. 

 

2. Boundedness and Orthogonality of the Integrodifferential Operator  

Consider the boundary value of the integrodifferential equation (1.1) where      is a 

real continuous function in the interval      , the kernel of the integral term        

is continuous in the same interval. Moreover,        is symmetric, i.e. 

 

                         
and   is real. 

 

Lemma-1 

For the integrodifferential operator   of (1.1) and for every  , the eigenfunctions of   

under the conditions          
  
and 

 

                                                
 

 

 

 
                                                   (2.1) 

where    and    are constants, are bounded. 

 

Proof 

Write formula (1.1) in the form 

 
  

  
                               

 

 
                                  (2.2)                         

  

The solution of the ordinary differential equation (2.2), under the condition       ,
 
 

takes the form 

 

                  
 
                 

 
               

 
 

 

 
               

 

 
      (2.3)                                     

 

Taking the norm of both sides of (2.3), and then using the two conditions of      and 

      , we have 

                                                           
 

    
.                                                      (2.4) 

Formula (2.4) proves the boundedness of        for all values of   and        . 
 

Lemma-2: (without proof) 

The eigenfunctions of the operator (1.1) corresponding to distinct eigenvalues are 

orthogonal. 

 

Lemma-3: (without proof) 

The eigenvalues of the integrodifferential operator (1.1) are real. 

 

Theorem-1 

Let     
  
be an integrable function in the interval       and   be a parameter, then  

                                 

                                                

 
           as    . 
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Theorem-2 

For the boundary value problem of (1.1), the eigenvalues and eigenfunctions are 

asymptotically equivalent on the interval       to the eigenvalues and eigenfunctions 

of the boundary value problem 

 

                    
 

 
 
  

  
                ,                      

 

Proof 

Write the solution of (1.1), after using the condition         in the form 

 

                  
 
                 

 
               

 
 

 

 
                

 

 
     (2.5) 

Using the notations 

 

                                      
 

 
  ,               

 

 
                                  (2.6) 

 

And then using the second condition       ,  in (2.5) we get 

 

                                                                            
 

 
         (2.7) 

 

The second term in the right hand side of (2.7) consists of the function 

 

                
 

which is bounded in the interval      , also the function             ,         is an 

integrable function in      . Then by theorem (1) as      , the second term of (2.6) 

tends to zero. Thus for large value of  , formula (2.7) becomes 

 

                                                  
 
                                                      (2.8) 

Therefore, for large value of   the roots of (2.7) becomes 

 

                            
    

   
     

 

   
                       

 

 
            (2.9) 

which can be adapted in the form 

 

                                                    
    

   
                                          (2.10) 

and the corresponding eigenfunctions are  

 

                                     
    

   
 

 
 

                                      (2.11)    

  

which is different from the eigenfunctions of the differentiable operator  

    
 

 

 

  
        

 by small quantity tends to zero as     .    

     

3. Homogenous Integral Equation 

In this investigation Schrödinger obtained the integral equation  
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,                                                 (3.1) 

where   and   
 are the position vectors of any two points of the body,          is a 

function such that
 
           

 
is the probability that a neutron that is produced at the 

point   scores a splitting hit in the volume element     
  at  

 . The function      is 

the probability of a fission taking place at the point  . 

    The whole reaction is started by the chance hit of a neutron on one of the nuclei of 

the atoms of the fissionable material. On fission this nucleus gives birth to a number, 

  say, of secondary neutrons. Each of these may score an efficient hit on some other 

nucleus and will do so unless it is removed earlier. This may occur through the escape 

of the neutrons from the surface of the reacting body. In dealing with a finite amount 

of fissionable material this leakage of neutrons from the surface may be appreciable. 

A neutron may also be caught in a non-splitting hit and get lodged in a nucleus. Such 

neutrons are evidently lost from the process since they do not directly produce any 

off-spring. Similarly any other elements presents as impurities may absorb neutrons 

and thereby reduce the number of secondary neutrons that, on the average, each 

primary neutron will produce. 

    We are only interested in the first eigenfunction       which is of constant sign and 

corresponding eigenvalue   . From the physical interpretation of the function     
 
we 

can normalize it by  

                                                                                                                     (3.2) 

The importance of   lies in the fact that for a symmetric        , it was shown by 

Schrödinger that   sharply discriminates between the two cases: 

    (i)  
 

 
 , no initial fission is sufficiently efficient to produce the chain reactions. 

    (ii)   
 

 
 , any initial fission, wherever it occurs has a non vanishing chance of 

producing it. 

    Let us now find a reasonable expression for the kernel        
 
of the integral 

equation taking neutron absorption into consideration. If   neutrons are emitted at P, 

then since all directions are equally probable it follows that  
  

  
  is the number of 

neutrons emitted within a solid angle     . On account of neutron absorption [2], the 

number crossing  the element of surface    at   may be reasonable taken as  

 
  

  
      where   is an experimental constant of dimension     called the 

absorption coefficient and         . It depends on the kind of fissionable material 

with which we are dealing. 

    The number of neutrons crossing the element of surface at      is 

 

    
  

  
           

Hence, Schrödinger considered, the number absorbed in the showed volume as  

 

                                    
  

  
        

  

  
             

which may be adapted in the form 

  
  

  
       

      

Of these only a fraction   say, scores splitting hits. Hence we can write  
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where    
  is the shaded volume 

Hence, the required kernel of our integral equation is  

 

                            
 

          ,    
  

  
  

    

    
 

                                           (3.3)                                      

Hence, the eigenfunction     
 
of the integral equation (3.12) with symmetric kernel 

(3.14) and corresponding eigenvalue  , can be obtained. In this time, many different 

methods can be used to solve this problem analytically, see Knawel [5,6], Golberg [7] 

or numerically, see Atkinson[8] and Delves and Walsh [9]. 

 

4. The Weakly Nuclear Kernel 

In the branch space      
 
of complex-valued continuous functions defined on the 

surface  , where   denote a bounded open region in    and    is the boundary of   

equipped with the maximum norm     =             
 
we consider the integral 

operator 

                 defined by  

 

                                            
  

                                               (4.1) 

A kernel        is said to be weakly singular if for all         there exist positive 

constants   and           such that 

                                                                                                       (4.2) 

 

Theorem-3 

The integral operator (4.1) with weakly singular kernel (4.2) is a compact operator. 

Proof: 

 From (4.1) and using polar coordinate        we can write  

                                                     
 

 

  

 
                                     (4.3) 

 

Hence 

 

                                  
  

 
     ,                                                         (4.4)                                                                

 

Finally the operator    is bounded, therefore it is  compact operator. 

    Let    be a complex number such that         then the kernel (nuclear kernel). 

 

                           
        

       
             ; x                                                   (4.5)                                                               

 is a solution to the Helmoholtz equation 

 

                      
  

    
  

                                                                           (4.6)                                   

with respect to  for any fixed y. Because of its pole like singularity at    , the 

kernel function    is called a fundamental solution to the Helmoholtz equation.  

Given a function           , the function 

 

                                                        
  

                               (4.7) 

is called the acoustic single-layer potential with density  . The reader can easily see 

that        is a solution of the Helmoholtz equation. 
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Theorem-4 

 Let    be a closed domain containing    in the interior. Assume the function          

is defined and continuous for all                 and it given by (4.5). Assume 

further that there exists       such that  

 

                                                          
  

                       (4.8)                                      

For all                     with                   . Then the generalized 

potential   defined by 

 

                                             
  

 ,                                                (4.9)                                                      

with density          belongs to the Holder space         for all         if  

        , for all         
 
 if     , and for all        

  
 if            and 

                                                                                                              (4.10)                                                                               

for some constant        
depending on. . 

Proof: 

 By the arguments used in Theorem 4 the function   is well defined as an 

improper integral for           . We can introduce parallel surfaces      to     by 

the representation 

                                            ,                                        
   

         (4.11) 

where the parameter h denotes the distance of     from the generating surface   . 

Since       is assumed to be of class    , we observe that       is of class    choose a 

positive number such that the parallel surfaces (4.11) are well defined for all     ≤     

and define the set     
     by 

 

                           
                             .                               (4.12) 

Then, analogous to (4.10), we can easily show that  

 

                                                                for all                              (4.13) 

To establish the uniform Holder continuity, let             
    

 with                
 

 
.  

  Both         may lie on    . 

Now choose uniquely points             such that                ,         . 

Hence we have  

                                   
 

 
                                                         (4.14) 

i.e. here, we set 

                                                                                                                (4.15) 

Using (4.5) we follow 

                           
     

 

                             
     

                
     

                        (4.16) 

 

Using the fact that                 
, see (4.14), and using polar coordinates, we have  

 

                           
     

                    
                      (4.17) 

Using condition (4.7) we have 
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                                      (4.18) 

 

where we have used the fact that the projection of                into the tangent plane at 

   is contained in the annulus with radii  
 
  and        Now, we note that  

 

         
 

 
 

 

 
 
 

 
 

 

   
                   

  
 

       
                     

 

   
                          

                                                         (4.19)                                           

and if                      we have 

 

                                       
 

       
  

 

   
        

                                       (4.20)                             

  

Hence,  

                            
           

   

              
      

              
      

                       

       (4.21)       

 

For some constant    
depending on          and  . 

Finally, again using (4.7) we have 

 

                           
       

                    
       

 
   

  
                                                                                              (4.22)                                                                   

 

For some constants depending on          and     .  
    Combining (4.32), (4.34), (4.36) and (4.37) we obtain 

  

                                                                                 (4.23)                                            

For all             
 with           

 

 
.Also, if           

 

 
 , one can obtain  

                                                 
 

 
 

 

        
                            (4.24)                                                     

For the kernel of (4.20) of the surface potential, for points on the boundary, we have 

                                                    
 

  
                                                     (4.25)                                                                          

Therefore, the kernel of Helmoholtz equation is weakly singular with    and 

hence, the single-layer potential is well defined for all points      . Using the 

inequality  
                                                                (4.26)                                                                 
 

For                   
and 
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                                     (4.27)                                                                        

We observe that        satisfies (4.25) with    .This results leads us to state the 

following. 

Theorem-5 

The single-layer potential   with continuous density   is uniformly Hölder 

continuous throughout     and                                   (      ) 

 

5. Perturbation Theory in the Nuclear Integral Equation 

In this section we try to discuss the solution of the nuclear integral equation, using the 

perturbation theory. For this, we have  

                                         
  

 
  

          

       
                  

   

 

                   (5.1)                                            

Changing the variable     into    , we obtain 

                                             
   

 
           

    

 
         

       

 

 
                       (5.2)                                               

Introducing, in (5.2), the function            , then using the following notations  

     ,         ,       , we get 

                                                        
 

 
             (      ),                (5.3)                                               

where 

                                                   
 

 
 

    

 

    

       
                                               (5.4)                                                                           

According to the perturbation theory, after expanding (5.4), we can write  

 

           
 

 
  

    

     
   

 
 

    
 

  

 
 

    

     
   

 
 

    
 

  

 
 

    
 
       

                                            (5.5)                                             

This is the zero perturbed kernel, (coefficient of     ) 

Moreover, for the first perturbation (coefficient of     
 ) we have 

                                                                                                             (5.6)                                                                                    

where           means the smaller of        . For the second to fourth perturbation, 

we write 

                                                 
 

 
                                                                 (5.7)                                                                                                 

 

                                          
 

 

 
                   

 
 

 
                 

                                (5.8)                                       

and  

                                           
 

  
                                                            (5.9) 

                                        

Let us try to solve (5.3) by setting 

 

                                                 
                         ,                    (5.10) 

where, the constant    
can be expanded as 

 

                                          
   

   
                                                                   (5.11)                                                

  

Hence, we have 

22



 

                                    
                      

 
   

 
   

 

 
      

        (5.12)                                

Substituting the values of the kernels into (5.12) and integrating the results to   
 , we 

have 

          
    

   
  

    

 
                 

   
 
             

 

             
   

 
   

  
  

  
   

     

    
  

    
 

 
    

  

    
   

                                                           (5.13) 

It is easily to show that 

                     
 

           
 

  

 
   

 
           ,                                              (5.14)                                                        

where      

      
        
        

  

  

From (5.13) we deduce that the second term of the right hand side is vanished, where 

formula (5.14) represents the coefficients of even functions. This explains why we 

assumed that formula (5.10) is expanded in terms of odd functions. Equating the 

coefficient of   and      ,        ; on both sides of (5.13), we get 

 

                                            
  

    
 
     

 

 
 

  

 
 
     

  

 
 

  

    
   

           (5.15)                                                

                                                  
  

       
 

 

 

  

 
 
     ,                (5.16)                                          

Putting     in (5.15) and (5.16), we get the recurrence relations 

                                   
   

  
 

               
 
                                                     (5.17)                                        

Formula (5.17) represents the recurrence relations for the non- perturbed integral 

equation  

                                

 
                                                                    (5.18)                                                             

The solution of formula (5.17) is obtained after knowing the eigenvalues of the 

infinite matrix M, with elements 

                                                         
 

               
                                          (5.19)                                                                      

If we approximate the matrix given by (5.18) by letting    and   run from   to   only, 

we get  

for                  ,                            
for                  ,                                     
for                  ,                                    
                                                                                                                        (5.20) 

In dealing with the matrix (5.19), where     run from 1 to 20, if we repeat the iteration 

process in question seven times, the scalar quantity extracted and the corresponding 

are column matrix fairly constant and we get for them (for                   
  

                                                      
                                                            
                                                            
                                                                                                           (5.21) 
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To improve these results we apply the iteration method. This method starts from an 

approximate eigenfunction, for which we shall take from the last line of (5.20). 

Applying the static condition, with the aid of (5.10) and (5.11), we get 

 

                                            
  

   

    
 
     , 

                                        
  

   

    
 
                                                          (5.22)                                  

where   is the m
th

 perturbation, and   is the volume of the sphere. Hence, the 

normalized solution is  

                                            
 

  
          

   .                                              (5.23)                                                                                     

The previous formula gives the distribution through the different points of the sphere 

of the probability of occurrence of a fission in the case of very small absorption. 

In order to include absorption we now put in (5.15) and (5.16) 

                                                      
   

  
                                                        (5.24)                                                                                                         

 

                                                          
                                                          (5.25)                                                                                     

For formula (5.15) we proceed as follows   

    
   

  
   

    
 
      

      
   

       
   

  
 

 
  

 

 
   

    
       

  
   

    
 
   , 

      
   

       
   

        
   

  
 

 
  

 

 
    

   
   

   
  

       
  

   

    
 
             (5.26) 

Also,  

              
   

  
  

   

       

 

   

  

                  
   

         
   

   
 

 
  

 

       
   

   

 

   

  
  

   

  
  

 

                 
   

         
   

          
   

     
 

       
   

    
     

  
   

  
       (5.27) 

In the final form, we have 

 

                            
     

  
    

 

       
   

    
     

  
     

        
                        (5.28)                                              

Hence, for the first and second perturbation of     , we have 

                                       ,                                                             (5.29)                                                       

Where   is the matrix (5.19),   is the unit matrix,       and       is the first and 

second order perturbation in     , and            are column vectors whose 

components are 

  
   

         
   

 
 

 
  

 

 
   

   

 

   

 

                 
   

         
   

 
  

   

        
                                     (5.30)                         
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 ,                                               (5.31) 

 

Formulas (5.27) have a solution if and only if 

                                                                                                                 (5.32)

  

where the column vector    is determined by 

                                                                                                              (5.33)

  

Therefore, in case of        the value is                        . 

    The values of the constants   
   

   
   

   
   

      
   

, are created from the relation 

          
   

    . The first five valuable piece of information was found when  

    and also the production of the constants   
   

   
   

   
   

      
   

 , from the 

relation             
   

       where    
 is the transpose of the matrix   . Also, for  

the  creation of the values of   
   

   
   

   
   

      
   

, from equations (5.30) and 

(5.29) to find the values of the first perturbation           that follows, see Figures 1, 

2 , 3 , 4, in accordance with   

                                          =                                                                (5.34) 

 

  

 
                 Figure 1: the relation between the values of       

 

In the same way we created the values of    
   

   
   

   
   

      
   

  and 

    
   

   
   

   
   

      
   

  when                                                  . 

and also created the values        
   

   
   

   
   

      
   

 ,  see Figures 2, 3, and 4. 
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                           Figure 2: The relation between the values of         

second perturbation           when                                 . 

Thus 

                                         =                                                                 (5.35)                                                    

  

 
                  Figure 3: The relation between the values of          
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                       Figure 4: The relation between the values of       

 

6. Stability of the Solution 

All the previous values      
   

   
   

;   
   

    
   

;   
   

   
   

, the perturbation functions 

  
   

 and   
   

,                are explained in the following tables: 

Table 1 

Values of 
 0

iC  Values of 
 0

i  Values of 
 1

ia  Perturbation
 1

i  
 0

1 1C    0

1 1    1

1 0.06007209978858a     1

1 0.07608891200005    

 0

2 0.70989297156176C     0

2 0.53679193222686    1

2 0.11714700519861a    1

2 0.12159708772337   

 0

3 0.12611930213306C    0

3 0.36145698256312    1

3 0.01492757514491a     1

3 0.00400395381861   

 0

4 0.02017710881577C     0

4 0.27346897244304    1

4 0.00506392385869a    1

4 0.01536935269110   

 0

5 0.00374794566663C     0

5 0.24348474100221    1

5 0.00177865817907a    1

5 0.00899167758269   

 0

6 0.00345900351910C     0

6 0.17340488265495    1

6 0.00141697434545a    1

6 0.00662001851387   

 0

7 0.00248317383399C     0

7 0.14680468709085    1

7 0.00101494061788a    1

7 0.00486509505371   

 0

8 0.00189236658938C     0

8 0.12726445052046    1

8 0.00076838869944a    1

8 0.00370231839172   

 0

9 0.00148828196022C     0

9 0.11227980180411    1

9 0.00060196913306a    1

9 0.00289997781850   

 0

10 0.00120046530403C     0

10 0.10043121946860    1

10 0.00048429512907a    1

10 0.00232739383683   

 0

11 0.00098833088117C     0

11 0.09083719857804    1

11 0.00039799079554a    1

11 0.00190647222791   

 0

12 0.00082753606369C     0

12 0.08291940611664    1

12 0.00033280034828a    1

12 0.00158901320637   

 0

13 0.00070276168637C     0

13 0.07628291140302    1

13 0.00028234182627a    1

13 0.00134425159932   

 0

14 0.00060398214871C     0

14 0.07064974871292    1

14 0.00024247183939a    1

14 0.00115193409112   

 0

15 0.00052441251163C    
 0

15 0.06582018272549    1

15 0.00021040280626a    1

15 0.00099835676384   

 0

16 0.00045932219863C     0

16 0.06164987635076    1

16 0.00018419990419a    1

16 0.00087402993921   

 0

17 0.00040531730568C     0

17 0.05803808410616    1

17 0.00016247994479a    1

17 0.00077227209164   

 0

18 0.00035987980229C     0

18 0.05492898485503    1

18 0.00014421976796a    1

18 0.00068837292615   

 0

19 0.00032102387355C     0

19 0.05235503472720    1

19 0.00012861482910a    1

19 0.00061920137525   

 0

20 0.00028683743764C     0

20 0.05115084644601    1

20 0.00011487273233a    1

20 0.00056360590344   

 

 

 

 

27



Table-2 

Values of 
 1

iC  Values of 
 1

i  Values of 
 2

ia  Perturbation
 2

i  
 1

1 1C    1

1 1    2

1 0.11511564372714a     2

1 0.01785226433423   

 1

2 0.40194580854144C    1

2 0.54798722378728     2

2 0.11995928999353a     2

2 0.10523826530048    

 1

3 0.22338743793847C    1

3 0.28415156365565     2

3 0.09066255515664a     2

3 0.177510063075593    

 1

4 0.13835180460378C    1

4 0.18688080097151     2

4 0.05242058816528a     2

4 0.15585986965058    

 1

5 0.09478884101164C    1

5 0.12667811727497     2

5 0.03652112468675a     2

5 0.13351615573417    

 1

6 0.05981969672545C    1

6 0.13492306247043     2

6 0.02287112015627a     2

6 0.10069697972526    

 1

7 0.04234766463476C    1

7 0.11293079567521     2

7 0.01622973923624a     2

7 0.07786891472533    

 1

8 0.03146305815442C    1

8 0.09751260780929     2

8 0.01204557433966a     2

8 0.06112216315538    

 1

9 0.02422085547716C    1

9 0.08593561336422     2

9 0.00926203033400a     2

9 0.04878946678292    

 1

10 0.01918053639987C    1

10 0.07686878039287     2

10 0.00732671215120a     2

10 0.03960658532315    

 1

11 0.01554524726800C    1

11 0.06954822620864     2

11 0.00593249908134a     2

11 0.03266924467827    

 1

12 0.01284501491195C    1

12 0.06349549402151     2

12 0.00489808845618a     2

12 0.02734635600470    

 1

13 0.01078926760143C    1

13 0.05839224689624     2

13 0.00411142999652a     2

13 0.02320001158716  

 
 1

14 0.00919130465877C    1

14 0.05401611226672     2

14 0.00350058834966a     2

14 0.01992497574948  

 
 1

15 0.00792724960164C    1

15 0.05020433588557     2

15 0.00301788352575a     2

15 0.01730667358922  

 
 1

16 0.00691274040421C    1

16 0.04683068188129  

 

 2

16 0.00263088465836a     2

16 0.01519319461910    

 1

17 0.00608929881074C    1

17 0.04378695608876     2

17 0.00231714975701a     2

17 0.01347737666945  

 
 1

18 0.00541644847608C    1

18 0.04095789945751     2

18 0.00206119713152a     2

18 0.01208693000586  

 
 1

19 0.00486828861100C    1

19 0.03814440559095     2

19 0.00185322883452a     2

19 0.01098486164255    

 1

20 0.00443877008410C    1

20 0.03446202188458     2

20 0.00169131565626a     2

20 0.01020437007111    

 

From these tables, we can deduce that, firstly the perturbation in the eigenvalues and 

eigenfunctions is clearly takes place. Secondly in the middle of the table, we can 

observe their stability. 
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