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Abstract

In this paper we extend the applications of Schrédinger nuclear equation by using the perturbation
theory and the basic theorems of integral equations to discuss the eigenvalues and eigenfunctions of
linear integro- differential operator and consequently make a discussion on the stability of the solution.

1. Introduction
Cauchy problem and problems depending on Schrodinger equation have attracted the
attention of many researchers. It is shown by means of the backlund transformation
that the integrable initial boundary value problem on a semi-line for the nonlinear
Schrodinger equation can be reduced to Cauchy problem for the same equation on the
line [1]. Tabata and Eshima [2] gave an investigation of the equation of nonlinear
partial differential equation blowing-up solutions to the Cauchy problem. A simple
method for solving the Fredholm singular integro-differential equation with Cauchy
kernel was proposed, based on a new reproducing kernel space [3]. Taylor- series
expansion method and Galerkin method were used by Maleknejad and Arzhang [4] to
obtain numerical solutions of the Fredholm singular integro-differential equation with
Cauchy kernel.

In this paper, we discuss the asymptotic behavior of the eigenvalues and
eigenfunctions of the following integro-differential equation

L =—iL+p()+ [ k(x,y)p()dy = 1 ¢ (1.1)
d(a)= ¢pb) =1,i =vV—-1.

The operator L is known as a linear integro- differential operator and A is a parameter.
Equation (1.1), which takes the form L¢ = A¢, arises in many mathematical physics
problems. It is often true that, the special solutions are called eigenfunctions or
characteristic functions. These eigenfunctions must not be identically zero and satisfy
one or more supplementary conditions related to the problem being solved. The
eigenfunctions exist only for special values of the parameter A; these values of A are
called eigenvalues or characteristic values.

We state some important lemmas and theorems, for the boundedness and
orthogonality of the integro-differential operator of the Cauchy problem. The
homogeneous integral equation with Schrédinger kernel is considered with its
probability condition, some properties and relations for the Schrodinger kernel are
stated and discussed. Furthermore, the iterated method is used to discuss the solution
of the Schrédinger integral equation. We used the perturbation theory to obtain
numerically the eigenvalues and eigenfunctions for the Schrodinger equation. Also,
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some different cases for the eigenvalues and the corresponding eigenfunctions are
considered.

2. Boundedness and Orthogonality of the Integrodifferential Operator

Consider the boundary value of the integrodifferential equation (1.1) where p(x) is a
real continuous function in the interval (a, b), the kernel of the integral term k(x,y)
is continuous in the same interval. Moreover, k(x, y) is symmetric, i.e.

k(x,y) = k(x,y),
and A is real.

Lemma-1
For the integrodifferential operator L of (1.1) and for every A, the eigenfunctions of L
under the conditions |p(x)| = m; and

b b
J, [ ko) |Pdxdy = my < 1, (2.1)
where m, and m, are constants, are bounded.

Proof
Write formula (1.1) in the form

% +i(p(x) = Dp(x) = —i f: k(x,y)p(y)dy. (2.2)

The solution of the ordinary differential equation (2.2), under the condition ¢(a) = 1,
takes the form

b (x) = eif;‘(/l—P(t))dt —q eif;(A—P(t))dt f;‘eif(f(P(t)—/l)dt f: k() p(D)dtd?.  (2.3)

Taking the norm of both sides of (2.3), and then using the two conditions of p(x) and

k(x,y), we have
1

Igll < = (2.4)
Formula (2.4) proves the boundedness of ¢ (x, A) for all values of A and x € [a, b].

Lemma-2: (without proof)
The eigenfunctions of the operator (1.1) corresponding to distinct eigenvalues are
orthogonal.

Lemma-3: (without proof)
The eigenvalues of the integrodifferential operator (1.1) are real.

Theorem-1
Let g(x) be an integrable function in the interval [a, 8] and u be a parameter, then

ffeii“xg(x)dx -0 as — oo .
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Theorem-2

For the boundary value problem of (1.1), the eigenvalues and eigenfunctions are
asymptotically equivalent on the interval [a, b] to the eigenvalues and eigenfunctions
of the boundary value problem

2L PP =19, p(@) = p(b) =1

Proof
Write the solution of (1.1), after using the condition ¢(a) = 1 in the form

¢(x) — eif:(l—l?(t))dt —i eif;(l—p(t))dt f;eifi(P(t)—l)dt . J': k({, t)(]ﬁ(t)dtd( (25)
Using the notations

[Fp@®dt = Ax) | [} kG DP()dt = F(Q) (26)
And then using the second condition ¢(b) = 1, in (2.5) we get
1 = piAb—a)=iA(b) _ ;,iA(b-a)—iA(b) f: e—i/l({—a)eiA({)F(()dq_ (2.7)
The second term in the right hand side of (2.7) consists of the function
eiA(b=a)~iA(b)

which is bounded in the interval (a, b), also the function e*4®) F({), ¢ € [a, b] is an
integrable function in (a, b). Then by theorem (1) as A — oo, the second term of (2.6)
tends to zero. Thus for large value of A, formula (2.7) becomes

1 = etaG-pnat 4 g(1), 2.8)
Therefore, for large value of A the roots of (2.7) becomes
21 1 b
An =@+ 0 =—['p(t)dt; m=0,11,%2,.., (2.9)

which can be adapted in the form

__2mim

Am = + w+ 0(1), (210)
and the corresponding eigenfunctions are
. (X 2mim
b, (x) = el @ PO | oy =0, 41,42, .., 2.11)

which is different from the eigenfunctions of the differentiable operator

o= \Tdx p(x)
by small quantity tends to zeroas A — «.

3. Homogenous Integral Equation
In this investigation Schrodinger obtained the integral equation
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AB(E) = f 0 kG, TPV, (3.1)
where r and r’ are the position vectors of any two points of the body, k(r,r’) is a
function such that k(r,r") dv’ is the probability that a neutron that is produced at the
point r scores a splitting hit in the volume element dv’ at r’. The function ¢(r) is
the probability of a fission taking place at the point r.

The whole reaction is started by the chance hit of a neutron on one of the nuclei of
the atoms of the fissionable material. On fission this nucleus gives birth to a number,
N say, of secondary neutrons. Each of these may score an efficient hit on some other
nucleus and will do so unless it is removed earlier. This may occur through the escape
of the neutrons from the surface of the reacting body. In dealing with a finite amount
of fissionable material this leakage of neutrons from the surface may be appreciable.
A neutron may also be caught in a non-splitting hit and get lodged in a nucleus. Such
neutrons are evidently lost from the process since they do not directly produce any
off-spring. Similarly any other elements presents as impurities may absorb neutrons
and thereby reduce the number of secondary neutrons that, on the average, each
primary neutron will produce.

We are only interested in the first eigenfunction ¢ (r) which is of constant sign and
corresponding eigenvalue A. From the physical interpretation of the function ¢ () we
can normalize it by

[p()dv = 1. (3.2)
The importance of A lies in the fact that for a symmetric k(r,r"), it was shown by
Schrédinger that A sharply discriminates between the two cases:

() < % , o initial fission is sufficiently efficient to produce the chain reactions.

(i) >% , any initial fission, wherever it occurs has a non vanishing chance of
producing it.

Let us now find a reasonable expression for the kernel k(r,r") of the integral
equation taking neutron absorption into consideration. If N neutrons are emitted at P,

dw .
then since all directions are equally probable it follows that N is the number of
neutrons emitted within a solid angle dw . On account of neutron absorption [2], the

number crossing the element of surface dw at Q may be reasonable taken as
Ni—:e"‘s, where k is an experimental constant of dimension L~!called the
absorption coefficient and s = |r — r’|. It depends on the kind of fissionable material

with which we are dealing.
The number of neutrons crossing the element of surface at Q' is

N dw e—k(s+d5)
41
Hence, Schrddinger considered, the number absorbed in the showed volume as

N d_‘*’ e—ks — N d_‘*’ e—k(s+ds)
. am am !
which may be adapted in the form

dw
Nk—e~ksds
41

Of these only a fraction, u say, scores splitting hits. Hence we can write
dw
uNkEe‘ksds = Nk(r,r")dv’

18

Available on line at www.alexjournal.org/math



Alexandria Journal of Mathematics (ISSN 2090-4320 )

Volumel -Number2 - November 2010

where dv’ is the shaded volume
Hence, the required kernel of our integral equation is

' _i —k _ bk dwds_i
k(r’r)_sze ’ ’(A_4n' dv’ _sz) (33)

Hence, the eigenfunction ¢ (7) of the integral equation (3.12) with symmetric kernel
(3.14) and corresponding eigenvalue , can be obtained. In this time, many different
methods can be used to solve this problem analytically, see Knawel [5,6], Golberg [7]
or numerically, see Atkinson[8] and Delves and Walsh [9].

4. The Weakly Nuclear Kernel

In the branch space C(dD) of complex-valued continuous functions defined on the
surface D, where D denote a bounded open region in R3 and aD is the boundary of D
equipped with the maximum norm ||¢|l.= max,ep|d(x)| we consider the integral
operator

A:C(0D) = C(0D) defined by

(AP)(x) = [, k(x, »)p()ds(y), x €D (4.)
A kernel k(x,y) is said to be weakly singular if for all x,y € dD there exist positive
constants M and a € (0,2] such that

|k(x, y)| < M|x — y|*2. (4.2)
Theorem-3
The integral operator (4.1) with weakly singular kernel (4.2) is a compact operator.
Proof:
From (4.1) and using polar coordinate (p, 8) we can write
2 R —
1A (0| < 2MlI$lleo [, f," p* " dpde (4.3)
Hence
1Ap(0)] < 2MlIpll =, @ € (02] (4.4)

Finally the operator A is bounded, therefore it is compact operator.
Let m be a complex number such that 3m m > 0 then the kernel (nuclear kernel).

eimlx=y|

k(x,y) = iy ©VE R3;x+y (4.5)
is a solution to the Helmoholtz equation

dx2
with respect tox for any fixed y. Because of its pole like singularity at x = y, the
kernel function R is called a fundamental solution to the Helmoholtz equation.
Given a function ¢ € C(dD) , the function

82 92
(— + el + mz) R(x,y) =0, (4.6)

ux) = [, R(x, y)p(y)ds(y) x € R%0D (4.7)
is called the acoustic single-layer potential with density¢ . The reader can easily see
that u(x) is a solution of the Helmoholtz equation.
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Theorem-4

Let G be a closed domain containing aD in the interior. Assume the function k(x, y)
is defined and continuous for all x € G,y € dD,x # y and it given by (4.5). Assume
further that there exists n € N such that

lk(x,¥) — k(2 )| < M Xj—qx1 — y1e 2 |x; — x5/ (4.8)
For all x;,x, € G,y € dD with 2|x; —x,| < |x; —y|. Then the generalized
potential u defined by

u(x) = [, k(x,y)p(ds(y), x€G (4.9)
with density ¢ € C(dD) belongs to the Holder space C%(G) for all g € (0, ] if
0< a <1,forall g€ (0,2] ifae=1,andforall p € (0,1] if0< a <2 and

lullge < Cpllulloan, (4.10)
for some constant  Cp depending on.f.

Proof:

By the arguments used in Theorem 4 the function u is well defined as an
improper integral for x € dD . We can introduce parallel surfaces dD,, to dD by
the representation

x=z+hv(z) ,z € dD (4.11)
where the parameter h denotes the distance of dD,, from the generating surface aD.
Since dD is assumed to be of class C? , we observe that dD,, is of class C’' choose a
positive number such that the parallel surfaces (4.11) are well defined for all |h|< h,
and define the set Dy, by

Dn,={x=z+hv(z),z € dD, |h| <hg}. (4.12)
Then, analogous to (4.10), we can easily show that

lu()| < Cll¢llwo forall x € 0D, (4.13)
To establish the uniform Holder continuity, let x;,x, € 9Dy,

with 0 < |x; — 2] <=
Both x;,x, maylieonaD .
Now choose uniquely points z;,z, € dD suchthatx; =z + h;v(z), j=12.
Hence we have
1
51X = x| S z1 — 25| < 2x; — x5 (4.14)

i.e. here, we set
r=4|x; — x| (4.15)
Using (4.5) we follow

f [k(x1,y) — k(i 1PN ds ()
S

Z1,T

< Mlipllo {5, Jxs = y1°2dsO) + [ 1xo = y1“72ds ()} (4.16)

Using the fact that S, , =S, , , see (4.14), and using polar coordinates, we have

Ji,. TG ) = kGea, MIGIAS) < Co(M, @l leolxs =2 10 (4.17)
Using condition (4.7) we have
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fS [k(xlry) - k(xZJJ’)](P()’)dS(Y) < M||¢||°° ;?o=1|x1 - lej fszl.R,SZLr
Y|4 ds(y) < 4nM |l X2 1x; — xol! f; p*~dp (4.18)

|2y —
zl,R,Szl,T 1

where we have used the fact that the projection of S, S, . into the tangent plane at
z, is contained in the annulus with radii - and R Now, we note that

1 PR
{j_—a lx, — 2|77 if j>a

[ petidp < { In
4

ifj=a (4.19)

a%jR“—f ifj<a
and if B € (0,1), |x; —x,| < 1 we have

[x1—x2|

1
- — — x,|B
I =l I < 575 B — (4.20)
Hence,
C2”¢”oo |x1 _lea a<l
|f521_R_Szl'r[k(x1,y) - k(x2:3’)]¢()’)d5(3’)| <L Glblle 12, — 2,17 a=1  (4.21)

Clldlleo 121 =221 a>1

For some constant C, dependingon m, M,R ,a and .
Finally, again using (4.7) we have

Jyps, o[KCw,Y) = ke, MGG () < Mllplleo Bals = 22l fyp I =
V© 2T dsy) < CMldlle 1% — x| (4.22)

For some constants depending on m, M, R ,« and |0D|.
Combining (4.32), (4.34), (4.36) and (4.37) we obtain

lu(xy) —u(x)|l < (Ci+ G+ C)lxy — %P9l (4.23)
Forall x;,x, € Dy, with |x; —x,| < %.Also, if |x; —x,| = % , One can obtain

B
u) —u)l <2€ (%) 12 — %Pl (4.24)
For the kernel of (4.20) of the surface potential, for points on the boundary, we have
k()] < —lx =yl ™ (4.25)

Therefore, the kernel of Helmoholtz equation is weakly singular with a = 1and
hence, the single-layer potential is well defined for all points x € dD. Using the
inequality

g =17t =l = yI7H < ooy = 2 oy = Y17 o = yI71 < 2% — x5 |1 — y[72 (4.26)

For2 |x; —xy | < |xy — |
and
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| efmbxai=yl — gimlxz=yl | < m|x; — xy| (4.27)
We observe that k(x,y) satisfies (4.25) with n = 1.This results leads us to state the
following.

Theorem-5

The single-layer potential u with continuous density ¢ is uniformly Holder
continuous throughout R3 and lullgrz < C(a,dD)||Plleo0p O<a <)

5. Perturbation Theory in the Nuclear Integral Equation
In this section we try to discuss the solution of the nuclear integral equation, using the
perturbation theory. For this, we have

e—k|r— r'|

X k INaLT . 1
Ap(r) = %fﬁ f;iowq,’)(r Y)r'? sin 0dOdr (5.2)
Changing the variable 6 into s, we obtain
Y k ’ ’ "oeks ’
o) === o) [T S dsdr (52)

Introducing, in (5.2), the function 1y (r) = r¢(r), then using the following notations
r=ax, r' =ax', s=at,we get

() = fy gGax)PHdx' (= Aue), (5.3)
where
glx,x') = %flit’;’,l%gtdt (5.4)
According to the perturbation theory, after expanding (5.4), we can write
o 1 X' 2k—-1 ,
g(o) (ux') = %ln;j—i’, _ k=1 2k1—1 (x’)ZR_l = (5.5)
Seam(y)  xs

This is the zero perturbed kernel, (coefficient of £(®)
Moreover, for the first perturbation (coefficient of ¢ ) we have

gD (x,x") = —sm(x,x"), (5.6)
where sm(x,x") means the smaller of (x,x"). For the second to fourth perturbation,
we write

9P (x,x") = Sxx’ (5.7)
—é(x’z +3x%x" ) x' <x
AICEDES SR , (5.8)
—;(x +3x°x") x<«x
and
9P (x,x") = 1—12 xx'(x% + x°%) (5.9)
Let us try to solve (5.3) by setting
Y(x) = Yo, Cpx? 1 ,P(x) = xP(x) (5.10)
where, the constant C,, can be expanded as
C, =52, cPei (5.11)
n j=0%n .

Hence, we have
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AT Cux?m= = [ (3 gD (x,x) eI C, 2" ' (5.12)
Substituting the values of the kernels into (5.12) and integrating the results to €2 , we

have
AXgeq Cpx®" ™t =
[ee] CV (o] (o] 1
j=0 Xyl “@n-D@v-2n-1)+ 252,55, CoxX™ G
. CV x2V+1 1 2 . CV
€ Xy= 12v( 2v+1) + 2¢ X y=1 2v+1 te (5.13)
It is easily to show that
1 2
Zn=1(2n_1)—2_4v2 = %61,0 W= 0,1,2, (514)
where
_ (1 v=0
Ovo = {0 v+0

From (5.13) we deduce that the second term of the right hand side is vanished, where
formula (5.14) represents the coefficients of even functions. This explains why we
assumed that formula (5.10) is expanded in terms of odd functions. Equating the
coefficient of x and x2™*1, k = 1,2, ...; on both sides of (5.13), we get

oo CV
AC = So s fye Dy Eye g (515)
Cv s Cn
(ZTL + 1)ACn+1 ZV 1 21 + E? y = 1,2, o (516)
Putting € = 0 in (5.15) and (5.16), we get the recurrence relations
0,0 _ e
Aln = ZV=1(2v—2n+1)(2n—1) (5.17)

Formula (5.17) represents the recurrence relations for the non- perturbed integral
equation

AP0 = fg(") (6, x Y@ (x")d x' (5.18)
The solution of formula (5.17) is obtained after knowing the eigenvalues of the
infinite matrix M, with elements

1
Mij = (2i-1)(2j-2i+1) (5.19)

If we approximate the matrix given by (5.18) by letting i and j run from 1 to m only,
we get

forn=3,1°=10.7924 ,P°x) =1-0.6965x2 + 0.1226x*
forn=4,1°=0.7862 ,P%°x) =1-0.7081x2 + 0.1256x* — 0.0199x°

for n=15,1° =0.7852 , PO(x) =1-0.7099x% + 0.1261x* — 0.0202x° —
0.0037x8 (5.20)
In dealing with the matrix (5.19), where i, j run from 1 to 20, if we repeat the iteration
process in question seven times, the scalar quantity extracted and the corresponding
are column matrix fairly constant and we get for them (for n = 20,1° = 0.7853)

P%(x) =1 — 0.7099x2 + 0.1261x* — 0.0202x® — 0.0037x8 — 0.0035x1° —
0.0025x'2 — 0.0019x* — 0.0015x6 — 0.0012x8 — 0.0009x2° — 0.0008x22 —
0.0007x%* — 0.0006x26 — 0.0005x28 — 0.0005x3° — 0.0004x32 — 0.0004x3* —
0.0003x36 — 0.0003x38 (5.21)
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To improve these results we apply the iteration method. This method starts from an
approximate eigenfunction, for which we shall take from the last line of (5.20).
Applying the static condition, with the aid of (5.10) and (5.11), we get

c©
3V Xn=1 2:+1 =1,
. 0

Yo = 0, j=12,...,m (5.22)

where m is the m™ perturbation, and V is the volume of the sphere. Hence, the
normalized solution is

PO(x) = 35 Tien Cux®™2, (5.23)
The previous formula gives the distribution through the different points of the sphere

of the probability of occurrence of a fission in the case of very small absorption.
In order to include absorption we now put in (5.15) and (5.16)

Cn=3Y20elCy, (5.24)
1=3%7%, gl 2 (5.25)
For formula (5.15) we proceed as follows
o
10610 = Zv:l -1 "
1 0 1 oo 1 0 0 Cv1
A(O)Cl( ) + /1(1)61( ) = _E ZV:l; Clg ) + ZV:l 2v—1"
1w 1 w &
10¢® 4 20c® 4 2@¢® = -2y 2 (cv(") +CV)+ T 2= (5.26)
Also,
© d c©
2k + A0 ¢ = - v
2k + DA ey 2v—2k—1
v=1 o ©
1 1 C
2k + 1) [ AO¢H), + 20| = e+ 2k

2 Li2v—2k+1 Y 2k
v=1

®
@k +1) [ 292, + 203, + 2@¢, | = T —— P+ L (527)
In the final form, we have

(N-1)

N m)r(N-m) _ yoo 1 (N) Ck
m=0 A7 Cy Ly=1 2v—2k+1 Vv 2k(2k—1) (5.28)
Hence, for the first and second perturbation of ¥ (x), we have
(M — 2O]) ) = g0, j=12 (5.29)

Where M is the matrix (5.19), I is the unit matrix, ™ and @ is the first and
second order perturbation in©®, and a™®, a® are column vectors whose
components are

11
o = A0c® 423" ¢
v=1
o), = AOCO - G (5.30)
k+1 ™ k 2k(2k—1) '

1w 1 11
@ _ 10D 4 @00 _ 2 _— cOo - ~cW
4 1ot 1 zszH v +zzlv v
v= V=

24
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1
2 _ ® (0) ¢ —
Ay = AWC + A2, - m , k= 1.2,.. (5.31)
Formulas (5.27) have a solution if and only if
Bta® =0 (5.32)
where the column vector 8 is determined by
Mt =D =0 (5.33)

Therefore, in case of n = 20 the valueis 2° = 0.78315763161771 .
The values of the constants C\”, ¥, ¢{”,...,c{, are created from the relation

(M — IAO)CL.(].O) = 0. The first five valuable piece of information was found when

n =5 and also the production of the constants B, B, B, ..., BV, from the

relation (M* — 1/1")[?1.(]9) = 0 where M is the transpose of the matrix M. Also, for

the creation of the values of af), agl), agl),...,a%), from equations (5.30) and

(5.29) to find the values of the first perturbation 1 (x) that follows, see Figures 1,
2,3, 4, in accordance with

YD) =(M — 121" 1a® (5.34)

ol

]\

A

wl ]

ol ]\
wl |

el

Figure 1: the relation between the values of a™

In the same way we created the values of ¢, ¢{V, ¢V, ...,c{y and

© B, g, ., B when 2! = —0.39979783324364

) 2 .
and also created the values  a'?, a{?, a$?,...,al?) , see Figures 2, 3, and 4.
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LN

0 T T T T T T T T T T T u u Y T T T T T d
1/ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 2: The relation between the values of ™)

second perturbation 1@ (x) when 1% = —0.29216297148720
Thus

Y@ () =(M — 1211)"1a® (5.35)

T T
1 2 3 4 5 6 7 8 9 13 14 15 16 17 18 19 20

01

Figure 3: The relation between the values of a®
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0.05

10 11 12 13 14

16

6. Stability of the Solution

All the previous values
z/)i(l) and wi(z), i=1,2,3,..,

i

C(O) ,3(0) C(l) ﬁ(l), a(l),

Figure 4: The relation between the values of @

i

al@, the perturbation functions
20 are explained in the following tables:

—Seriesl

Table 1
Valuesof C© | Values of 8 Values of a'” Perturbation "
cl9=1 B9 = al¥ =-0.06007209978858 | v’ =-0.07608891200005

c{” =-0.70989297156176

) =0.53679193222686

a}" =0.11714700519861

gl) =0.12159708772337

€19 =0.12611930213306

ﬂ3(°) =0.36145698256312

aél) =-0.01492757514491

! = 0.00400395381861

C{” =-0.02017710881577

B =0.27346897244304

al’ =0.00506392385869

v =0.01536935269110

Cl9 =-0.00374794566663

ﬂs(o) =0.24348474100221

al" =0.00177865817907

w! = 0.00899167758269

CL = -0.00345900351910 A% =0.17340488265495 | & =0.00141697434545 =0.00662001851387
C0 = 0.00248317383399 B =0.14680468709085 (Y —0,00101494061788 w!Y =0.00486509505371
CL = ~0,00189236658938 A =0.12726445052046 | a\’ =0.00076838869944 =0.00370231839172
C¥ =-0.00148828196022 A9 =0.11227980180411 | &’ =0.00060196913306 =0.00289997781850

€9 = -0.00120046530403

A9 =0.10043121946860

afy) =0.00048429512907

w{) =0.00232739383683

¢ 9 =-0.00098833088117

A9 =0.09083719857804

aﬁ) =0.00039799079554

v =0.00190647222791

¢9 = 0.00082753606369

ﬂl(f ) —0.08291940611664

al(;) =0.00033280034828

Y =0.00158901320637

€ =-0.00070276168637

ﬁl(; ) =0.07628291140302

al(;) =0.00028234182627

w!) = 0.00134425159932

c % = _0.00060398214871

Y =0.07064974871292

al¥ =0.00024247183939

w9 =0.00115193409112

CY =-0.00052441251163

A =0.06582018272549

all) =0.00021040280626

w9 =0.00099835676384

9 =-0.00045932219863

ﬁl(s ) = 0.06164987635076

al) =0.00018419990419

w9 =0.00087402993921

C9 = _0.00040531730568

ﬁl(;) ) —0.05803808410616

a =0.00016247994479

v =0.00077227209164

9 =-0.00035987980229

Y =0.05492898485503

alV =0.00014421976796

'Y =0.00068837292615

C = -0.00032102387355

A =0.05235503472720

afy =0.00012861482910

'Y =0.00061920137525

C {9 =-0.00028683743764

() — 0.05115084644601

() =0.00011487273233

vl = 0.00056360590344
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Table-2
- 2

Values of C " Values of A" Values of a” Perturbationy?
clh=1 AY =1 al? =-0.11511564372714 ® = 0.01785226433423
C{Y =0.40194580854144 B =-0.54798722378728 | af’) =-0.11995928999353 | wi” =-0.10523826530048
C{ =0.22338743793847 AY =-0.28415156365565 | al’ =—-0.09066255515664 {9 — _0.177510063075593
C{ ~0.13835180460378 Y =-0.18688080097151 | &) =—0.05242058816528 | " =-0.15585986965058
C{ ~0.00478884101164 AY =-0.12667811727497 | &) =-0.03652112468675 | w!” =-0.13351615573417
C{? =0.05981969672545 AY =-0.13492306247043 | al” =-0.02287112015627 | w!? =-0.10069697972526
C 9 = 0.04234766463476 AY =-0.11293079567521 | al” =-0.01622973923624 | y!” = -0.07786891472533
C{ =0.03146305815442 AY = 0.09751260780929 | al” =-0.01204557433966 | !’ =-0.06112216315538
C{" =0.02422085547716 AY = 0.08593561336422 | al” =-0.00926203033400 | ! =-0.04878946678292
C{J =0.01918053639987 ) = _0.07686878039287 | a2 =-0.00732671215120 | w2 =-0.03960658532315
C1Y =0.01554524726800 1) = —0.06954822620864 | al?) =-0.00593249908134 | !?) = —-0.03266924467827
C{{) =0.01284501491195 AP =-0.06349549402151 | a2 =-0.00489808845618 1//122) =-0.02734635600470
C{¥ =001078926760143 Y =-0.05839224689624 | a2 =—0.00411142999652 | y'? =-0.02320001158716
C{} =0.00919130465877 Y =-0.05401611226672 | a); =-0.00350058834966 ) =-0.01992497574948
C{ =000792724960164 1) = —0.05020433588557 | al?) =—0.00301788352575 | w2 =—0.01730667358922
C/{) = 0.00691274040421 BY = _0.04683068188129 | a2’ =-0.00263088465836 w2 =—0.01519319461910
C¥ ~0.00608929881074 1) = _0,04378695608876 | alf) =-0.00231714975701 | w2 = —0.01347737666945
G~ 0.00541644847608 AY —_0.04095789945751 | ay) =-0.00206119713152 yi? =-0.01208693000586
C1y ~0.00486828861100 A9~ _0.03814440559095 | a®) =—0.00185322883452 | w2 =-0.01098486164255
C{ =0.00443877008410 Y =-0.03446202188458 | al?) =—0.00169131565626 | ') =—-0.01020437007111

From these tables, we can deduce that, firstly the perturbation in the eigenvalues and
eigenfunctions is clearly takes place. Secondly in the middle of the table, we can
observe their stability.
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