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Abstract 
We have investigated the motion of the time-independent flow of a viscous incompressible fluid passing a 

rectangular plate. The cross-section of this plate is considered to be in the form of a rectangle with dimensions     
transverse to the flow and   along the flow. The fluid is assumed to be steady flow of water with incident velocity 

equals    
  . The boundary conditions are discussed in details. The resulting equations are solved numerically. 

Accordingly, the values of the pressure force, the velocity magnitude, vorticity magnitude and the stream function 

are given and analyzed at each position point. 
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1. Introduction 

The methods of solution of elliptic, hyperbolic and parabolic partial differential equations are 

very interesting in mathematical physics and engineering sciences. The boundary conditions 

imposed on such problems make the difference from problem to another and accordingly the 

branch of computational physics is considered now as an independent subject that attracts the 

mathematicians, physicists and engineers. Elliptic partial differential equations are of wide 

applications in fluid mechanics, engineering sciences and mathematical physics. In this paper we 

are interested in the applications of elliptic partial differential equations in fluid mechanics. 

    The two-dimensional flow of power-law fluids over an isolated unconfined square cylinder 

has been investigated numerically in [1,2] in the range of conditions         and      
     . The global quantities such as wake length, drag coefficients and the detailed kinematic 

variables like stream function, vorticity and so on, have been calculated for the above range of 

conditions. In particular, the effects of Reynolds number and of the power-law index have been 

investigated in the steady flow regime. The shear-thinning fluid behavior increases the drag 

above its Newtonian value whereas the shear-thickening behavior reduces the drag below its 

Newtonian value. However, as the value of the Reynolds number is gradually increased, the role 

of power-law index diminishes. Similarly, the wake size is shorter in shear-thinning fluids than 

that in Newtonian fluids under otherwise identical conditions.  

    A numerical study on the uniform shear flow past a long cylinder of square cross-section 

placed parallel to a plane wall has been made in [3]. The cylinder is considered to be within the 

boundary layer of the wall. The maximum gap between the plane wall to the cylinder is taken to 

be 0.25 times the cylinder height. The authors investigated the flow when the regular vortex 

shedding from the cylinder is suppressed. The governing unsteady Navier-Stokes equations are 

discretized through the finite volume method on staggered grid system. A pressure correction 

based iterative algorithm, SIMPLER, has been used to compute the discretized equations 
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iteratively. The authors found that the critical value of the gap height for which vortex shedding 

is suppressed depends on the Reynolds number, which is based on the height of the cylinder and 

the incident stream at the surface of the cylinder. At high Reynolds number           
however, a single row of negative vortices occurs for wall to cylinder gap height       . The 

shear layer that emerges from the bottom face of the cylinder reattaches to the cylinder itself at 

this gap hight.  

    Hydrodynamic equations for ideal incompressible fluid are written in [4] in terms of 

generalized stream function. Two-dimensional version of these equations is transformed to the 

form of one dynamic equation for the stream function. This equation contains arbitrary function 

which is determined by inflow conditions given on the boundary. To determine unique solution, 

velocity and vorticity (but not only velocity itself) must be given on the boundary. This 

unexpected circumstance may be interpreted in the sense that the fluid has more degrees of 

freedom than it was believed. Besides, the vorticity is a less observable quantity as compared 

with the velocity. It is shown that the Clebsch potentials are used essentially at the description of 

vortical flow.  

    The authors in [5] considered the numerical simulation of the two-dimensional viscous flow 

over a solid ellipse with an aspect ratio equal 3.5. Sufficiently far from the ellipse, the flow is 

assured potential. The flow is modeled by the two dimensional partial differential equations of 

conservation of mass and moment, using elliptic coordinates. The finite volume method is used 

to discritize the model equations. The numerical solutions revealed that the flow over the ellipse 

is steady with zero vortex up to Re = 40. For Reynolds numbers between 50 and 190, the flow is 

steady with two vortices in the wake. For Re = 210 the flow becomes unstable with harmonic 

oscillations. The two vortices are alternate in the time with a Strouhal number equal to 0.2075. 

For the Reynolds number between 220 and 280 the vortices are detached one after other. The 

spectral analysis of the discrete time variation of the flow velocity at a point within the upper 

vortex shows that the dominant oscillations frequency is f = 0.2748.                 

    The latest developments in the simulation of turbulence by detached eddy simulation (DES) 

have suggested that this technique might be able to replace large eddy simulation (LES) within 

the next decade [6]. The results of the flow past a square cylinder show that this approach is 

quite inexpensive compared to LES while capturing the most important features of the flow. The 

study in [6] extends the range of applications of DES towards a fully unsteady three-dimensional 

case with strong streamline curvature, which is known to be a major problem for Reynolds-

averaged Navier–Stokes equation (RANS) methods. The case considered in [6] is the turbulent 

flow over wall-mounted cubes at a Reynolds number of           . The results demonstrate 

that DES is able to capture the most dominant flow patterns like LES, while RANS only gives 

only a poor representation of the unsteady flow phenomena. 

    The motion of a viscous incompressible fluid which is passing over a rectangular plate is thus 

an interesting research problem. Doma et al., investigated in [7] the motion of the time-

independent flow of a viscous incompressible fluid passing a rectangular plate. The cross-section 

of this plate is considered to be in the form of a rectangle with dimensions     transverse to the 

flow and   along the flow. The fluid is assumed to be steady flow of water with incident velocity 

equals   . The resulting equations are solved numerically. In the present paper we investigate the 

same problem investigated in [7] but with the difference that the initial velocity is considered 

now as a varying function in the form of    
  . Accordingly, the values of the pressure force, 

the velocity magnitude, vorticity magnitude and the stream function are given and analyzed at 

each position point.  
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2. The Equations of Motion 

The steady-state hydrodynamics in two dimensions, in our case, was considered for different 

Reynolds-number. The Reynolds-number     in our case of incompressible fluid is defined as  

   
   

 
   where   is the step size dimension and   is the kinematic viscosity. The magnitude of 

the initial velocity field was defined here by    
  . Two fundamental equations are required for 

the mass density,     and the velocity of the fluid element at each point in space,  . The first of 

which is the continuity equation [8]    

 

                                                            
  

  
                                                                      (2.1) 

and the second is the Navier-Stokes equation [5]  

 

                                                          
  

  
         

 

 
                                               (2.2) 

where   is the pressure and the kinematic viscosity   is assumed constant. The first equation 

expresses the conservation of mass and the second equation expresses the conservation of 

momentum. We will assume that the temperature is constant throughout the fluid. 

    Furthermore, we will be interested in studying time-independent incompressible fluid flows, 

so that equations (2.1) and (2.2) can be rewritten in the following forms 

 

                                                                                                                                           (2.3) 

                                                  

                                                              
 

 
       .                                                  (2.4) 

    For two-dimensional flow, these equations can be written explicitly in terms of the   and   

components of the velocity field, denoted by   and v, respectively: 
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    The continuity equation (2.5) can be satisfied directly by introducing the stream function  , 

defined by [9] 

                                                            
  

  
         

  

  
,                                                       (2.8) 

such a   function exists for all flows that satisfy the continuity equation. It can be seen also that 

  is tangent to contour lines of constant  , the stream lines. The vorticity is given by 

 

                                                            
  

  
 

  

  
                                                               (2.9) 

It can also proved that  

                                                             
  

  

  

  
 

  

  

  

  
                                                       (2.10) 

    Finally, the pressure can be given in terms of the stream function, as follows 
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                                        (2.11) 

Equations (2.9), (2.10) and (2.11) are a set of non-linear elliptic equations, equivalent to the 

original equations (2.5), (2.6) and (2.7). This set by itself is an ill-posed problem, as some sort of 

boundary conditions is required [10]. These we will take to be of the Dirichlet type [6] for the 

stream function and the vorticity, and of the Neumann type [11] for the pressure. Accordingly,   

is specified on some large closed curve in the       plane (conveniently, the unit square). The 

boundary value problem is then to be used to find   everywhere.  

    For simplicity we will take the object to be translational invariant in one direction transverse 

to the flow, so that the fluid has a non-trivial motion only in two-coordinates        This might 

describe a plate placed in a steady flow of water with incident velocity    
  . We will also 

consider only the case where the cross-section of this plate is a rectangle with dimensions    

transverse to the flow and   along the flow. This will simplify the program needed to treat the 

boundary conditions, while still allowing the physics to be apparent. The problem is then 

analyzed and the resulting equations are solved, by writing a program in FORTRAN, to evaluate 

the stream function, the vorticity, the viscous force, and the pressure at each point on the unit 

square. 

 

3. The Boundary Conditions 

The boundary conditions on the centerline surfaces A and E of the plate are determined by 

symmetry. The    component of the velocity, v, must vanish on A and E, so that 
  

  
  vanishes 

and accordingly A and E are stream lines. Moreover, since the normal velocity also vanishes on 

B, C, and D, the entire surface ABCDE is a single stream line. From symmetry, we can also 

conclude that the vorticity vanishes on A and E. The upstream surface F is contiguous with the 

smoothly flowing incident fluid, so that we can put   
 

                                                           
  

  
            on F.                                            (3.1) 
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Fig. 1 Boundary conditions on   and   for the flowing fluid and the obstacle for the upper part. 
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    The boundary conditions on the upper boundary G are similarly straightforward. We may 

expect G to be in free flow, if the lattice is large enough. Hence, 

 

                                                          
  

  
    

            on G,                                       (3.2) 

are two appropriate choices. 

    The downstream boundary H is much more ambiguous and, so long as it is sufficiently far 

from the plate one convenient choice is 

 

                                                       
  

  
 

  

  
           on H.                                                       (3.3) 

     

    At the walls of the plates, (B, C, and D) one of the correct boundary conditions is that 

 

                                                         
  

  
       on B, C, D.                                                (3.4) 

    However, the other boundary condition appropriate for viscous flow is that the tangential 

velocity be zero, 

                                                        
  

  
      on B, C, D.                                                     (3.5) 

The above boundary conditions are illustrated in Fig. (1). 

    The boundary conditions for the pressure on all surfaces are of the Neumann type, and follow 

from equations (2.6) and (2.7). From the symmetry,  
  

  
    on the centerlines A and E.  

 

4. Method of Solution 

To solve equations (2.9), (2.10) and (2.11) numerically we introduced, as in our previous paper 

[121], where the initial velocity is constant and equals   , a two-dimensional lattice of uniform 

spacing h having           points in the   and   directions, respectively, and use the indices   

and   to measure these coordinates. It is convenient to scale the equations by measuring all 

lengths in units of   and all velocities in units of     The stream function is then measured in 

units of      while the vorticity is in units of 
  

 
  and the pressure is conveniently scaled by    

    

The second step is to differencing equations (2.9), (2.10) and (2.11) by using symmetric second- 

and first-difference operators [12]. Accordingly, the lattice Reynolds number,    
   

 
   is a 

dimensionless measure of the strength of the viscous forces.  

    Our numerical method of solution of the resulting coupled non-linear elliptic partial 

differential equations for the stream function and the vorticity is by using the relaxation method 

iteratively [11]. In the model, a rectangular obstacle was defined with height     and width   . 

Since, for simplicity, the incident fluid was in free flowing case parallel and far enough from the 

obstacle, the symmetry property was used. For solving the upper part of the flowing system in 

lattice space we take                the vorticity relaxation       and the stream 

relaxation        Furthermore, the lattice Reynolds number was allowed to take on the values 

from 0.5 to 300. We begin the iteration scheme by choosing trial values corresponding to the 

free-flowing solution     and    . We then perform one relaxation sweep of the first 

equation to get an improved value of    For more details concerning the numerical method of 

solutions see [7]. 

 

40



5. Results and Conclusions 

A computer program is written in FORTRAN to solve for      and   subject to the boundary 

conditions discussed in section-3. The number of iterations required for the convergence of the 

solutions for different Reynolds numbers is shown in Table-1, together with the maximum and 

minimum values of the computed functions. 

    In Figs. 2-29 we present the variations of the static pressure, the velocity magnitude, the 

vorticity magnitude and the stream function, as functions of position, for 

                       and    , respectively. 

     

 

Table-1 the number of iterations used for convergence of the solutions and their related 

minimum and  maximum values for      
  , decaying flow in the    direction.  

Reynolds 

number 

       

Over-

relaxation 

factor 

Number 

of 

iterations 

Stream 

function 

  

Vorticity magnitude 
  

Static Pressure 
  

Velocity  
magnitude  

Max Min Max Min Max Min Max Min 

0.5 0.7 390 0.003 0 0.0025 1       7.3        -2        27.7        0 

1.0 0.7 390 0.006 0 0.0056 0 15        -1        555       0 

10 0.7 290 0.0613 0 0.1187 5       2.55        -135        5.52        0 

20 0.7 260 0.1242 0 0.294 4       7.6        -6.4        0.00114 0 

100 0.7 480 0.669 0 2.017 5.8       0.0156 -14.9 e-3 0.00597 0 

200 0.7 340 1.404 0 4.205 2.8       0.054 -5.1 e-2 0.0119 0 

300 0.2 9450 1.955 0 6.415 18.7       0.1912 -0.062 0.0178 0 

 

    From the results we notice that for larger values of the Reynolds number, the pressure in front 

of the obstacle increases, knowing that when velocity increases the pressure is decreasing so that 

the pressure above the obstacle decreases when the velocity decreases. 

    The velocity magnitude will be increased with increasing the Reynolds number. Also, at high 

Reynolds numbers the position of high velocity of fluid is translated forward with the flow.  

       The convergence rates of the pressure function for different Reynolds number is seen in the 

figures.   

    The number of iterations used to approach the steady-state of the relaxation shows that, for 

larger value of the Reynolds number, the number of iterations for convergence of the stream 

function was slower than that for the vorticity function. The number of iterations for the vorticity 

function, indicates that the first consumed iterations for the vorticity function is reached and 

stayed within the convergence limit. The vorticity function was still refreshed differently for 

different iteration step because the dependence of the stream function was slower than that of the 

vorticity function. The convergence rates of the stream function and the vorticity function for 

different Reynolds number is shown in the figures.   

    The convergence rates in our previous paper [7], with initial velocity equals   , were found to 

be closed to that of our present situation, but the overall number of iterations is larger than that of 

the previous case in [7]. In general, for more strictly conditions such as in the present paper, the 

used iterations could be larger comparing to the previous case of [7]. Also, the same effects are 

obtained for greater value of Reynolds number.  

    The obtained results for Reynolds number        in the present paper, show that the 

number of iterations was, abnormally, lesser than that of the previous paper [7]. From Fig.-4, we 

notice, for the steady-state flowing system of Reynolds number      of vorticity near the 
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boundary, that the tail of the vorticity near the boundary H was distorted due to the new 

condition at H. This implied that the dimension in boundary A, was not sufficiently large 

enough. Therefore, by using the new condition at higher value of the Reynolds number, the 

dimensions of the artificial boundaries required to be larger and involved more computational 

consumption. 

    The low Reynolds number flowing system, for high value of viscosity, was actually a lubricant 

flow. For the Reynolds number        - case, according to Fig.-5 for the stream function 

contour, the flowing streamlines were smoothly overcome the obstacle and the shape was likely 

symmetric about the mid-axis but shifted to the right of the obstacle along the y-direction. 

Considering the plot of the vorticity, Fig.-4, the local maximum vortex were observed near the 

point-edge            and             and the rotational axes were found to be pointing 

out from the paper of the graph (z-direction). There were no curl enter (eddy current) observed 

behind the obstacle for Reynolds number        situation. 

    Comparing the vorticity contour plots for Reynolds number                , Figs.-4, -8, -

12, respectively, the front section was found to be compressed and the tail was elongated as the 

Reynolds number increased. For the higher Reynolds number system, the greater distortion was 

observed. For the Reynolds number         the positive maximum value of the vertex at the 

point edge was shifted to the front one and the latter one disappeared or difficult to be observed.  

    However, there was a negative vortex, for Reynolds number         1.0 and 10. The 

negative value of the vortex means that the curl exists but the rotation axis is anti-parallel to the 

z-direction (pointed into the paper) and the curl was eddy current. 

    According to the results of the velocity curves, Figures-3, -7 and -11, for Reynolds number 

                 , there were found center of the curl and are found to be behind to the 

obstacle. 

    The center of the eddy was found to be shifted to the right for larger Reynolds number, which 

was different from the vortex near the point edge of the obstacle. The eddy was found to be 

larger value (more negative) for larger Reynolds number. 

    For the classical fluid model, when there is a low density region created behind the obstacle, 

the fluid in the nearby region would be similar to the fluid into this low density region. The fluid 

flow into this region and the pattern was different for different Reynolds number systems. For 

low Reynolds number, it has large viscosity. This is possible for the lubricant flow, which is 

massive, such as for polymers or highly intermolecular force. The neighborhoods are highly 

effective to the flowing path, therefore the laminar flow is observed, for the high Reynolods 

number system (the larger value of the ratio of mass-diffusion time constant to mass-convection 

time constant). This implies that the jet existing through the divergent side and recirculation 

zones are easily appeared and the reversibility for the Reynolds number system is reduced. 

Therefore, for higher Reynolds number, the steady state solution is more difficultly to be 

approached due to the lowered reversibility. For high Reynolds number system, the used model 

will cause failure in the program.  
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            Fig. 2 Static pressure (  = o.5)   
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                    Fig. 3 Velocity magnitude (   = o.5) 

 

          

 

            Fig. 4 Vorticity magnitude (1/s) (   = o.5) 
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          Fig. 5 Stream function (Kg/s) (Re= o.5) 

 

 

            Fig.6 Static pressure (   = 1) 
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              Fig.7 Velocity (   = 1) 

 

 

 

           Fig. 8 Vorticity magnitude (1/s) (   = 1) 
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           Fig. 9 Stream function (Kg/s) (   = 1) 

 

 

           Fig. 10 Static pressure (   = 10) 
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           Fig. 11 Velocity (   = 10) 

 

 

       Fig. 12 Vorticity magnitude (1/s) (   = 10) 
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       Fig. 13 Stream function (Kg/s) (   = 10) 

 

 

           Fig. 14 Static pressure (   = 20) 

 

49



 

          Fig. 15 Velocity (   = 20) 

 

 

 

  
        Fig. 16 Vorticity magnitude (1/s) (   = 20) 
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            Fig. 17 Stream function (Kg/s) (   = 20) 

 

 

           Fig. 18 Static pressure (   = 100) 
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          Fig. 19 Velocity (   = 100) 

 

 

 

         Fig. 20 Vorticity magnitude (1/s) (   = 100) 
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           Fig. 21 Stream function (Kg/s) (   = 100) 

 

 

          Fig. 22 Static pressure (   = 200) 
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          Fig. 23 Velocity (   = 200) 

 

 

           Fig. 24 Vorticity magnitude (1/s) (   = 200) 
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           Fig. 25 Stream function (Kg/s) (   = 200) 

 

 

          Fig. 26 Static pressure (   = 300) 
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           Fig. 27 Velocity (   = 300)   

 

 

            Fig. 28 Vorticity magnitude (1/s) (   = 300) 
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           Figure-29 Stream function (Kg/s) (   = 300) 
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