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INTRODUCTION 

Historically, partial differential equations originated from the study of surfaces in geometry 

and a wide variety of problems in mechanics. During the second half of the nineteenth 

century, many famous mathematicians became actively involved in the investigation of 

numerous problems presented by partial differential equations. The primary reason for this 

research was that partial differential equations both express many fundamental laws of 

nature and frequently arise in the mathematical analysis of diverse problems in science and 

engineering. 

    The next phase of the development of linear partial differential equations was 

characterized by efforts to develop the general theory and various methods of solution of 

linear equations. In fact, partial differential equations have been found to be essential to 

the theory of surfaces on the one hand and to the solution of physical problems on the other. 

These two areas of mathematics can be seen as linked by the bridge of the calculus of 

variations. With the discovery of the basic concepts and properties of distributions, the 

modern theory of linear partial differential equations is now well established. The subject 

plays a central role in modern mathematics, especially in physics, geometry, and analysis. 

Almost all physical phenomena obey mathematical laws that can be formulated by 

differential equations. This striking fact was first discovered by Isaac Newton (1642–1727) 

when he formulated the laws of mechanics and applied them to describe the motion of the 

planets [1]. During the three centuries since Newton’s fundamental discoveries, many 

partial differential equations that govern physical, chemical, and biological phenomena 

have been found and successfully solved by numerous methods. These equations include 

Euler’s equations for the dynamics of rigid bodies and for the motion of an ideal fluid, 

Lagrange’s equations of motion, Hamilton’s equations of motion in analytical mechanics, 

Fourier’s equation for the diffusion of heat, Cauchy’s equation of motion and Navier’s 

equation of motion in elasticity, the Navier–Stokes equations for the motion of viscous 

fluids, the Cauchy–Riemann equations in complex function theory, the Cauchy–Green 

equations for the static and dynamic behavior of elastic solids, Kirchhoff’s equations for 

electrical circuits, Maxwell’s equations for electromagnetic fields, and the Schrödinger 

equation and the Dirac equation in quantum mechanics. This is only a sampling, and the 

recent mathematical and scientific literature reveals an almost unlimited number of 

differential equations that have been discovered to model physical, chemical and biological 

systems and processes [1]. 

    The theory of partial differential equations (PDE) has long been one of the most 

important fields in mathematics. This is essentially due to the frequent occurrence and the 

wide range of applications of partial differential equations in many branches of physics, 

engineering, and other sciences. With much interest and great demand for theory and 

applications in diverse areas of science and engineering, several works on the applications 

of PDEs have been published.  

    In its early stages of development, the theory of second-order linear PDEs was 

concentrated on applications to mechanics and physics. All such equations can be classified 

into three basic categories: the wave equation, the heat equation, and the Laplace equation 

(or potential equation). Thus, a study of these three different kinds of equations yields much 

https://alexjournals.org/AlexJournal/Mathematics/


ALEXANDRIA JOURNAL OF MATHEMATICS Volume 10 Number 1 September 2021 (ISSN 2090-4320) 

 
 

 

AVAILABLE ONLINE AT www.mathematics.alexjournals.org 6  

 

information about more general second-order linear PDEs. Jean d’Alembert (1717–1783) 

first derived the one-dimensional wave equation for vibration of an elastic string and solved 

this equation in 1746 [2]. His solution is now known as the d’Alembert solution. The wave 

equation is one of the oldest equations in mathematical physics. Some form of this 

equation, or its various generalizations, almost inevitably arises in any mathematical 

analysis of phenomena involving the propagation of waves in a continuous medium. In 

fact, the studies of water waves, acoustic waves, elastic waves in solids, and 

electromagnetic waves are all based on this equation. A technique known as the method of 

separation of variables is perhaps one of the oldest systematic methods for solving partial 

differential equations including the wave equation. The wave equation and its methods of 

solution attracted the attention of many famous mathematicians including Leonhard Euler 

(1707–1783), James Bernoulli (1667–1748), Daniel Bernoulli (1700–1782), J. L. Lagrange 

(1736–1813), and Jacques Hadamard (1865–1963). They discovered solutions in several 

different forms, and the merit of their solutions and relations among these solutions were 

argued in a series of papers extending over more than twenty-five years; most concerned 

the nature of the kinds of functions that can be represented by trigonometric (or Fourier) 

series. These controversial problems were finally resolved during the nineteenth century 

[2]. 

    Since there is no time dependence in any of the mathematical problems stated above, 

there are no initial data to be satisfied by the solutions of the Laplace equation. They must, 

however, satisfy certain boundary conditions on the boundary curve or surface of a region 

in which the Laplace equation is to be solved. The problem of finding a solution of 

Laplace’s equation that takes on the given boundary values is known as the Dirichlet 

boundary-value problem, after Peter Gustav Lejeune Dirichlet (1805–1859). On the other 

hand, if the values of the normal derivative are prescribed on the boundary, the problem is 

known as Neumann boundary-value problem, in honor of Karl Gottfried Neumann (1832–

1925). Despite great efforts by many mathematicians including Gaspard Monge (1746–

1818), Adrien-Marie Legendre (1752–1833), Carl Friedrich Gauss (1777–1855), Simeon-

Denis Poisson (1781–1840), and Jean Victor Poncelet (1788–1867), very little was known 

about the general properties of the solutions of Laplace’s equation until 1828, when George 

Green (1793–1841) and Mikhail Ostrogradsky (1801–1861) independently investigated 

properties of a class of solutions known as harmonic functions [1]. On the other hand, 

Augustin Cauchy (1789–1857) and Bernhard Riemann (1826–1866) derived a set of first-

order partial differential equations, known as the Cauchy–Riemann equations, in their 

independent work on functions of complex variables. These equations led to the Laplace 

equation, and functions satisfying this equation in a domain are called harmonic functions 

in that domain. Both Cauchy and Riemann occupy a special place in the history of 

mathematics. Riemann made enormous contributions to almost all areas of pure and 

applied mathematics. His extraordinary achievements stimulated further developments, not 

only in mathematics, but also in mechanics, physics, and the natural sciences as a whole. 

    Historically, Euler first solved the eigenvalue problem when he developed a simple 

mathematical model for describing the ‘buckling’ modes of a vertical elastic beam. The 

general theory of eigenvalue problems for second-order differential equations, now known 

as the Sturm–Liouville Theory, originated from the study of a class of boundary-value 

problems due to Charles Sturm (1803–1855) and Joseph Liouville (1809–1882) [3]. They 
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showed that, in general, there is an infinite set of eigenvalues satisfying the given equation 

and the associated boundary conditions, and that these eigenvalues increase to infinity. 

Corresponding to these eigenvalues, there is an infinite set of orthogonal eigenfunctions so 

that the linear superposition principle can be applied to find the convergent infinite series 

solution of the given problem. Indeed, the Sturm–Liouville theory is a natural 

generalization of the theory of Fourier series that greatly extends the scope of the method 

of separation of variables [1,2]. In 1926, the WKB approximation method was developed 

by Gregor Wentzel, Hendrik Kramers and Marcel-Louis Brillouin for finding the 

approximate eigenvalues and eigenfunctions of the one-dimensional Schrödinger equation 

in quantum mechanics. This method is now known as the short-wave approximation or the 

geometrical optics approximation in wave propagation theory. 

    At the end of the seventeenth century, many important questions and problems in 

geometry and mechanics involved minimizing or maximizing of certain integrals for two 

reasons. The first of these were several existence problems, such as, Newton’s problem of 

missile of least resistance, Bernoulli’s isoperimetric problem, Bernoulli’s problem of the 

brachistochrone (brachistos means shortest, Chronos means time), the problem of minimal 

surfaces due to Joseph Plateau (1801–1883), and Fermat’s principle of least time. Indeed, 

the variational principle as applied to the propagation and reflection of light in a medium 

was first enunciated in 1662 by one of the greatest mathematicians of the seventeenth 

century, Pierre Fermat (1601–1665). According to his principle, a ray of light travels in a 

homogeneous medium from one point to another along a path in a minimum time. The 

second reason is somewhat philosophical, that is, how to discover a minimizing principle 

in nature. The following 1744 statement of Euler is characteristic of the philosophical 

origin of what is known as the principle of least action: “As the construction of the universe 

is the most perfect possible, being the handiwork of all-wise Maker, nothing can be met 

with in the world in which some maximal or minimal property is not displayed. There is, 

consequently, no doubt but all the effects of the world can be derived by the method of 

maxima and minima from their final causes as well as from their efficient ones.” In the 

middle of the eighteenth century, Pierre de Maupertius (1698–1759) stated a fundamental 

principle, known as the principle of least action, as a guide to the nature of the universe. A 

still more precise and general formulation of Maupertius’ principle of least action was 

given by Lagrange in his Analytical Mechanics published in 1788.  

    The work of Lagrange remained unchanged for about half a century until William R. 

Hamilton (1805–1865) published his research on the general method in analytical 

dynamics which gave a new and very appealing form to the Lagrange equations. 

Hamilton’s work also included his own variational principle. In his work on optics during 

1834–1835, Hamilton elaborated a new principle of mechanics, known as Hamilton’s 

principle, describing the stationary action for a conservative dynamical system.  

    Indeed, the discovery of the calculus of variations in a modern sense began with the 

independent work of Euler and Lagrange. The first necessary condition for the existence 

of an extremum of a functional in a domain leads to the celebrated Euler–Lagrange 

equation. This equation in its various forms now assumes primary importance, and more 

emphasis is given to the first variation, mainly due to its power to produce significant 

equations, than to the second variation, which is of fundamental importance in answering 
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the question of whether or not an extremal actually provides a minimum (or a maximum). 

Thus, the fundamental concepts of the calculus of variations were developed in the 

eighteenth century in order to obtain the differential equations of applied mathematics and 

mathematical physics. During its early development, the problems of the calculus of 

variations were reduced to questions of the existence of differential equations problems 

until David Hilbert developed a new method in which the existence of a minimizing 

function was established directly as the limit of a sequence of approximations. 

    With the rapid development of the theory and applications of differential equations, the 

closed form analytical solutions of many different types of equations were hardly possible. 

However, it is extremely important and absolutely necessary to provide some insight into 

the qualitative and quantitative nature of solutions subject to initial and boundary 

conditions. This insight usually takes the form of numerical and graphical representatives 

of the solutions. It was E. Picard (1856–1941) who first developed the method of 

successive approximations for the solutions of differential equations in most general form 

and later made it an essential part of his treatment of differential equations in the second 

volume of his Trait´e d’Analyse published in 1896. During the last two centuries, the 

calculus of finite differences in various forms played a significant role in finding the 

numerical solutions of differential equations. Historically, many well-known integration 

formulas and numerical methods including the Euler–Maclaurin formula, Gregory 

integration formula, the Gregory–Newton formula, Simpson’s rule, Adam–Bashforth’s 

method, the Jacobi iteration, the Gauss–Seidel method, and the Runge–Kutta method have 

been developed and then generalized in various forms [1-3]. 

    With the development of modern calculators and high-speed electronic computers, there 

has been an increasing trend in research toward the numerical solution of ordinary and 

partial differential equations during the twentieth century. Special attention has also given 

to in depth studies of convergence, stability, error analysis, and accuracy of numerical 

solutions. Many well-known numerical methods including the Crank–Nicolson methods, 

the Lax–Wendroff method, Richtmyer’s method, and Stone’s implicit iterative technique 

have been developed in the second half of the twentieth century. All finite difference 

methods reduce differential equations to discrete forms. In recent years, more modern and 

powerful computational methods such as the finite element method and the boundary 

element method have been developed in order to handle curved or irregularly shaped 

domains. These methods are distinguished by their more general character, which makes 

them more capable of dealing with complex geometries, allows them to use non-structured 

grid systems, and allows more natural imposition of the boundary conditions.  

    During the second half of the nineteenth century, considerable attention was given to 

problems concerning the existence, uniqueness, and stability of solutions of partial 

differential equations. These studies involved not only the Laplace equation, but the wave 

and diffusion equations as well, and were eventually extended to partial differential 

equations with variable coefficients. Through the years, tremendous progress has been 

made on the general theory of ordinary and partial differential equations. With the advent 

of new ideas and methods, new results and applications, both analytical and numerical 

studies are continually being added to this subject. Partial differential equations have been 

the subject of vigorous mathematical research for over three centuries and remain so today. 
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This is an active area of research for mathematicians and scientists. In part, this is motivated 

by the large number of problems in partial differential equations that mathematicians, 

scientists, and engineers are faced with that are seemingly intractable. Many of these 

equations are nonlinear and come from such areas of applications as fluid mechanics, 

plasma physics, nonlinear optics, solid mechanics, biomathematics, and quantum field 

theory. Owing to the ever-increasing need in mathematics, science, and engineering to 

solve more and more complicated real-world problems, it seems quite likely that partial 

differential equations will remain a major area of research for many years to come. 

    Over the second half of the 20th century numerical analysis of partial differential 

equations has undergone unprecedented development. At its practical end, the vigorous 

growth and steady diversification of the field were stimulated by the demand for accurate 

and reliable tools for computational modeling in physical sciences and engineering, and by 

the rapid development of computer hardware and architecture. At the more theoretical end, 

the analytical insight into the underlying stability and accuracy properties of computational 

algorithms for PDEs was deepened by building upon recent progress in mathematical 

analysis and in the theory of PDEs.  

    To embark on a comprehensive review of the field of numerical analysis of PDEs within 

this thesis would have been an impossible task. A paper by Thomee [4] reviews the history 

of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and 

Lewy on the solution of problems of mathematical physics by means of finite differences. 

This excellent survey takes the reader through the development of finite differences for 

elliptic problems from the 1930s, and the intense study of finite differences for general 

initial value problems during the 1950s and 1960s. The formulation of the concept of 

stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. 

Reference is made to the introduction of the finite element method by structural engineers, 

and a description is given of the subsequent development and mathematical analysis of the 

finite element method with piecewise polynomial approximating functions. The 

penultimate section of Thomee's survey deals with “other classes of approximation 

methods”, and this covers methods such as collocation methods, spectral methods, finite 

volume methods and boundary integral methods. The final section is devoted to numerical 

linear algebra for elliptic problems.  

    The spline collocation methods, the spectral methods and the wavelet methods are well 

studied by Bialecki and Fairweather [5], Hesthaven and Gottlieb [6] and Dahmen [7]. The 

work by Bialecki and Fairweather [5] is a comprehensive overview of orthogonal spline 

collocation from its first appearance to the latest mathematical developments and 

applications. The emphasis throughout is on problems in two space dimensions. The paper 

by Hesthaven and Gottlieb [6] presents a review of Fourier and Chebyshev pseudospectral 

methods for the solution of hyperbolic PDEs. Emphasis is placed on the treatment of 

boundaries, stability of time discretization, treatment of non-smooth solutions and 

multidomain techniques. The paper gives a clear view of the advances that have been made 

over the last decade in solving hyperbolic problems by means of spectral methods, but it 

shows that many critical issues remain open. The paper by Dahmen reviews the recent 

rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of 

adaptivity, where significant successes have recently been achieved. He describes the 
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potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a 

balanced view that should encourage the study of wavelet methods.  

    Aspects of finite element methods and adaptivity are dealt with in the three papers by 

Cockburn [8], Rannacher [9] and Suri [10]. The paper by Cockburn is concerned with the 

development and analysis of discontinuous Galerkin (DG) finite element methods for 

hyperbolic problems. It reviews the key properties of DG methods for nonlinear hyperbolic 

conservation laws from a novel viewpoint that stems from the observation that hyperbolic 

conservation laws are normally arrived at via model reduction, by elimination of 

dissipation terms. Rannacher's paper is a first-rate survey of duality-based a posteriori error 

estimation and mesh adaptivity for Galerkin finite element approximations of PDEs.  

    The approach is illustrated for simple examples of linear and nonlinear PDEs, including 

also an optimal control problem. Several open questions are identified such as the efficient 

determination of the dual solution, especially in the presence of oscillatory solutions. The 

paper by Suri is a lucid overview of the relative merits of the hp and p versions of the finite 

element method over the h version. The work is presented in a non-technical manner by 

focusing on a class of problems concerned with linear elasticity posed on thin domains. 

This type of problem is of considerable practical interest and it generates a number of 

significant theoretical problems.  

    Iterative methods and multigrid techniques are reviewed in a paper by Silvester, Elman, 

Kay and Wathen [11], and in three papers by Stiiben [12], Wesseling and Oosterlee [13] 

and Xu [14]. The paper by Silvester et al. outlines a new class of robust and efficient 

methods for solving linear algebraic systems that arise in the linearisation and operator 

splitting of the Navier-Stokes equations. A general preconditioning strategy is described 

that uses a multigrid F-cycle for the scalar convection-diffusion operator and a multigrid 

F-cycle for a pressure Poisson operator. This two-stage approach gives rise to a solver that 

is robust with respect to time-step-variation and for which the convergence rate is 

independent of the grid. The paper by Stiiben gives a detailed overview of algebraic 

multigrid. This is a hierarchical and matrix-based approach to the solution of large, sparse, 

unstructured linear systems of equations. It may be applied to yield efficient solvers for 

elliptic PDEs discretized on unstructured grids. The author shows why this is likely to be 

an active and exciting area of research for several years in the new millennium. The paper 

by Wesseling and Oosterlee reviews geometric multigrid methods, with emphasis on 

applications in computational fluid dynamics (CFD). The paper is not an introduction to 

multigrid: it is more appropriately described as a refresher paper for practitioners who have 

some basic knowledge of multigrid methods and CFD. The authors point out that textbook 

multigrid efficiency cannot yet be achieved for all CFD problems and that the demands of 

engineering applications are focusing research in interesting new directions. Semi-

coarsening, adaptivity and generalization to unstructured grids are becoming more 

important. The paper by Xu presents an overview of methods for solving linear algebraic 

systems based on subspace corrections. The method is motivated by a discussion of the 

local behavior of high-frequency components in the solution of an elliptic problem. Of 

novel interest is the demonstration that the method of subspace corrections is closely 

related to von Neumann's method of alternating projections. This raises the question as to 

whether certain error estimates for alternating directions that are available in the literature 
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may be used to derive convergence estimates for multigrid and/or domain decomposition 

methods. 

    Moving finite element methods and moving mesh methods are presented, respectively, 

in the papers by Baines [15] and Huang and Russell [16]. The paper by Baines reviews 

recent advances in Galerkin and least-squares methods for solving first- and second order 

PDEs with moving nodes in multi dimensions. The methods use unstructured meshes and 

they minimize the norm of the residual of the PDE over both the computed solution and 

the nodal positions. The relationship between the moving finite element method and  𝐿2 

least-squares methods is discussed. The paper also describes moving finite volume and 

discrete 𝑙2 least-squares methods. Huang and Russell review a class of moving mesh 

algorithms based upon a moving mesh partial differential equation (MMPDE). The authors 

are leading players in this research area, and the paper is largely a review of their own work 

in developing viable MMPDEs and efficient solution strategies. 

    In [17] the authors presented the exact solutions of the partial differential equations in 

different dimensions with variable coefficients by using the homotopy perturbation 

method. The feature of this method is its flexibility and ability to solve parabolic-like 

equations and hyperbolic-like equations without the calculation of complicated Adomian 

polynomials or unrealistic nonlinear assumptions. The numerical results show that this 

method is a promising and powerful tool for solving the partial differential equations with 

variable coefficients.                                                                                            

    In [18] a new approach is proposed to solve partial differential equations. This method 

is based on generalized Taylor’s formula. The solution of partial differential equations can 

be expanded using MAPLE. Doing some simple mathematical operations on these 

equations, one can get a closed form series solution or approximate solution quickly. PDE 

problems with constant and variable coefficients are solved by the present method. With 

this method, one can reach same results simpler way than other analytical or approximate 

methods. 

    In [19] the stability of the laminar flow between two rotating cylinders (Taylor–Couette 

flow) is numerically studied. The simulation is based on the equations of motion of an 

inviscid fluid (Euler equations). The influence exerted on the flow stability by physical 

parameters of the problem (such as the gap width between the cylinders, the initial 

perturbation, and the velocity difference between the cylinders) is analyzed. It is shown 

that the onset of turbulence is accompanied by the formation of large vortices. The results 

are analyzed and compared with those of similar studies. 

    A high-order accurate method for analyzing two-dimensional rarefied gas flows is 

proposed in [20] based on a nonstationary kinetic equation in arbitrarily shaped regions. 

The basic idea behind the method is the use of hybrid unstructured meshes in physical 

space. Special attention is given to the performance of the method in a wide range of 

Knudsen numbers and to accurate approximations of boundary conditions. Examples 

calculations are provided. 

    The operator whose spectrum is studied in [21] corresponds to linearized stationary 

equations of viscous compressible fluid in R3, with periodic boundary conditions. The 
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equations are obtained by linearization of the nonlinear model equations of viscous 

compressible fluid near an arbitrary solution depending on the variable 𝒙. It is proved that 

the operator in question is sectorial and that its spectrum is discrete. Also, a subset of the 

complex plane that contains the spectrum is described. The resolvent is estimated off a 

sector in the complex plane that is symmetric with respect to the real axis. 

    The authors in [22] considered the numerical simulation of the two-dimensional viscous 

flow over a solid ellipse with an aspect ratio equal 3.5. Sufficiently far from the ellipse, the 

flow is assured potential. The flow is modeled by the two-dimensional partial differential 

equations of conservation of mass and moment, using elliptic coordinates. The finite 

volume method is used to discretize the model equations. The numerical solutions revealed 

that the flow over the ellipse is steady with zero vortex up to 𝑅𝑒 = 40. For Reynolds 

numbers between 50 and 190, the flow is steady with two vortices in the wake. For 𝑅𝑒 =
210 the flow becomes unstable with harmonic oscillations. The two vortices are alternate 

in the time with a Strouhal number equal to 0.2075. For the Reynolds number between 220 

and 280 the vortices are detached one after other. The spectral analysis of the discrete time 

variation of the flow velocity at a point within the upper vortex shows that the dominant 

oscillations frequency is 𝑓 = 0.2748. 

    A numerical study of heat transfer enhancement due to the deformation of droplets at 

high Reynolds numbers is described in [23]. The two phase-flow has been computed with 

a 3D-DNS program using the volume-of-fluid method. The droplets are deformed because 

of the surrounding gas stream especially due to a sudden rise of flow velocity from zero to 

𝑼𝒊. As the governing non-dimensional parameter, the Weber number of the droplets has 

been varied between 1.3 and 10.8 by assuming different surface tensions at Reynolds 

numbers between 360 and 853. The dynamical behavior of the droplets as a function of the 

Weber and the Ohnsorge number are in good agreement with experimental results from the 

literature. At the highest Reynolds number 𝑅𝑒 = 853, a significant dependency of Nu on 

We has been found. The comparison of a Nusselt number computed with the real surface 

area with a Nusselt number computed with the spherical surface area shows that the heat 

transfer increases not only due to the droplet motion but also due to the larger surface area 

of the deformed droplet.  

    The latest developments in the simulation of turbulence by detached eddy simulation 

(DES) have suggested that this technique might be able to replace large eddy simulation 

(LES) within the next decade [24]. The results of the flow past a square cylinder show that 

this approach is quite inexpensive compared to LES while capturing the most important 

features of the flow. The study in [24] extends the range of applications of DES towards a 

fully unsteady three-dimensional case with strong streamline curvature, which is known to 

be a major problem for Reynolds-averaged Navier–Stokes equation (RANS) methods. The 

case considered in [24] is the turbulent flow over wall-mounted cubes at a Reynolds 

number of 𝑅𝑒 = 1.3 × 104. The results demonstrate that DES is able to capture the most 

dominant flow patterns like LES, while RANS only gives only a poor representation of the 

unsteady flow phenomena.  

    The fluid flow and heat transfer from a stationary cube placed in a uniform flow is 

studied numerically in [25]. The three-dimensional unsteady Navier Stokes and energy 
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equations are solved using higher order temporal and spatial discretization. Computations 

are carried out for a Reynolds number range of 50–400. At 𝑅𝑒 = 218, the symmetry seen 

at 𝑅𝑒 = 216 breaks down in one of the orthogonal planes while remains symmetric on the 

other thus showing a planar symmetry. The flow experiences a Hopf bifurcation at a 

Reynolds number between 265 and 270 and becomes unsteady. The thermal field also 

shows all the transitions same as those of flow transitions. The drag coefficient decreases 

while the heat transfer shows an increasing trend with Reynolds number. The transition 

from a steady to an unsteady flow does not show any significant increase in the heat 

transfer. Both the flow and thermal fields show multiple frequencies at high Reynolds 

number and the number of frequencies increases with the increase in Reynolds number. 

The instantaneous flow and temperature field are seen to deviate from planar symmetry at 

𝑅𝑒 = 400. 

    The effect of blockage ratio on the flow characteristics of power-law fluids across a 

square cylinder confined in a channel has been investigated in [26] for the range of 

conditions 1 ≤ 𝑅𝑒 ≤ 45, 0.5 ≤ 𝑛 ≤ 2.0  and 𝛽 = 1 8⁄ , 1/6 and 1/4. Extensive numerical 

results on the individual and total drag coefficients, wake length, stream function, vorticity 

and power-law viscosity on the surface of the square cylinder are reported to determine the 

combined effects of the flow behavior index, blockage ratio and Reynolds number. The 

size of the wake region is influenced more by blockage than by power-law index. Similarly, 

drag is also seen to be more influenced by blockage ratio and the Reynolds number than 

that by the power-law index. 

    The two-dimensional flow of power-law fluids over an isolated unconfined square 

cylinder has been investigated numerically in [27] in the range of conditions  1 ≤ 𝑅𝑒 ≤ 45  

and  0.5 ≤ 𝑛 ≤ 2.0.  The global quantities such as wake length, drag coefficients and the 

detailed kinematic variables like stream function, vorticity and so on, have been calculated 

for the above range of conditions. In particular, the effects of Reynolds number and of the 

power-law index have been investigated in the steady flow regime. The shear-thinning fluid 

behavior increases the drag above its Newtonian value whereas the shear-thickening 

behavior reduces the drag below its Newtonian value. However, as the value of the 

Reynolds number is gradually increased, the role of power-law index diminishes. 

Similarly, the wake size is shorter in shear-thinning fluids than that in Newtonian fluids 

under otherwise identical conditions.  

    The paper’s focus in [28] is the calculation of unsteady incompressible 2D flows past 

airfoils. In the framework of the primitive variable Navier–Stokes equations, the initial and 

boundary conditions must be assigned so as to be compatible, to assure the correct 

prediction of the flow evolution. This requirement, typical of all incompressible flows, 

viscous or inviscid, is often violated when modeling the flow past immersed bodies 

impulsively started from rest. Its fulfillment can however be restored by means of a 

procedure enforcing compatibility, consisting in a pre-processing of the initial velocity 

field, here described in detail. Numerical solutions for an impulsively started multiple 

airfoil have been obtained using a finite element incremental projection method. The spatial 

discretization chosen for the velocity and pressure are of different order to satisfy the inf–

sup condition and obtain a smooth pressure field. Results are provided to illustrate the 

effect of employing or not the compatibility procedure and are found in good agreement 
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with those obtained with a non-primitive variable solver. In addition, the authors introduce 

a post-processing procedure to evaluate an alternative pressure field which is found to be 

more accurate than the one resulting from the projection method. This is achieved by 

considering an appropriate ‘unsplit’ version of the momentum equation, where the velocity 

solution of the projection method is substituted.  

    Quite effective low-order finite element and finite volume methods for incompressible 

fluid flows have been established and are widely used. However, higher-order finite 

element methods that are stable, have high accuracy and are computationally efficient are 

still sought. Such discretization schemes could be particularly useful to establish error 

estimates in numerical solutions of fluid flows. The objective of the study in [29] is to 

report on a study in which the cubic interpolated polynomial (CIP) method is embedded 

into 4-node and 9-node finite element discretization of 2D flows in order to stabilize the 

convective terms. To illustrate the capabilities of the formulations, the results obtained in 

the solution of the driven flow square cavity problem are given.  

    A numerical study on the uniform shear flow past a long cylinder of square cross-section 

placed parallel to a plane wall has been made in [30]. The cylinder is within the boundary 

layer of the wall. The maximum gap between the plane wall to the cylinder is taken to be 

0.25 times the cylinder height. The authors investigated the flow when the regular vortex 

shedding from the cylinder is suppressed. The governing unsteady Navier-Stokes equations 

are discretized through the finite volume method on staggered grid system. A pressure 

correction based iterative algorithm, SIMPLER, has been used to compute the discretised 

equations iteratively. The authors found that the critical value of the gap height for which 

vortex shedding is suppressed depends on the Reynolds number, which is based on the 

height of the cylinder and the incident stream at the surface of the cylinder. At high 

Reynolds number  (𝑅𝑒 ≥ 500)  however, a single row of negative vortices occurs for wall 

to cylinder gap height   𝐿 ≥ 0.2.  The shear layer that emerges from the bottom face of the 

cylinder reattaches to the cylinder itself at this gap hight.  

    Hydrodynamic equations for ideal incompressible fluid are written in [31] in terms of 

generalized stream function. Two-dimensional version of these equations is transformed to 

the form of one dynamic equation for the stream function. This equation contains arbitrary 

function which is determined by inflow conditions given on the boundary. To determine 

unique solution, velocity and vorticity (but not only velocity itself) must be given on the 

boundary. This unexpected circumstance may be interpreted in the sense that the fluid has 

more degrees of freedom than it was believed. Besides, the vorticity is a less observable 

quantity as compared with the velocity. It is shown that the Clebsch potentials are used 

essentially at the description of vortical flow. 

    On the other hand, four mixed problems for the string vibration equation with boundary 

conditions and homogeneous nonlocal conditions of the first or second kind and with zero 

initial conditions have been considered in [32]. Using recursion relations, the author fond 

the generalized solutions of the above-mentioned problems. 

    In [33] the authors reviewed the research on the vibration of orthotropic membrane, 

which commonly applied in the membrane structural engineering. They applied the large 

deflection theory of membrane to derive the governing vibration equations of orthotropic 
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membrane, solved it, and obtained the power series formula of nonlinear vibration 

frequency of rectangular membrane with four edges fixed. The paper gave the 

computational example and compared the two results from the large deflection theory and 

the small one, respectively. Results obtained from this paper provide some theoretical 

foundation for the measurement of pretension by frequency method; meanwhile, the results 

provide some theoretical foundation for the research of nonlinear vibration of membrane 

structures and the response solving of membrane structures under dynamic loads. 

    In [34], an analytical approach for free vibration analysis of rectangular and circular 

membranes is presented. The method is based on wave approach. From wave standpoint 

vibration propagate, reflect and transmit in a structure. Firstly, the propagation and 

reflection matrices for rectangular and circular membranes are derived. Then, these 

matrices are combined to provide a concise and systematic approach to free vibration 

analysis of membranes. Subsequently, the eigenvalue problem for free vibration of 

membrane is formulated and the equation of membrane natural frequencies is constructed. 

Finally, the effectiveness of the approach is shown by comparison of the results with 

existing classical solution. 

    Free vibration problems of membrane have been solved by several authors, in the past 

[35-50]. Buchanan and Peddieson [35,36] and Buchanan [37] used Ritz and finite element 

method respectively, for vibration analysis of circular and elliptic membranes with variable 

density. Exact power series solutions for axisymmetric vibrations of circular and annular 

membranes with continuously varying density were presented by Willatzen [49]. 

Analytical solutions of the free vibration problems of arbitrarily shaped membranes have 

been investigated by Kang et al. [44,45] and Kang and Lee [43] using non-dimensional 

dynamic influence function. Radial basis function-based differential quadrature method 

was used for free vibration analysis of arbitrary shaped membrane by Wu et al. [50]. The 

method differential quadrature was applied for frequency analysis of rectangular and 

circular membranes by Laura et al. [46,47]. Some important studies concerning analysis of 

membranes have been carried out, namely by Leung et al. [48], Houmat [40,41], Gutierrez 

et al. [39], Irie et al. [42]. Because of its relationship to the wave equation, the Helmholtz 

equation arises in problems in such areas of mathematical physics as the study of acoustics. 

The method of discrete singular convolution [51] has been used recently for the vibration 

analysis of structures. Discrete singular convolution (DSC) method has emerged as a new 

approach for numerical solutions of differential equations. This new method has a potential 

approach for computer realization as a wavelet collocation scheme [52-59] has been proven 

to be quite satisfactory. Free vibration analysis of plates and shells has also been 

investigated by the present author [60-65]. The aim of the present paper is to present the 

DSC method for free vibration analysis of membranes having different geometries. 

    Free vibration analysis of curvilinear membranes is presented in [66]. Irregular physical 

domain is transformed into a rectangular domain by using geometric coordinate 

transformation via an eight-noded element. Some numerical examples are provided on 

membranes with different geometry such as, sectorial, annular sectorial, and elliptic 

membranes with four curved edges. The results obtained by the DSC method are compared 

with those obtained by other numerical and analytical methods. It is shown that reasonable 

accurate results are obtained.  
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    In [67], Discrete Singular Convolution (DSC) method is developed for free vibration 

analysis of plates and membranes with trapezoidal shape. The straight-sided quadrilateral 

domain is mapped into a square domain in the computational space using a four-node 

element. By using the geometric transformation, the governing equations and boundary 

conditions of the plate are transformed from the physical domain into a square 

computational domain. Numerical examples illustrating the accuracy and convergence of 

the DSC method for trapezoidal plates and membranes are presented. The results obtained 

by DSC method were compared with those obtained by the other numerical and analytical 

methods.  

    In [68] a numerical method of solution of some partial differential equations is presented. 

The method is based on representation of Green functions of the equations in the form of 

functional integrals and subsequent approximate calculation of the integrals with the help 

of a deterministic approach. In this case the solution of the equations is reduced to 

evaluation of usual (Riemann) integrals of relatively low multiplicity. A procedure 

allowing one to increase accuracy of the solutions is suggested. The features of the method 

are investigated on examples of numerical solution of the Schrödinger equation and related 

diffusion equation. 

    As an example of the applications of the second order linear parabolic partial differential 

equations, the authors in [69-72] studied the solutions of the single particle time dependent 

Schrödinger wave equation for a nucleon (proton or neutron) which is moving in an 

average field, created due to the presence of the other (𝐴 − 1) particles, where 𝐴 is the 

number of nucleons in the nucleus (the mass number). They carried out this treatment in 

framework of the so-called single particle Schrödinger fluid. The single particle 

Schrödinger fluid [73] is a concept which is used to describe the motion of a single nucleon 

in an axially deformed potential of the nucleus. This concept is carried out by a suitable 

choice of the time- dependent part of the nucleon wave function in the time-dependent 

Schrödinger equation. This concept can be applied to study the rotational motion of a 

deformed nucleus. Accordingly, the derivations of this concept have been carried out and 

the moment of inertia of an axially deformed nucleus can be obtained in framework of this 

concept [69-72]. 

    This work is written to present an approach based mainly on the mathematics, physics, 

and engineering problems and their solutions, and also to construct three physical projects 

on the three different branches of second order linear partial differential equations which 

are of particular interest for researchers. Our primary objective, therefore, is not concerned 

with an elegant exposition of general theory, but rather to provide the fundamental 

concepts, the underlying principles, a wide range of applications, and various methods of 

solutions of second order partial differential equations.  

    Accordingly, the purpose of the present work is to give an insight study of the second-

order partial differential equations which have wide range of applications in theoretical 

physics and engineering problems. The methods of solutions and the numerical tools 

applied for these types of PDE are of particular interest in this concern. We have forwarded 

our attention equally to the three well-known types of the second order PDE, namely: 

elliptic, hyperbolic and parabolic PDE. Accordingly, we have studied one major problem 

in each case.  
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    As an application of second-order elliptic PDE in applied mathematics, we studied in 

details the problem of the flows of fluid passing a rectangular plate, where the boundary 

conditions are of particular importance in this study. Also, the numerical method of 

solution is very essential in this study.  

    Furthermore, as an example on the application of the second-order hyperbolic PDE in 

engineering problems, we have studied the vibrations of membranes, both rectangular and 

circular, which are subjected to restorative forces proportional to the velocity. The initial 

conditions here are of extremely importance in this investigation.  

    The third example in this work is related to the application of the second-order parabolic 

PDE in quantum mechanics. Accordingly, we have studied the problem of introducing the 

concepts of fluid mechanics in quantum mechanics, namely in the so called single-particle 

Schrödinger fluid. In this concept the constituent particle of the nucleus, nucleon, is 

assumed to move independently in an average potential, assumed deformed, which 

represents the action of all the other particles on this nucleon. The governing equation in 

this study is the single-particle time-dependent Schrödinger equation, which is of a 

parabolic type.  

    The first chapter of this work gives an introduction to linear PDEs of second order in 

two and three independent variables and their classifications into hyperbolic, parabolic, 

and elliptic types. The methods of solutions of these equations are also given in this chapter.  

    The second chapter deals with the mathematical models representing physical and 

engineering problems that yield the three basic types of PDEs. Included are only important 

equations of most common interest in physics and engineering. The numerical methods of 

solutions are also discussed in this chapter.  

    The third chapter constitutes a project from fluid mechanics on the applications of 

second order linear elliptic PDE in continuous medium, namely; Project-1: “Two-

Dimensional Fluid Flow Past a Rectangular Plate”.  

    Chapter-4 is dedicated to the applications of parabolic PDE in Quantum mechanics, by 

investigating the methods of solutions of the time-dependent Schrödinger wave equation 

for a nucleon which is moving in a deformed time-dependent potential in framework of the 

so-called single particle Schrödinger fluid, namely; Project-2: “Single Particle Schrödinger 

Fluid and Moments of Inertia of the Even-Even Deformed Nuclei in the 𝑠𝑑-shell”.  

    In Chapter-5 we have dealt with a project on the applications of second order hyperbolic 

PDE in waves, namely; Project-3: “Perturbation Treatment for the Vibrations of 

Membranes Subjected to A Restorative Force”.   
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CHAPTER - 1 

LINEAR PARTIAL DIFFERENTIAL EQUATIONS AND 

THEIR METHODS OF SOLUTIONS 

1.1 Types of Equations 

As is well known, a physical problem is not uniquely specified if we simply give the 

differential equation which the solution must satisfy, for there are an infinite number of 

solutions of every equation that describes the physical problem. In order to make the 

problem a definite one, with a unique answer, we must pick, out of the mass of possible 

solutions, the one which has certain definite properties along definite boundary surfaces. 

Any physical problem must state not only the differential equation which is to be solved 

but also the boundary conditions which the solution must satisfy. The satisfying of the 

boundary conditions is often as difficult a task as the solving of the differential equation.  

    The first fact which we must notice is that we cannot try to make the solutions of a given 

equation satisfy any sort of boundary conditions; we should not try to “squeeze a right-

hand foot into a left-hand shoe,” so to speak. For each type of equation there is a definite 

set of boundary conditions which will give unique answers, and any other sort of conditions 

will give non unique or impossible answers. Now, of course, an actual physical problem 

will always have the right sort of boundary conditions to give it a unique answer (or, at 

least, so we all hope), and if we make our statement of the problem correspond to the 

actualities, we shall always have the right boundary conditions for the equations. But it is 

not always easy to tell just what boundary conditions correspond to “actuality,” and it is 

well for us to know what conditions are suitable for what equations so we can be guided in 

making our mathematical problems fit the physical problems as closely as possible. 

    In order to clarify the types of second order PDEs, let us first discuss a two-dimensional 

example in order to bring out the concepts without confusing by complexity. All the two-

dimensional PDEs for scalar field and many of the equations for components of vector 

fields have the general form [74] 

 

               𝐴(𝑥, 𝑦)
𝜕2𝜓

𝜕𝑥2
+ 2𝐵(𝑥, 𝑦)

𝜕2𝜓

𝜕𝑥𝜕𝑦
+ 𝐶(𝑥, 𝑦)

𝜕2𝜓

𝜕𝑦2
= 𝐹 (𝑥, 𝑦, 𝜓,

𝜕𝜓

𝜕𝑥
,
𝜕𝜓

𝜕𝑦
 ),                        (1.1) 

 

where, if the equation is linear in 𝜓, 𝐹 has the form 

            𝐷(𝑥, 𝑦)
𝜕𝜓

𝜕𝑥
+ 𝐸(𝑥, 𝑦)

𝜕𝜓

𝜕𝑦
+ 𝐺(𝑥, 𝑦)𝜓 + 𝐻(𝑥, 𝑦).                                                       (1.2) 

There is a non-denumerable infinity of solutions of this equation; the additional conditions 

imposed by the problem, which serve to fix on one particular solution as being appropriate, 

are called boundary conditions. Usually they take the form of the specification of the 
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behavior of the solution on or near some boundary line (or surface, in three dimensions). 

(From this point of view, initial conditions are just boundary conditions in time). It 

naturally is of interest to see what sort of specification of the field along the line there must 

be in order that a unique answer result. 

 

1.2 Types of Boundary Conditions 

In every case of the solutions of a certain PDE we must specify the shape of the boundary. 

It may be a closed curve for the Laplace equation in two space dimensions, or it may be an 

open, U-shaped boundary consisting of a line parallel to the space axis and two lines 

parallel to the time axis for a string (wave equation in time and one space dimension) fixed 

at the ends and given a specified start at a given time, and so on. The boundary is closed if 

it completely surrounds the solution (even if part of the boundary is at infinity); it is open 

if the boundary goes to infinity and no boundary conditions are imposed along the part at 

infinity [74]. 

    In a one-dimensional case, the solution of a second-order equation is uniquely specified 

if we specify its initial value and slope. By analogy we might expect that, if the boundary 

were parallel to one of the axes, specification of the value of 𝜓  along the boundary [i.e., 

specifying 𝜓(𝑠)] and of the gradient of 𝜓 normal to the boundary [i.e., specifying 𝑁(𝑠), in 

this case 𝜕𝜓 𝜕𝑦⁄  ] will uniquely fix the solution. This is correct but it is too special a case 

to satisfy us. We should sometimes like to have a boundary which is not contiguous with 

a coordinate line but is free to take any reasonable shape. It is not quite so obvious that 

specification of value and normal gradient on a boundary of any shape will give a unique 

result (nor is it true), and we shall have to determine the sort of boundaries which are 

satisfactory. 

    The type of boundary condition mentioned in the last paragraph, the specifying of value 

and normal gradient, is called the Cauchy boundary condition [74], and the problem of 

determining the shape of boundary and type of equation which yields unique and 

reasonable solutions for Cauchy conditions is called the Cauchy problem, after the 

investigator who first studied it in detail. Specifying the initial shape and velocity of an 

infinite flexible string corresponds to Cauchy conditions along the line t = constant. As we 

know, this uniquely specifies the solution. 

    On the other hand, if the solution is to be set up inside a closed boundary, it might be 

expected that Cauchy conditions are too much requirement and might rule out all solutions. 

Perhaps one only needs to specify the value 𝜓(𝑠)  alone or the normal gradient 𝑁(𝑠) alone 

along the boundary in order to obtain a unique answer. 

    The specifying only of values along the boundary is called Dirichlet conditions, and the 

specifying only of slopes is called Neumann conditions. A potential problem, such as the 

determination of electric potential inside a sequence of conductors at specified potentials, 

corresponds to Dirichlet conditions. On the other hand, the determination of velocity 

potential around solid bodies, where the fluid must flow tangential to the surface of the 

solids and the normal potential gradient at the surface is zero, corresponds to Neumann 
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conditions [74]. Alternatively, we may, at times, need to specify the value of some linear 

combination of value and slope, a single boundary condition which is intermediate between 

Dirichlet and Neumann conditions. 

    In terms of our supporting line in Figure-1.1, Cauchy conditions correspond to our 

specifying not only the line 𝜓(𝑠) = 𝑧, but also the normal slope at the edge of the surface 

𝜓(𝑥, 𝑦) = 𝑧. It is as though, instead of a line, we had a thin ribbon as a support to the 𝜓  
surface, a twisted ribbon which specified slope perpendicular to its axis as well as height 

above the 𝑧 axis (but not higher derivatives). For Dirichlet conditions the supporting line 

is really a line, not a ribbon [74]. For Neumann conditions the ribbon is free to move up 

and down, only the "slant" of the ribbon is fixed. Sometimes these two conditions are 

homogeneous, when 𝛼𝜓(𝑠) + 𝛽𝑁(𝑠) = 0, for 𝛼, 𝛽 specified but independent of 𝑠 , and 

sometimes the conditions are inhomogeneous, when 𝛼𝜓(𝑠) + 𝛽𝑁(𝑠) = 𝐹(𝑠). 

 

                         

 

Figure-1.1 boundary conditions in two-dimensions. Surface 𝑧 = 𝜓(𝑥, 𝑦) boundary    

curve 𝑥 =  𝜉(𝑠), 𝑦 = 휂(𝑠), unit vectors 𝐚t, and 𝐚𝑛 in 𝑥, 𝑦 plane; vector a tangent to surface 

at boundary.  

But we now must go back to our general equation (1.1) and see under what circumstances 

Cauchy conditions along the curve = 𝜉(𝑠) , 𝑦 =  휂(𝑠) will result in a unique solution. 

    In the following, we give a note on the Cauchy problem and the characteristic curve by 

computing the function 𝜓. In order to compute 𝜓 at some distance away from the boundary 

we can have recourse to some two-dimensional power series, analogous to Taylor's series: 

  𝜓(𝑥, 𝑦) = 𝜓(𝜉, 휂) + [(𝑥 − 𝜉)
𝜕𝜓

𝜕𝑥
+ (𝑦 − 휂)

𝜕𝜓

𝜕𝑦
] +

1

2
[(𝑥 − 𝜉)2

𝜕2𝜓

𝜕𝑥2
+ 2(𝑥 − 𝜉)(𝑦 −

휂)
𝜕2𝜓

𝜕𝑥𝜕𝑦
+ (𝑦 − 휂)2

𝜕2𝜓

𝜕𝑦2
] + ⋯                                                                                          (1.3) 

where 𝜓 and all its derivatives on the right-hand side of the equation are evaluated at the 

boundary point (𝜉, 휂). Once these partial derivatives of 𝜓 are all evaluated at the boundary, 
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then 𝜓  is uniquely specified within the radius of convergence of the series, i.e., over all of 

a strip contiguous to the boundary line, which may be infinite in width depending on the 

nature of the equation. If we can work out a recipe for computing the partial derivatives, 

we shall have the Cauchy problem well along toward solution [74]. This is not so 

straightforward as it may at first seem, for we are given only the equation for 𝜓, the 

parametric equations for the boundary, and the values of 𝜓(𝑠) and  𝑁(𝑠) on the boundary 

and from these data are to compute all the double infinity of values of the partial derivatives 

for each point (𝜉, 휂) on the boundary. 

    It is not too difficult to express the first derivatives in terms of known quantities. There 

are two of them, and there are two equations, one giving the specified normal gradient 𝑁(𝑠)  
and the other the rate of change of the known value 𝜓(𝑠) along the boundary: 

𝑁(𝑠) = (
𝑑휂

𝑑𝑠
) (
𝜕𝜓

𝜕𝑥
) − (

𝑑𝜉

𝑑𝑠
) (
𝜕𝜓

𝜕𝑦
) = a𝑛. grad 𝜓 ; at 𝑥 = 𝜉 , 𝑦 = 휂 

𝑑

𝑑𝑠
𝜓(𝑠) = (

𝑑𝜉

𝑑𝑠
) (
𝜕𝜓

𝜕𝑥
) + (

𝑑휂

𝑑𝑠
) (
𝜕𝜓

𝜕𝑦
) = a𝑡 . grad 𝜓 ; at 𝑥 = 𝜉 , 𝑦 = 휂      

Since the determinant of the coefficients  (𝑑𝜉 𝑑𝑠⁄ )2 + (𝑑휂 𝑑𝑠⁄ )2 = 1, there is always a 

solution for these equations: 

                              (
𝜕𝜓

𝜕𝑥
)
𝜉,𝑛
= 𝑁(𝑠) (

𝑑𝜂

𝑑𝑠
) + (

𝑑𝜉

𝑑𝑠
) (

𝑑𝜓

𝑑𝑠
) = 𝑝(𝑠) ; 

                               (
𝜕𝜓

𝜕𝑦
)
𝜉,𝑛
= (

𝑑𝜂

𝑑𝑠
) (

𝑑𝜓

𝑑𝑠
) − (

𝑑𝜉

𝑑𝑠
)𝑁(𝑠) = 𝑞(𝑠)                                     (1.4) 

    But the next step, to obtain the second derivatives, is not so simple. It is also the crucial 

step, for if we can find the three second partials, we shall find that solving for the higher 

derivatives is simply "more of the same." Now that we have solved for the first derivatives, 

we know p and q, given in Eq. (1.4) as functions of the parameter s. Two of the needed 

three equations for the second derivatives are obtained by writing down the expression for 

the known rate of change of 𝑝 and 𝑞 with 𝑠 in terms of these second derivatives; the third 

equation is the differential equation 𝜓 must satisfy, Eq. (1.1) itself: 

                               (
𝑑𝜉

𝑑𝑠
) (

𝜕2𝜓

𝜕𝑥2
) + (

𝑑𝜂

𝑑𝑠
) (

𝜕2𝜓

𝜕𝑥𝜕𝑦
) =

𝑑𝑝

𝑑𝑠
  

                               (
𝑑𝜉

𝑑𝑠
) (

𝜕2𝜓

𝜕𝑥𝜕𝑦 
) + (

𝑑𝜂

𝑑𝑠
) (

𝜕2𝜓

𝜕𝑦2 
) =

𝑑𝑞

𝑑𝑠
  

                            𝐴(𝑠) (
𝜕2𝜓

𝜕𝑥2
) + 2𝐵(𝑠) (

𝜕2𝜓

𝜕𝑥𝜕𝑦
) + 𝐶(𝑠) (

𝜕2𝜓

𝜕𝑦2 
) = 𝐹(𝑠)            

where 𝐴(𝑠), etc., are the known values of the coefficients at the point 𝜉(𝑠) , 휂(𝑠) on the 

boundary. 

    These three equations can be solved, to find the three partials, unless the determinant of 

the coefficients 
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                  ∆ = |

𝑑𝜉

𝑑𝑠

𝑑𝜂

𝑑𝑠
0

0
𝑑𝜉

𝑑𝑠

𝑑𝜂

𝑑𝑠

𝐴 2𝐵 𝐶

|   = 𝐶 (
𝑑𝜉

𝑑𝑠
)
2
− 2𝐵 (

𝑑𝜉

𝑑𝑠
) (

𝑑𝜂

𝑑𝑠
) + 𝐴 (

𝑑𝜂

𝑑𝑠
)
2
                         (1.5) 

is zero. If the determinant ∆ is not zero, all the higher partials can be solved for by 

successive differentiations of known quantities with respect to 𝑠, the distance along the 

boundary, and the resulting Taylor's series will uniquely specify the resulting solution, 

within some finite area of convergence. Thus, we have shown that Cauchy conditions on a 

boundary do choose a particular solution unless the boundary is such that the determinant 

∆ is zero along it. 

    The equation ∆ = 0  is the equation of a curve 

                           𝐶(𝑥, 𝑦)(𝑑𝑥)2 − 2𝐵(𝑥, 𝑦)𝑑𝑥𝑑𝑦 + 𝐴(𝑥, 𝑦)(𝑑𝑦)2 = 0                         (1.6) 

 (where we have changed the differentials 𝑑𝜉, 𝑑휂 into the more familiar 𝑑𝑥 ,𝑑𝑦 or, rather, 

of two families of curves, for this equation may be factored, giving 

                  𝐴𝑑𝑦 = (𝐵 + √𝐵2 − 𝐴𝐶)𝑑𝑥 ;  𝐴𝑑𝑦 = (𝐵 − √𝐵2 − 𝐴𝐶)𝑑𝑥                        (1.7)      

These curves are characteristic of the partial differential equation (1.7) and are called the 

characteristics of the equation. If the boundary line happens to coincide with one of them, 

then specifying Cauchy conditions along it will not uniquely specify the solution; if the 

boundary cuts each curve of each family once, then Cauchy conditions along it will 

uniquely specify a solution.   

 

1.3 Existence and Uniqueness 

Before attempting to solve a problem involving a PDE we would like to know if a solution 

exists, and, if it exists, if the solution is unique. Also, in problems involving time, whether 

a solution exists ∀𝑡 > 0 (global existence) or only up to a given value of 𝑡, i.e., only for 

0 < 𝑡 < 𝑡0 (finite time blow-up, shock formation). As well as the equation there could be 

certain boundary and initial conditions. We would also like to know whether the solution 

of the problem depends continuously of the prescribed data, i.e., small changes in boundary 

or initial conditions produce only small changes in the solution. 

    As illustration from ordinary differential equations (ODEs) we have the following simple 

problems [75]:                                                                

Example-1                                          
𝑑𝑢

𝑑𝑡
= 𝑢, 𝑢(0) = 1.      

Solution:                                             𝑢 = 𝑒𝑡 exists for 0 < 𝑡 < ∞.   

Example-2                                                
𝑑𝑢

𝑑𝑡
= 𝑢2, 𝑢(0) = 1.   
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Solution:                                            𝑢 =
1

(1−𝑡)
 exists for 0 ≤ 𝑡 < 1.   

Example-3  
𝑑𝑢

𝑑𝑡
= √𝑢, 𝑢(0) = 0. 

Solution: This example has two solutions: 𝑢 ≡ 0 and 𝑢 =
𝑡2

4
  (non uniqueness

    We say that the PDE with boundary or initial conditions is well-formed (or well-posed) 

if its solution exists (globally), is unique and depends continuously on the assigned data. If 

any of these three properties (existence, uniqueness and stability) is not satisfied, the 

problem (PDE, BCs and ICs) is said to be ill-posed. Usually, problems involving linear 

systems are well-formed but this may not always be the case for nonlinear systems 

(bifurcation of solutions, etc.). 

As illustration from PDE we have the following simple problem 

Example-4 

A simple example of showing uniqueness in this case is provided by [75]:   

                                  ∇2𝑢 = 𝐹 𝑖𝑛 Ω  (Poisson’s equation), 

with 𝑢 = 0 𝑜𝑛 𝜕Ω , the boundary of Ω , and F is some given function of 𝑥. 

Solution 

Suppose 𝑢1 and 𝑢2 are two different solutions satisfying the equation and the boundary 

conditions. Then consider 𝑤 = 𝑢1 − 𝑢2; ∇2𝑤 = 0 in Ω and 𝑤 = 0 𝑜𝑛 𝜕Ω. Now the 

divergence theorem gives 

∬ 𝑤∇𝑤. 𝒏𝑑𝑆 =∭ ∇. (𝑤∇𝑤)𝑑𝑉
Ω𝜕Ω

=∭ {𝑤∇2𝑤 + (∇𝑤)2}
Ω

𝑑𝑉 

Where 𝒏 is a unit normal- outwards from Ω. 

                                          ∭ (∇𝑤)2
Ω

𝑑𝑉 = ∬ 𝑤
𝜕𝑤

𝜕𝑛
𝑑𝑆

𝜕Ω
= 0. 

Now the integrand (∇𝑤)2 is non-negative in Ω and hence for the equality to hold we must 

have ∇𝑤 ≡ 0 𝑖𝑛 Ω; i.e., 𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛 Ω. Since 𝑤 = 0 𝑜𝑛 𝜕Ω  and the solution is 

smooth, we must have: 𝑤 ≡ 0 𝑖𝑛 Ω; i.e., 𝑢1 = 𝑢2. The same proof works if  
𝜕𝑢

𝜕𝑛
 is given on 

𝜕Ω or for mixed conditions. 

    Self-adjoint eigenvalue problems [3] can be treated also by similar methods like that 

discussed above. In addition, Green’s function and its applications to eigenvalue problems 

and boundary-value problems for ordinary differential equations can be investigated. 

Following the general theory of eigenvalues and eigenfunctions, the most common special 

functions, including the Bessel, Legendre, and Hermite functions, can be discussed as 

examples of the major role of special functions in the physical and engineering sciences. 
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Applications to heat conduction problems and the Schrödinger equation for the linear 

harmonic oscillator can be also included [1]. 

 

1.4 Important Partial Differential Equations  

In this section we discuss the different types of PDEs encountered in the physical sciences 

and engineering which are extended to situations involving more than one independent 

variable.  

    A PDE is an equation relating an unknown function (the dependent variable) of two or 

more variables to its partial derivatives with respect to those variables. The most commonly 

occurring independent variables are those describing position and time, and so we will 

couch our discussion and examples in notation appropriate to them.  

    We will focus our attention on the equations that arise most often in physical situations. 

We will restrict our discussion, therefore, to linear PDEs, i.e. those of first degree in the 

dependent variable. Furthermore, we will discuss primarily second-order equations.  

    The solution of first order PDEs will necessarily be involved in treating these, and some 

of the methods discussed can be extended without difficulty to third- and higher-order 

equations. We shall also see that many ideas developed for ODEs can be carried over 

directly into the study of PDEs.  

    In the next section we will concentrate on general solutions of PDEs in terms of arbitrary 

functions and the particular solutions that may be derived from them in the presence of 

boundary conditions. We also discuss the existence and uniqueness of the solutions to 

PDEs under given boundary conditions. Furthermore, the methods most commonly used 

in practice for obtaining solutions to PDEs subject to given boundary conditions will be 

also considered in the next sections. These methods include the separation of variables, 

integral transforms and Green’s functions.  

    This division of material is rather arbitrary and has been made only to emphasise the 

general usefulness of the latter methods. In particular, it will be readily apparent that some 

of the results of the present chapter are in fact solutions in the form of separated variables 

but arrived at by a different approach. 

    Most of the important PDEs of physics are second-order and linear. In order to gain 

familiarity with their general form, some of the more important ones will now be briefly 

discussed. These equations apply to a wide variety of different physical systems. 

    Since, in general, the PDEs listed below describe three-dimensional situations, the 

independent variables are 𝒓 and 𝑡, where 𝒓 is the position vector and 𝑡 is time. The actual 

variables used to specify the position vector 𝒓 are dictated by the coordinate system in use.  

    For example, in Cartesian coordinates the independent variables of position are 𝑥, 𝑦 and 

𝑧, whereas in spherical polar coordinates they are 𝑟, 휃 and 𝜙. The equations may be written 

in a coordinate-independent manner, however, by the use of the Laplacian operator ∇2. 
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    Among the most frequently encountered PDEs are the following [76-78]: 

1.4-1 The wave equation 

The wave equation 

                                                     ∇2𝑢 =
1

𝑐2
𝜕2𝑢

𝜕𝑡2
                                                              (1.8) 

describes the displacement from equilibrium, 𝑢(𝒓, 𝑡), of a vibrating string or membrane or 

a vibrating solid, gas or liquid, as a function of position and time. The equation also occurs 

in electromagnetism, where 𝑢 may be a component of the electric or magnetic field in an 

electromagnetic wave or the current or voltage along a transmission line. The quantity c is 

the speed of propagation of the waves. 

1.4-2 The diffusion equation 

The diffusion equation 

                                                   𝑘∇2𝑢 =
𝜕𝑢

𝜕𝑡
                                                                   (1.9)    

describes the temperature 𝑢 in a region containing no heat sources or sinks; it also applies 

to the diffusion of a chemical that has a concentration 𝑢(𝒓, 𝑡). The constant 𝑘 is called the 

diffusivity. The equation is clearly second order in the three spatial variables, but first order 

in time.  

    The Helmholtz and time-independent diffusion equations takes the form  

                                                            ∇2𝜓 ± 𝑘2 = 0 .                                                (1.10)    

These equations appear in such diverse phenomena as 

      a. elastic waves in solids including vibrating strings, bars, membranes,  

      b. sound or acoustics,  

      с. electromagnetic waves, and 

      d. nuclear reactors. 

1.4-3 The Laplace’s equation  

The Laplace's equation is given by 

                                                       ∇2𝜓 = 0.                                                               (1.11) 

    This very common and very important equation occurs in the studies of electromagnetic 

phenomena including electrostatics, dielectrics, steady currents, and magnetostatics, 

hydrodynamics (irrotational flow of perfect fluid and surface waves), heat flow, and 

gravitation.  
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1.4-4 The Poisson’s equation  

The Poisson’s equation is given by 

                                                 ∇2𝑢 = 𝜌(𝒓).                                                                (1.12) 

It describes the same physical situations as Laplace’s equation, but in regions containing 

matter, charges or sources of heat or fluid. The function 𝜌(𝒓) is called the source density 

and in physical applications usually contains some multiplicative physical constants. For 

example, if 𝑢 is the electrostatic potential in some region of space, in which case 𝜌 is the 

density of electric charge, then ∇2𝑢 = −𝜌(𝒓)/𝜖0, where 𝜖0 is the permittivity of free space. 

Alternatively, 𝑢 might represent the gravitational potential in some region where the matter 

density is given by 𝜌; then ∇2𝑢 = 4𝜋𝐺𝜌(𝒓), where 𝐺 is the gravitational constant. In 

contrast to the homogeneous Laplace equation, Poisson's equation is non- homogeneous 

with a source term. 

1.4-5   The Schrödinger’s equation 

The Schrödinger’s equation   

                                         −
ℏ2

2𝑚
∇2𝑢 + 𝑉(𝒓)𝑢 = 𝑖ℏ

𝜕𝑢

𝜕𝑡
,                                        (1.13)             

describes the quantum mechanical wave function 𝑢(𝒓, 𝑡) of a non-relativistic particle of 

mass 𝑚; ℏ is Planck’s constant divided by 2𝜋. Like the diffusion equation it is second order 

in the three spatial variables and first order in time. For the time-independent case we have 

                                                      −
ℏ2 

2𝑚
∇2𝜓 + 𝑉𝜓 = 𝐸𝜓                                           (1.14) 

which is the stationary Schrödinger’s equation.  

1.4-6 The Klein–Gordon equation 

The Klein–Gordon equation is given by 

                                                 
1 

𝑐2 

𝜕2𝜓

𝜕𝑡2
− ∇2𝜓 +

𝑚2𝑐2

ℏ2
𝜓 = 0.                                                                        

It is most often written in natural units as                                                          

                                                       −∂𝑡
2𝜓 + ∇2𝜓 = 𝑚2𝜓                                    

The form is determined by requiring that plane wave solutions of the equation                                                           

                                                       𝜓 = 𝑒−𝑖𝜔𝑡+𝑖𝑘𝑥 = 𝑒𝑖𝑘𝜇𝑥
𝜇
                              

obey the energy momentum relation of special relativity: 

                                     −𝑝𝜇𝑝
𝜇 = 𝐸2 − 𝑃2 = 𝜔2 − 𝑘2 = −𝑘𝜇𝑘

𝜇 = 𝑚2    
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Unlike the Schrödinger equation, there are two values of ω for each k, one positive and one 

negative. Only by separating out the positive and negative frequency parts does the 

equation describe a relativistic wave function. For the time-independent case, the Klein–

Gordon equation becomes  

                                                       [∇2 −
𝑚2𝑐2

ℏ2
]𝜓(𝐫) = 0                                        

which is the homogeneous screened Poisson equation. 

 

1.5 General form of solution 

Before turning to the methods by which we may hope to solve PDEs such as those listed 

in the previous section, it is instructive, to study how PDEs may be formed from a set of 

possible solutions. Such a study can provide an indication of how equations obtained not 

from possible solutions but from physical arguments might be solved. 

    For definiteness let us suppose we have a set of functions involving two independent 

variables 𝑥 and 𝑦. Without further specification this is of course a very wide set of 

functions, and we could not expect to find a useful equation that they all satisfy. However, 

let us consider a type of function 𝑢𝑖(𝑥, 𝑦) in which 𝑥 and 𝑦 appear in a particular way, such 

that 𝑢𝑖 can be written as a function (however complicated) of a single variable 𝑝, itself a 

simple function of 𝑥 and 𝑦. 

    Let us illustrate this by considering the three functions [79]   

                                  𝑢1(𝑥, 𝑦) = 𝑥
4 + 4(𝑥2𝑦 + 𝑦2 + 1), 

                                  𝑢2(𝑥, 𝑦) = sin 𝑥
2 cos 2𝑦 + cos 𝑥2 sin 2𝑦, 

                                  𝑢3(𝑥, 𝑦) =
𝑥2+2𝑦+2

3𝑥2+6𝑦+5
.  

These are all fairly complicated functions of 𝑥 and 𝑦 and a single differential equation of 

which each one is a solution is not obvious. However, if we observe that in fact each can 

be expressed as a function of the variable 𝑝 =  𝑥2  + 2𝑦 alone (with no other 𝑥 or 𝑦 

involved) then a great simplification takes place. Written in terms of 𝑝 the above equations 

become 

                        𝑢1(𝑥, 𝑦) = (𝑥
2 + 2𝑦)2 + 4 = 𝑝2 + 4 = 𝑓1(𝑝), 

                        𝑢2(𝑥, 𝑦) = sin(𝑥
2 + 2𝑦) = sin 𝑝 = 𝑓2(𝑝), 

                        𝑢3(𝑥, 𝑦) =
(𝑥2+2𝑦)+2

3(𝑥2+2𝑦)+5
=

𝑝+2

3𝑝+5
= 𝑓3(𝑝).      

    Let us now form, for each 𝑢𝑖, the partial derivatives 𝜕𝑢𝑖/𝜕𝑥  and 𝜕𝑢𝑖/𝜕𝑦. In each case 

these are (writing both the form for general 𝑝 and the one appropriate to our particular case,  

𝑝 =  𝑥2  +  2𝑦) 
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𝜕𝑢𝑖

𝜕𝑥
=

𝑑𝑓𝑖(𝑝)

𝑑𝑝

𝜕𝑝

𝜕𝑥
= 2𝑥𝑓𝑖

′,  

                                                   
𝜕𝑢𝑖

𝜕𝑦
=

𝑑𝑓𝑖(𝑝)

𝑑𝑝

𝜕𝑝

𝜕𝑦
= 2𝑓𝑖

′,  

for 𝑖 =  1, 2, 3. All reference to the form of 𝑓𝑖 can be eliminated from these equations by 

cross-multiplication, obtaining 

                                                                 
𝜕𝑝

𝜕𝑦

𝜕𝑢𝑖

𝜕𝑥
=

𝜕𝑝

𝜕𝑥
 
𝜕𝑢𝑖

𝜕𝑦
,  

or, for our specific form, 𝑝 =  𝑥2  +  2𝑦, 

                                                                
𝜕𝑢𝑖

𝜕𝑥
= 𝑥

𝜕𝑢𝑖

𝜕𝑦
.                                                    (1.15) 

It is thus apparent that not only are the three functions 𝑢1, 𝑢2, 𝑢3 solutions of the PDE 

(1.15) but so also is any arbitrary function 𝑓(𝑝) of which the argument 𝑝 has the form 

𝑥2  +  2𝑦. 

 

1.6   General and Particular Solutions 

In the last section we found that the first order PDE (1.15) has as a solution any function 

of the variable: 𝑥2  +  2𝑦. This points the way for the solution of PDEs of other orders, as 

follows. It is not generally true that an nth-order PDE can always be considered as resulting 

from the elimination of n arbitrary functions from its solution (as opposed to the 

elimination of n arbitrary constants for an nth-order ODE). However, given specific PDEs 

we can try to solve them by seeking combinations of variables in terms of which the 

solutions may be expressed as arbitrary functions. Where this is possible, we may expect 

n combinations to be involved in the solution.  

    Naturally, the exact functional form of the solution for any particular situation must be 

determined by some set of boundary conditions. For instance, if the PDE contains two 

independent variables 𝑥 and 𝑦 then for complete determination of its solution the boundary 

conditions will take a form equivalent to specifying 𝑢(𝑥, 𝑦) along a suitable continuum of 

points in the 𝑥𝑦-plane (usually along a line).  

    We now discuss the general and particular solutions of first- and second order PDEs. In 

order to simplify the algebra, we will restrict our discussion to equations containing just 

two independent variables 𝑥 and 𝑦. Nevertheless, the method presented below may be 

extended to equations containing several independent variables. 

1.6-1   First-Order Equations 

Although most of the PDEs encountered in physical contexts are second order (i.e. they 

contain 𝜕2𝑢/𝜕𝑥2 or 𝜕2𝑢/𝜕𝑥𝜕𝑦, etc.), we now discuss first-order equations to illustrate the 

general considerations involved in the form of the solution and in satisfying any boundary 

conditions on the solution. 
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    The most general first-order linear PDE (containing two independent variables) is of the 

form [79] 

                       𝐴(𝑥, 𝑦)
𝜕𝑢

𝜕𝑥
+ 𝐵(𝑥, 𝑦)

𝜕𝑢

𝜕𝑦
+ 𝐶(𝑥, 𝑦) 𝑢 = 𝑅(𝑥, 𝑦),                                   (1.16) 

where 𝐴(𝑥, 𝑦), 𝐵(𝑥, 𝑦), 𝐶(𝑥, 𝑦) and 𝑅(𝑥, 𝑦) are given functions. Clearly, if either 𝐴(𝑥, 𝑦) 
or 𝐵(𝑥, 𝑦) is zero then the PDE may be solved straightforwardly as a first-order linear 

ODE, the only modification being that the arbitrary constant of integration becomes an 

arbitrary function of 𝑥 or 𝑦, respectively. 

    When the PDE contains partial derivatives with respect to both independent variables 

then, of course, we cannot employ the above procedure but must seek an alternative 

method. Let us for the moment restrict our attention to the special case in which 𝐶(𝑥, 𝑦)  =
 𝑅(𝑥, 𝑦)  =  0 and, following the discussion of the previous section, look for solutions of 

the form 𝑢(𝑥, 𝑦) =  𝑓(𝑝), where 𝑝 is some, at present unknown, combination of 𝑥 and 𝑦. 

We then have 

                                                           
𝜕𝑢

𝜕𝑥
=

𝑑𝑓(𝑝)

𝑑𝑝

𝜕𝑝

𝜕𝑥
,  

                                                           
𝜕𝑢

𝜕𝑦
=

𝑑𝑓(𝑝)

𝑑𝑝

𝜕𝑝

𝜕𝑦
,  

which, when substituted into the PDE (1.16), give            

                                                [𝐴(𝑥, 𝑦)
𝜕𝑝

𝜕𝑥
+ 𝐵(𝑥, 𝑦)

𝜕𝑝

𝜕𝑦
 ]
𝑑𝑓(𝑝)

𝑑𝑝
= 0.  

This removes all reference to the actual form of the function 𝑓(𝑝) since for non-trivial 𝑝 

we must have 

                                                𝐴(𝑥, 𝑦)
𝜕𝑝

𝜕𝑥
+ 𝐵(𝑥, 𝑦)

𝜕𝑝

𝜕𝑦
= 0.                                        (1.17)     

    Let us now consider the necessary condition for 𝑓(𝑝) to remain constant as 𝑥 and 𝑦 vary; 

this is that 𝑝 itself remains constant. Thus for 𝑓 to remain constant implies that 𝑥 and 𝑦 

must vary in such a way that 

                                                    𝑑𝑝 =
𝜕𝑝

𝜕𝑥
𝑑𝑥 +

𝜕𝑝

𝜕𝑦
𝑑𝑦 = 0.                                         (1.18) 

    The forms of (1.17) and (1.18) are very alike and become the same if we require that 

[79] 

                                                  
𝑑𝑥

𝐴(𝑥,𝑦)
=

𝑑𝑦

𝐵(𝑥,𝑦)
 .                                                            (1.19) 

By integrating this expression, the form of 𝑝 can be found. 

Example 

For example, let us find two solutions of  
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                                                     𝑥
𝜕𝑢

𝜕𝑥
− 2𝑦

𝜕𝑢

𝜕𝑦
= 0,                                                    (1.20) 

(i): the first of which takes the value 2𝑦 +  1 on the line 𝑥 =  1, and 

(ii): the second takes the value 4 at the point (1, 1). 

If we seek a solution of the form 𝑢(𝑥, 𝑦)  =  𝑓(𝑝), we deduce from (1.19) that 𝑢(𝑥, 𝑦) will 

be constant along lines of (𝑥, 𝑦) that satisfy 

                                                      
𝑑𝑥

𝑥
=

𝑑𝑦

−2𝑦
,  

which on integrating gives 𝑥 =  𝑐𝑦−
1

2 . Identifying the constant of integration 𝑐 with 𝑝
1

2 (to 

avoid fractional powers), we conclude that 𝑝 =  𝑥2𝑦. Thus, the general solution of the 

PDE (1.20) is 

                                              𝑢(𝑥, 𝑦) = 𝑓(𝑥2𝑦),  

where 𝑓 is an arbitrary function. We must now find the particular solutions that obey each 

of the imposed boundary conditions. For boundary condition (i) a little thought shows that 

the particular solution required is                                         

                                            𝑢(𝑥, 𝑦) = 2(𝑥2𝑦) + 1 = 2𝑥2𝑦 + 1.                                (1.21) 

For boundary condition (ii) some obviously acceptable solutions are                                    

                                             𝑢(𝑥, 𝑦) = 𝑥2𝑦 + 3,  

                                            𝑢(𝑥, 𝑦) = 4𝑥2𝑦,  

                                            𝑢(𝑥, 𝑦) = 4.  

Each is a valid solution (the freedom of choice of form arises from the fact that 𝑢 is 

specified at only one point (1, 1), and not along a continuum (say), as in boundary 

condition (i)). All three are particular examples of the general solution, which may be 

written, for example, as 

                                   𝑢(𝑥, 𝑦) = 𝑥2𝑦 + 3 + 𝑔(𝑥2𝑦),  

where 𝑔 =  𝑔(𝑥2𝑦)  =  𝑔(𝑝) is an arbitrary function subject only to 𝑔(1)  =  0. For this 

example, the forms of g corresponding to the particular solutions listed above are  

                          𝑔(𝑝)  =  0, 𝑔(𝑝)  =  3𝑝 −  3, 𝑔(𝑝)  =  1 −  𝑝.     

    As mentioned above, in order to find a solution of the form 𝑢(𝑥, 𝑦)  =  𝑓(𝑝) we require 

that the original PDE contains no term in 𝑢, but only terms containing its partial derivatives. 

If a term in 𝑢 is present, so that 𝐶(𝑥, 𝑦)  ≠ 0 in (1.16), then the procedure needs some 

modification, since we cannot simply divide out the dependence on 𝑓(𝑝) to obtain (1.17). 

In such cases we look instead for a solution of the form 𝑢(𝑥, 𝑦)  =  ℎ(𝑥, 𝑦)𝑓(𝑝). We 

illustrate this method in the following example [79]: 
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Example: Find the general solution of  

                                                   𝑥
𝜕𝑢

𝜕𝑥
+ 2

𝜕𝑢

𝜕𝑦
− 2𝑢 = 0.                                               (1.22) 

We seek a solution of the form 𝑢(𝑥, 𝑦) = ℎ(𝑥, 𝑦)𝑓(𝑝), with the consequence that 

𝜕𝑢

𝜕𝑥
=
𝜕ℎ

𝜕𝑥
𝑓(𝑝) + ℎ

𝑑𝑓(𝑝)

𝑑𝑝

𝜕𝑝

𝜕𝑥
,  

𝜕𝑢

𝜕𝑦
=
𝜕ℎ

𝜕𝑦
𝑓(𝑝) + ℎ

𝑑𝑓(𝑝)

𝑑𝑝

𝜕𝑝

𝜕𝑦
.  

Substituting these expressions into the PDE (1.22) and rearranging, we obtain 

(𝑥
𝜕ℎ

𝜕𝑥
+ 2

𝜕ℎ

𝜕𝑦
− 2ℎ) 𝑓(𝑝) + (𝑥

𝜕𝑝

𝜕𝑥
+ 2

𝜕𝑝

𝜕𝑦
) ℎ

𝑑𝑓(𝑝)

𝑑𝑝
= 0,  

The first factor in parentheses is just the original PDE with 𝑢 replaced by ℎ. Therefore, if 

ℎ is any solution of the PDE, however simple, this term will vanish, to leave   

(𝑥
𝜕𝑝

𝜕𝑥
+ 2

𝜕𝑝

𝜕𝑦
) ℎ

𝑑𝑓(𝑝)

𝑑𝑝
= 0,  

from which, as in the previous case, we obtain 

𝑥
𝜕𝑝

𝜕𝑥
+ 2

𝜕𝑝

𝜕𝑦
= 0.  

From (1.18) and (1.19) we see that 𝑢(𝑥, 𝑦) will be constant along lines of (𝑥, 𝑦) that satisfy 

𝑑𝑥

𝑥
=
𝑑𝑦

2
,  

which integrates to give 𝑥 =  𝑐 𝑒𝑥𝑝(𝑦/2). Identifying the constant of integration 𝑐 with 𝑝 

we find 𝑝 =  𝑥 𝑒𝑥𝑝(−𝑦/2). Thus, the general solution of (1.22) is 

                                   𝑢(𝑥, 𝑦)  =  ℎ(𝑥, 𝑦)𝑓 (𝑥 𝑒𝑥𝑝 (−
1

2
 𝑦)), 

where 𝑓(𝑝) is any arbitrary function of 𝑝 and ℎ(𝑥, 𝑦) is any solution of (1.22). 

    If we take, for example, ℎ(𝑥, 𝑦) = 𝑒𝑥𝑝(𝑦), which clearly satisfies (1.22), then the 

general solution is 

                                  𝑢(𝑥, 𝑦)  =  {𝑒𝑥𝑝(𝑦)}𝑓 (𝑥 𝑒𝑥𝑝 (−
1

2
 𝑦)). 

Alternatively, ℎ(𝑥, 𝑦)  =  𝑥2 also satisfies (1.22) and so the general solution to the equation 

can also be written 
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                                 𝑢(𝑥, 𝑦)  =  𝑥2𝑔 (𝑥 exp (−
1

2
 𝑦)), 

where 𝑔 is an arbitrary function of 𝑝; clearly 𝑔(𝑝) =
𝑓(𝑝)

𝑝2
. 

1.6-2   Second-Order Equations 

As noted in section 1.4, second-order linear PDEs are of great importance in describing the 

behavior of many physical systems. As in our discussion of first order equations, for the 

moment we shall restrict our discussion to equations with just two independent variables; 

extensions to a greater number of independent variables are straightforward. 

    The most general second-order linear PDE (containing two independent variables) has 

the form [79] 

                            𝐴
𝜕2𝑢

𝜕𝑥2
+ 𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
+ 𝐷

𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢 = 𝑅(𝑥, 𝑦),                  (1.23) 

where 𝐴, 𝐵, . . . , 𝐹 and 𝑅(𝑥, 𝑦) are given functions of 𝑥 and 𝑦. Because of the nature of the 

solutions to such equations, they are usually divided into three classes, a division of which 

we will make further use in subsection 1.7-2.  

    The equation (1.23) is called hyperbolic if 𝐵2  >  4𝐴𝐶, parabolic if 𝐵2 =  4𝐴𝐶 and 

elliptic if 𝐵2  <  4𝐴𝐶. Clearly, if 𝐴, 𝐵 and 𝐶 are functions of 𝑥 and 𝑦 (rather than just 

constants) then the equation might be of different types in different parts of the 𝑥𝑦-plane.  

    Equation (1.23) obviously represents a very large class of PDEs, and it is usually 

impossible to find closed-form solutions to most of these equations. Therefore, for the 

moment we shall consider only homogeneous equations, with 𝑅(𝑥, 𝑦) = 0, and make the 

further (greatly simplifying) restriction that, throughout the remainder of this section, 

𝐴, 𝐵, . . . , 𝐹 are not functions of 𝑥 and 𝑦 but merely constants. 

    We now tackle the problem of solving some types of second order PDEs with constant 

coefficients by seeking solutions that are arbitrary functions of particular combinations of 

independent variables [79], just as we did for first-order equations. 

    Following the discussion of the previous section, we can hope to find such solutions only 

if all the terms of the equation involve the same total number of differentiations, i.e. all 

terms are of the same order, although the number of differentiations with respect to the 

individual independent variables may be different. This means that in (1.23) we require the 

constants 𝐷, 𝐸 and 𝐹 to be identically zero (we have, of course, already assumed that 

𝑅(𝑥, 𝑦) is zero), so that we are now considering only equations of the form 

                                             𝐴
𝜕2𝑢

𝜕𝑥2
+ 𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
= 0,                                            (1.24) 

where 𝐴, 𝐵 and 𝐶 are constants. We note that both the one-dimensional wave equation, 

𝜕2𝑢

𝜕𝑥2
−
1

𝑐2
𝜕2𝑢

𝜕𝑡2
= 0, 
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and the two-dimensional Laplace equation, 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0, 

are of this form, but that the diffusion equation, 

𝑘
𝜕2𝑢

𝜕𝑥2
−
𝜕𝑢

𝜕𝑡
= 0, 

is not, since it contains a first-order derivative. 

    Since all the terms in (1.24) involve two differentiations, by assuming a solution of the 

form 𝑢(𝑥, 𝑦) = 𝑓(𝑝), where 𝑝 is some unknown function of 𝑥 and 𝑦 (or 𝑡), we may be able 

to obtain a common factor 𝑑2𝑓(𝑝)/𝑑𝑝2 as the only appearance of 𝑓 on the LHS. Then, 

because of the zero RHS, all reference to the form of 𝑓 can be cancelled out. 

    We can gain some guidance on suitable forms for the combination 𝑝 =  𝑝(𝑥, 𝑦) by 

considering 𝜕𝑢/𝜕𝑥 when 𝑢 is given by 𝑢(𝑥, 𝑦)  =  𝑓(𝑝), for then 

∂𝑢

∂𝑥
=
𝑑𝑓(𝑝)

𝑑𝑝

∂𝑝

∂𝑥
. 

Clearly differentiation of this equation with respect to 𝑥 (or 𝑦) will not lead to a single term 

on the RHS, containing 𝑓 only as 𝑑2𝑓(𝑝)/𝑑𝑝2, unless the factor 𝜕𝑝/𝜕𝑥 is a constant so 

that 𝜕2𝑝/𝜕𝑥2 and 𝜕2𝑝/𝜕𝑥𝜕𝑦 are necessarily zero. This shows that 𝑝 must be  a linear 

function of 𝑥. In an exactly similar way 𝑝 must also be a linear function of 𝑦, i.e. 𝑝 = 𝑎𝑥 +
 𝑏𝑦. 

    If we assume a solution of (1.24) of the form [79]: 𝑢(𝑥, 𝑦) = 𝑓(𝑎𝑥 + 𝑏𝑦), and evaluate 

the terms ready for substitution into (1.24), we obtain 

𝜕𝑢

𝜕𝑥
= 𝑎

𝑑𝑓(𝑝)

𝑑𝑝
,

𝜕𝑢

𝜕𝑦
= 𝑏 

𝑑𝑓(𝑝)

𝑑𝑝
, 

𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝑑2𝑓(𝑝)

𝑑𝑝2
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
= 𝑎𝑏 

𝑑2𝑓(𝑝)

𝑑𝑝2
,       

𝜕2𝑢

𝜕𝑦2
= 𝑏2

𝑑2𝑓(𝑝)

𝑑𝑝2
, 

which on substitution give                                    

                                     (𝐴𝑎2 + 𝐵𝑎𝑏 + 𝐶𝑏2)
𝑑2𝑓(𝑝)

𝑑𝑝2
 = 0.                                            (1.25) 

    This is the form we have been seeking, since now a solution independent of the form of 

𝑓 can be obtained if we require that 𝑎 and 𝑏 satisfy  

                                         𝐴𝑎2  +  𝐵𝑎𝑏 +  𝐶𝑏2  =  0. 

From this quadratic equation, two values for the ratio of the two constants 𝑎 and 𝑏 are 

obtained,  
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                                         𝑏/𝑎 =  [−𝐵 ± (𝐵2 − 4𝐴𝐶)1/2]/2𝐶. 

If we denote these two ratios by 𝜆1 and 𝜆2 then any functions of the two variables 

𝑝1  =  𝑥 + 𝜆1𝑦, 𝑝2  =  𝑥 + 𝜆2𝑦 

will be solutions of the original equation (1.24). The omission of the constant factor 𝑎 from 

𝑝1 and 𝑝2 is of no consequence since this can always be absorbed into the particular form 

of any chosen function; only the relative weighting of 𝑥 and 𝑦 in 𝑝 is important. 

    Since 𝑝1 and 𝑝2 are in general different, we can thus write the general solution of (1.24) 

as 

                                    𝑢(𝑥, 𝑦) =  𝑓(𝑥 + 𝜆1𝑦) +  𝑔(𝑥 + 𝜆2𝑦),                                (1.26) 

where 𝑓 and 𝑔 are arbitrary functions.  

    Finally, we note that the alternative solution 𝑑2𝑓(𝑝)/𝑑𝑝2  =  0 to (1.25) leads only to 

the trivial solution 𝑢(𝑥, 𝑦)  =  𝑘𝑥 +  𝑙𝑦 +  𝑚, for which all second derivatives are 

individually zero. 

 

1.7   Characteristics and the Existence of Solutions 

So far in this chapter we have discussed how to find general solutions to various types of 

first- and second-order linear PDE. Moreover, given a set of boundary conditions we have 

shown how to find the particular solution (or class of solutions) that satisfies them. For 

first-order equations, for example, we found that if the value of 𝑢(𝑥, 𝑦) is specified along 

some curve in the 𝑥𝑦-plane then the solution to the PDE is in general unique, but that if 

𝑢(𝑥, 𝑦) is specified at only a single point then the solution is not unique: there exists a class 

of particular solutions all of which satisfy the boundary condition. In this section we make 

more rigorous the notion of the respective types of boundary condition that cause a PDE to 

have a unique solution, a class of solutions, or no solution at all. 

1.7-1   First-Order Equations 

Let us consider the general first-order PDE (1.16) but now write it as                                            

                                               𝐴(𝑥, 𝑦)
𝜕𝑢

𝜕𝑥
+ 𝐵(𝑥, 𝑦)

𝜕𝑢

𝜕𝑦
= 𝐹(𝑥, 𝑦, 𝑢).                            (1.27) 

Suppose we wish to solve this PDE subject to the boundary condition that 𝑢(𝑥, 𝑦)  =  𝜙(𝑠) 
is specified along some curve 𝐶 in the 𝑥𝑦-plane that is described parametrically by the 

equations 𝑥 =  𝑥(𝑠) and 𝑦 =  𝑦(𝑠), where s is the arc length along 𝐶. The variation of 𝑢 

along 𝐶 is therefore given by                                               

                                                  
𝑑𝑢

𝑑𝑠
=

𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑠
+
𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑠
=

𝑑𝜙

𝑑𝑠
.                                            (1.28) 
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We may then solve the two (inhomogeneous) simultaneous linear equations (1.27) and 

(1.28) for 𝜕𝑢/𝜕𝑥 and 𝜕𝑢/𝜕𝑦, unless the determinant of the coefficients vanishes, i.e.  

unless 

|
𝑑𝑥

𝑑𝑠

𝑑𝑦

𝑑𝑠
𝐴 𝐵

| = 0. 

At each point in the 𝑥𝑦-plane this equation determines a set of curves called characteristic 

curves (or just characteristics), which thus satisfy 

𝐵
𝑑𝑥

𝑑𝑠
− 𝐴

𝑑𝑦

𝑑𝑠
= 0, 

or, multiplying through by 𝑑𝑠/𝑑𝑥 and dividing through by 𝐴, 

                                                               
𝑑𝑦

𝑑𝑥
=

𝐵(𝑥,𝑦)

𝐴(𝑥,𝑦)
.                                                     (1.29) 

    However, we have already met (1.22) in subsection 1.6-1 on first order PDEs, where 

solutions of the form 𝑢(𝑥, 𝑦)  =  𝑓(𝑝), where 𝑝 is some combination of 𝑥 and 𝑦, were 

discussed. Comparing (1.29) with (1.19) we see that the characteristics are merely those 

curves along which 𝑝 is constant.  

    Since the partial derivatives 𝜕𝑢/𝜕𝑥 and 𝜕𝑢/𝜕𝑦 may be evaluated provided the boundary 

curve 𝐶 does not lie along a characteristic, defining 𝑢(𝑥, 𝑦)  =  𝜙(𝑠) along 𝐶 is sufficient 

to specify the solution to the original problem (equation plus boundary conditions) near the 

curve 𝐶, in terms of a Taylor expansion about 𝐶. Therefore, the characteristics can be 

considered as the curves along which information about the solution 𝑢(𝑥, 𝑦) ‘propagates’.  

1.7-2   Second-Order Equations  

The concept of characteristics can be extended naturally to second- (and higher-) order 

equations. In this case let us write the general second-order linear PDE (1.23) as           

                     𝐴(𝑥, 𝑦)
𝜕2𝑢

𝜕𝑥2
+ 𝐵(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑦2
= 𝐹 (𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
).              (1.30) 

    For second-order equations we might expect that relevant boundary conditions would 

involve specifying 𝑢, or some of its first derivatives, or both, along a suitable set of 

boundaries bordering or enclosing the region over which a solution is sought. Three 

common types of boundary condition occur and are associated with the names of Dirichlet, 

Neumann and Cauchy [79]. They are as follows. 
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      Figure-1.2 A boundary curve C and its tangent and unit normal at a given point. 

 

Dirichlet: The value of 𝑢 is specified at each point of the boundary. 

Neumann: The value of  𝜕𝑢/𝜕𝑛, the normal derivative of 𝑢, is specified at each point of 

the boundary. Note that 𝜕𝑢/𝜕𝑛 =  𝛻𝑢 ∙ �̂� , where �̂� is the normal to the boundary at each 

point. 

Cauchy: Both 𝑢 and 𝜕𝑢/𝜕𝑛 are specified at each point of the boundary. 

    Let us consider for the moment the solution of (1.30) subject to the Cauchy boundary 

conditions, i.e. 𝑢 and 𝜕𝑢/𝜕𝑛 are specified along some boundary curve 𝐶 in the 𝑥𝑦-plane 

defined by the parametric equations 𝑥 =  𝑥(s), 𝑦 =  𝑦(𝑠), 𝑠 being the arc length along 𝐶 

(see Figure-1.2). Let us suppose that along 𝐶, we have 𝑢(𝑥, 𝑦)  =  𝜙(𝑠) and 𝜕𝑢/𝜕𝑛 =
𝜓(𝑠). At any point on 𝐶 the vector 𝑑𝐫 = 𝑑𝑥 𝐢 +  𝑑𝑦 𝐣 is a tangent to the curve and �̂� 𝑑𝑠 =
 𝑑𝑦 𝐢 − 𝑑𝑥 𝐣 is a vector normal to the curve. Thus on 𝐶 we have 

                               
𝜕𝑢

𝜕𝑠
≡ ∇𝑢 ∙

𝑑𝐫

𝑑𝑠
=

𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑠
+
𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑠
=

𝑑𝜙(𝑠)

𝑑𝑠
, 

                             
𝜕𝑢

𝜕𝑛
≡ ∇𝑢 ∙ �̂� =

𝜕𝑢

𝜕𝑥

𝑑𝑦

𝑑𝑠
−
𝜕𝑢

𝜕𝑦

𝑑𝑥

𝑑𝑠
= 𝜓(𝑠). 

These two equations may then be solved straightforwardly for the first partial derivatives 

𝜕𝑢/𝜕𝑥 and 𝜕𝑢/𝜕𝑦 along 𝐶. Using the chain rule to write 

𝑑

𝑑𝑠
=
𝑑𝑥

𝑑𝑠

𝜕

𝜕𝑥
+
𝑑𝑦

𝑑𝑠

𝜕

𝜕𝑦
, 

we may differentiate the two first derivatives 𝜕𝑢/𝜕𝑥 and 𝜕𝑢/𝜕𝑦 along the boundary to 

obtain the pair of equations 
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𝑑

𝑑𝑠
 (
𝜕𝑢

𝜕𝑥
) =

𝑑𝑥

𝑑𝑠
 
𝜕2𝑢

𝜕𝑥2
+
𝑑𝑦

𝑑𝑠
 
𝜕2𝑢

𝜕𝑥𝜕𝑦
, 

𝑑

𝑑𝑠
 (
𝜕𝑢

𝜕𝑦
) =

𝑑𝑥

𝑑𝑠
 
𝜕2𝑢

𝜕𝑥𝜕𝑦
+
𝑑𝑦

𝑑𝑠
 
𝜕2𝑢

𝜕𝑦2
, 

We may now solve these two equations, together with the original PDE (1.30), for the 

second partial derivatives of 𝑢, except where the determinant of their coefficients equals 

zero, 

|
|

𝐴 𝐵 𝐶
𝑑𝑥

𝑑𝑠

𝑑𝑦

𝑑𝑠
0

0
𝑑𝑥

𝑑𝑠

𝑑𝑦

𝑑𝑠

|
| = 0. 

    Expanding out the determinant, 

𝐴 (
𝑑𝑦

𝑑𝑠
)
2

− 𝐵 (
𝑑𝑥

𝑑𝑠
) (
𝑑𝑦

𝑑𝑠
) + 𝐶 (

𝑑𝑥

𝑑𝑠
)
2

= 0. 

    Multiplying through by (
𝑑𝑠

𝑑𝑥
)
2
 we obtain                                                 

                                        𝐴 (
𝑑𝑦

𝑑𝑥
)
2
− 𝐵

𝑑𝑦

𝑑𝑥
+ 𝐶 = 0.                                                      (1.31) 

which is the ODE for the curves in the 𝑥𝑦-plane along which the second partial derivatives 

of 𝑢 cannot be found. 

    As for the first-order case, the curves satisfying (1.31) are called characteristics of the 

original PDE. These characteristics have tangents at each point given by (when 𝐴 ≠ 0) 

                                             
𝑑𝑦

𝑑𝑥
=

𝐵±√𝐵2−4𝐴𝐶

2𝐴
.                                                              (1.32)   
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Figure-1.3 The characteristics for the one-dimensional wave equation. The shaded region 

indicates the region over which the solution is determined by specifying Cauchy boundary 

conditions at 𝑡 =  0 on the line segment 𝑥 =  0 to 𝑥 =  L.     

    Clearly, when the original PDE is hyperbolic (𝐵2 > 4𝐴𝐶), equation (1.3) defines two 

families of real curves in the 𝑥𝑦-plane; when the equation is parabolic (𝐵2 = 4𝐴𝐶) it 

defines one family of real curves; and when the equation is elliptic (𝐵2 < 4𝐴𝐶) it defines 

two families of complex curves. Furthermore, when 𝐴, 𝐵 and 𝐶 are constants, rather than 

functions of 𝑥 and 𝑦, the equations of the characteristics will be of the form 𝑥 + 𝜆𝑦 =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

    As an example, let us find the characteristics of the one-dimensional wave equation 

𝜕2𝑢

𝜕𝑥2
−
1

𝑐2
𝜕2𝑢

𝜕𝑡2
= 0. 

This is a hyperbolic equation with 𝐴 =  1, 𝐵 =  0 and 𝐶 =  −
1

𝑐2
. Therefore, from (1.31) 

the characteristics are given by 

(
𝑑𝑥

𝑑𝑡
)
2

= 𝑐2, 
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and so the characteristics are the straight lines 𝑥 − 𝑐𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑥 + 𝑐𝑡 =
 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, see Figure-1.3. 

    The characteristics of second order PDEs can be considered as the curves along which 

partial information about the solution 𝑢(𝑥, 𝑦) ‘propagates’. Consider a point in the space 

that has the independent variables as its coordinates; unless both of the two characteristics 

that pass through the point intersect the curve along which the boundary conditions are 

specified, the solution will not be determined at that point. In particular, if the equation is 

hyperbolic, so that we obtain two families of real characteristics in the 𝑥𝑦-plane, then 

Cauchy boundary conditions propagate partial information concerning the solution along 

the characteristics, belonging to each family, that intersect the boundary curve 𝐶. The 

solution 𝑢 is then specified in the region common to these two families of characteristics. 

For instance, the characteristics of the hyperbolic one-dimensional wave equation in the 

last example are shown in Figure-1.3. By specifying Cauchy boundary conditions 𝑢 and 

𝜕𝑢/𝜕𝑡 on the line segment 𝑡 = 0, 𝑥 = 0 to 𝐿, the solution is specified in the shaded region. 

    As in the case of first order PDEs, however, problems can arise. For example, if for a 

hyperbolic equation the boundary curve intersects any characteristic more than once then 

Cauchy conditions along 𝐶 can overdetermine the problem, resulting in there being no 

solution. In this case either the boundary curve 𝐶 must be altered, or the boundary   

conditions on the offending parts of 𝐶 must be relaxed to Dirichlet or Neumann conditions.            

                 Table 1.1 The appropriate boundary conditions for different types of partial  

                               differential equation 

Equation type Boundary Boundary Conditions 

hyperbolic open Cauchy 

parabolic open Dirichlet or Neumann 

elliptic closed Dirichlet or Neumann 

 

    The general considerations involved in deciding which boundary conditions are 

appropriate for a particular problem are complex, and we do not discuss them any further 

here. We merely note that whether the various types of boundary condition are appropriate 

(in that they give a solution that is unique, sometimes to within a constant, and is well 

defined) depends upon the type of second-order equation under consideration and on 

whether the region of solution is bounded by a closed or an open curve (or a surface if there 

are more than two independent variables) [79]. Note that part of a closed boundary may be 

at infinity if conditions are imposed on 𝑢 or 𝜕𝑢/𝜕𝑛 there.  

    It may be shown that the appropriate boundary-condition and equation-type pairings are 

as given in Table 1.1.  
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    For example, Laplace’s equation 𝛻2𝑢 =  0 is elliptic and thus requires either Dirichlet 

or Neumann boundary conditions on a closed boundary which, as we have already noted, 

may be at infinity if the behavior of 𝑢 is specified there (most often 𝑢 or 𝜕𝑢/𝜕𝑛 →  0 at 

infinity).  

 

1.8 Separation of Variables 

In the previous sections we demonstrated the methods by which general solutions of some 

PDEs may be obtained in terms of arbitrary functions. In particular, solutions containing 

the independent variables in definite combinations were sought, thus reducing the effective 

number of them. Furthermore, the equations of mathematical physics listed in the above 

sections are all PDEs. Our first technique for their solution splits the PDE of 𝑛 variables 

into n ODEs. Each separation introduces an arbitrary constant of separation. If we have 𝑛 

variables, we have to introduce 𝑛 − 1 constants, determined by the conditions imposed in 

the problem being solved [77].   

    In the present section we begin by taking the opposite approach, namely that of trying 

to keep the independent variables as separate as possible, using the method of separation 

of variables. In the next section we then consider integral transform methods by which one 

of the independent variables may be eliminated, at least from differential coefficients. 

Finally, in the last section we discuss the use of Green’s functions in solving 

inhomogeneous problems. 

1.8-1   The General Method 

Suppose we seek a solution 𝑢(𝑥, 𝑦, 𝑧, 𝑡) to some PDE (expressed in Cartesian coordinates). 

Let us attempt to obtain one that has the product form 

                                           𝑢(𝑥, 𝑦, 𝑧, 𝑡) =  𝑋(𝑥)𝑌 (𝑦)𝑍(𝑧)𝑇(𝑡).                                 (1.33) 

A solution that has this form is said to be separable in 𝑥, 𝑦, 𝑧 and 𝑡, and seeking solutions 

of this form is called the method of separation of variables. 

    As simple examples we may observe that, of the functions 

(i) 𝑥𝑦𝑧2 sin 𝑏𝑡 ,  (ii) 𝑥𝑦 +  𝑧𝑡,  (iii) (𝑥2  +  𝑦2)𝑧 cos𝜔𝑡 , 

(i) is completely separable, (ii) is inseparable in that no single variable can be separated 

out from it and written as a multiplicative factor, whilst (iii) is separable in 𝑧 and 𝑡 but not 

in 𝑥 and 𝑦. 

    When seeking PDE solutions of the form (1.33), we are requiring not that there is no 

connection at all between the functions 𝑋, 𝑌 , 𝑍 and 𝑇 (for example, certain parameters may 

appear in two or more of them), but only that 𝑋 does not depend upon 𝑦, 𝑧, 𝑡, that 𝑌 does 

not depend on 𝑥, 𝑧, 𝑡, and so on. 
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    For a general PDE it is likely that a separable solution is impossible, but certainly some 

common and important equations do have useful solutions of this form, and we will 

illustrate the method of solution by studying the three-dimensional wave equation 

                                                            ∇2𝑢(𝐫) =
1

𝑐2
𝜕2𝑢(𝐫)

𝜕𝑡2
.                                           (1.34) 

We will work in Cartesian coordinates for the present and assume a solution of the form 

(1.33). Expressed in Cartesian coordinates (1.34) takes the form                                                     

                                                       
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
=

1

𝑐2
 
𝜕2𝑢

𝜕𝑡2
;                                     (1.35) 

substituting (1.33) gives                                  

                                       
𝑑2𝑋

𝑑𝑥2
𝑌𝑍𝑇 + 𝑋

𝑑2𝑌

𝑑𝑦2
𝑍𝑇 + 𝑋𝑌

𝑑2𝑍

𝑑𝑧2
𝑇 =

1

𝑐2
𝑋𝑌𝑍

𝑑2𝑇

𝑑𝑡2
,  

which can also be written as 

                                       𝑋′′𝑌𝑍𝑇 + 𝑋𝑌′′𝑍𝑇 + 𝑋𝑌𝑍′′𝑇 =
1

𝑐2
𝑋𝑌𝑍𝑇′′,                           (1.36) 

where in each case the primes refer to the ordinary derivative with respect to the 

independent variable upon which the function depends. This emphasizes the fact that each 

of the functions 𝑋, 𝑌 , 𝑍 and 𝑇 has only one independent variable and thus its only 

derivative is its total derivative. For the same reason, in each term in (1.36) three of the 

four functions are unaltered by the partial differentiation and behave exactly as constant 

multipliers.  

    If we now divide (1.36) throughout by 𝑢 =  𝑋𝑌𝑍𝑇 we obtain                                                  

                                                    
𝑋′′

𝑋
+
𝑌′′

𝑌
+
𝑍′′

𝑍
=

1

𝑐2
 𝑇′′

𝑇
 ,                                             (1.37) 

This form shows the particular characteristic that is the basis of the method of separation 

of variables, namely that of the four terms the first is a function of 𝑥 only, the second of 𝑦 

only, the third of 𝑧 only and the RHS a function of 𝑡 only and yet there is an equation 

connecting them. This can only be so for all 𝑥, 𝑦, 𝑧 and 𝑡 if each of the terms does not in 

fact, despite appearances, depend upon the corresponding independent variable but is equal 

to a constant, the four constants being such that (1.37) is satisfied.  

    Since there is only one equation to be satisfied and four constants involved, there is 

considerable freedom in the values they may take. For the purposes of our illustrative 

example let us make the choice of – 𝑙2, −𝑚2, −𝑛2, for the first three constants. The constant 

associated with 𝑐−2𝑇′′/𝑇 must then have the value – 𝜇2  =  −(𝑙2 +𝑚2 + 𝑛2). 

    Having recognized that each term of (1.37) is individually equal to a constant (or 

parameter), we can now replace (1.37) by four separate ODEs:                

                            
𝑋′′

𝑋
= −𝑙2,

𝑌′′

𝑌
= −𝑚2,

𝑍′′

𝑍
= −𝑛2,

1

𝑐2
 𝑇′′

𝑇
= −𝜇2.                          (1.38) 
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The important point to notice is not the simplicity of the equations (1.38) (the 

corresponding ones for a general PDE are usually far from simple) but that, by the device 

of assuming a separable solution, a partial differential equation (1.35), containing 

derivatives with respect to the four independent variables all in one equation, has been 

reduced to four separate ODEs (1.38). The ordinary equations are connected through four 

constant parameters that satisfy an algebraic relation. These constants are called separation 

constants. The general solutions of the equations (1.38) can be deduced straightforwardly 

and are 

                                        𝑋(𝑥) = 𝐴 exp(𝑖𝑙𝑥) + 𝐵 exp(−𝑖𝑙𝑥) ,  

                                       𝑌(𝑦) = 𝐶 exp(𝑖𝑚𝑦) + 𝐷 exp(𝑖𝑚𝑦),                                     (1.39)          

                                       𝑍(𝑧) = 𝐸 exp(𝑖𝑛𝑧) + 𝐹 exp(−𝑖𝑛𝑧),  

                                       𝑇(𝑡) = 𝐺 𝑒𝑥𝑝(𝑖𝑐𝜇𝑡) + 𝐻 𝑒𝑥𝑝(−𝑖𝑐𝜇𝑡),  

where 𝐴, 𝐵, . . . , 𝐻 are constants, which may be determined if boundary conditions are 

imposed on the solution. Depending on the geometry of the problem and any boundary 

conditions, it is sometimes more appropriate to write the solutions (1.39) in the alternative 

form 

                                             𝑋(𝑥) = 𝐴′ cos 𝑙𝑥 + 𝐵′ sin 𝑙𝑥 , 

                                             𝑌(𝑦) = 𝐶′ cos𝑚𝑦 + 𝐷′ sin𝑚𝑦, 

                                             𝑍(𝑧) = 𝐸′ cos 𝑛𝑧 + 𝐹′ sin 𝑛𝑧,                                         (1.40) 

                                             𝑇(𝑡) = 𝐺′ cos(𝑐𝜇𝑡) + 𝐻′ sin(𝑐𝜇𝑡),   

for some different set of constants 𝐴′, 𝐵′, . . . , 𝐻′. Clearly the choice of how best to represent 

the solution depends on the problem being considered. As an example, suppose that we 

take as particular solutions the four functions  

   𝑋(𝑥) = exp(𝑖𝑙𝑥),   𝑌(𝑦)  = exp(𝑖𝑚𝑦),     𝑍(𝑧)  = exp(𝑖𝑛𝑧),   𝑇(𝑡)  = exp(−𝑖𝑐𝜇𝑡). 

This gives a particular solution of the original PDE (1.35) 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = exp(𝑖𝑙𝑥) exp(𝑖𝑚𝑦) exp(𝑖𝑛𝑧) exp(−𝑖𝑐𝜇𝑡) 

     = exp[𝑖(𝑙𝑥 +  𝑚𝑦 +  𝑛𝑧 –  𝑐𝜇𝑡)], 

which represents a plane wave of unit amplitude propagating in a direction given by the 

vector with components 𝑙, 𝑚, 𝑛 in a Cartesian coordinate system. In the conventional 

notation of wave theory, 𝑙, 𝑚 and 𝑛 are the components of the wave-number vector 𝐤, 

whose magnitude is given by 𝑘 =  2𝜋/𝜆, where 𝜆 is the wavelength of the wave; 𝑐𝜇 is  the 

angular frequency 𝜔 of the wave. This gives the equation in the form           

             𝑢(𝑥, 𝑦, 𝑧, 𝑡) = exp[𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧 –  𝜔𝑡)] = exp[𝑖(𝐤 · 𝐫 − 𝜔𝑡)], 

and makes the exponent dimensionless. 
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    The method of separation of variables can be applied to many commonly occurring 

PDEs encountered in physical applications. 

For the one-dimensional diffusion equation                                                         

                                                           𝑘
𝜕2𝑢

𝜕𝑥2
=

𝜕𝑢

𝜕𝑡
,                                                         (1.41) 

a solution that tends to zero as 𝑡 → ∞ for all 𝑥, can be easily given by                                

                                  𝑢(𝑥, 𝑡) = (𝐴 cos 𝜆𝑥  +  𝐵 sin 𝜆𝑥 ) exp(−𝜆2𝜅𝑡),                        (1.42) 

where 𝜆 is an arbitrary constant to be determined from the boundary conditions. In order 

to satisfy the boundary condition 𝑢 → 0 as 𝑡 → ∞, 𝜆2𝜅 must be  > 0. Since 𝜅 is real and 

> 0, this implies that 𝜆 is a real non-zero number and that the solution is sinusoidal in 𝑥 

and is not disguised hyperbolic function; this was our reason for choosing the separation 

constant as −𝜆2.    

    For the two-dimensional Laplace equation,                                                             

                                                       
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0.                                                       (1.43) 

the general solution becomes                 

                  𝑢(𝑥, 𝑦) =  (𝐴 cosh 𝜆𝑥 + 𝐵 sinh 𝜆𝑥)(𝐶 cos 𝜆𝑦   +  𝐷 sin 𝜆𝑦)                   (1.44)    

where  𝜆2  >  0                                     

An alternative form, in which the exponentials are written explicitly, may be useful for 

other geometries or boundary conditions:            

              𝑢(𝑥, 𝑦) =  [𝐴 exp 𝜆𝑥 + 𝐵 exp(−𝜆𝑥)](𝐶 cos 𝜆𝑦 + 𝐷 sin  𝜆𝑦),                       (1.45)    

with different constants 𝐴 and 𝐵. 

    If 𝜆2  <  0 then the roles of 𝑥 and 𝑦 interchange. The particular combination of 

sinusoidal and hyperbolic functions and the values of 𝜆 allowed will be determined by the 

geometrical properties of any specific problem, together with any prescribed or necessary 

boundary conditions. 

1.8-2   Superposition of Separated Solutions 

It will be noticed in the previous two examples in the last section that there is considerable 

freedom in the values of the separation constant 𝜆, the only essential requirement being 

that 𝜆 has the same value in both parts of the solution, i.e. the part depending on 𝑥 and the 

part depending on 𝑦 (or 𝑡). This is a general feature for solutions in separated form, which, 

if the original PDE has 𝑛 independent variables, will contain 𝑛 − 1 separation constants. 

All that is required in general is that we associate the correct function of one independent 

variable with the appropriate functions of the others, the correct function being the one 

with the same values of the separation constants. 
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    If the original PDE is linear (as are the Laplace, Schrodinger, diffusion and wave 

equations) then mathematically acceptable solutions can be formed by superposing 

solutions corresponding to different allowed values of the separation constants. To take a 

two-variable example: if 

𝑢𝜆1(𝑥, 𝑦) = 𝑋𝜆1(𝑥)𝑌𝜆1(𝑦), 

is a solution of a linear PDE obtained by giving the separation constant the value 𝜆1, then 

the superposition  

   𝑢(𝑥, 𝑦) = 𝑎1𝑋𝜆1  (𝑥)𝑌𝜆1(𝑦) + 𝑎2𝑋𝜆2(𝑥)𝑌𝜆2(𝑦) + · · · = ∑ 𝑎𝑖𝑋𝜆𝑖(𝑥)𝑌𝜆𝑖(𝑦),𝑖             (1.46) 

is also a solution for any constants 𝑎𝑖, provided that the 𝜆𝑖 are the allowed values of the 

separation constant 𝜆 given the imposed boundary conditions. Note that if the boundary 

conditions allow any of the separation constants to be zero then the form of the general 

solution is normally different and must be deduced by returning to the separated ODEs.  

    The value of the superposition approach is that a boundary condition, say that 𝑢(𝑥, 𝑦) 
takes a particular form 𝑓(𝑥) when 𝑦 =  0, might be met by choosing the constants 𝑎𝑖 such 

that 

                                                𝑓(𝑥) = ∑ 𝑎𝑖𝑋𝜆𝑖(𝑥)𝑌𝜆𝑖(0).𝑖   

In general, this will be possible provided that the functions 𝑋𝜆𝑖(𝑥) form a complete set-as 

do the sinusoidal functions of Fourier series or the spherical harmonics. 

    To explain this procedure, let us consider the following example [79]. A semi-infinite 

rectangular metal plate occupies the region 0 ≤ 𝑥 ≤ ∞ and 0 ≤ 𝑦 ≤ b in the 𝑥𝑦-plane. 

The temperature at the far end of the plate and along its two long sides is fixed at 0°𝐶. If 

the temperature of the plate at 𝑥 = 0 is also fixed and is given by 𝑓(𝑦), find the steady-

state temperature distribution 𝑢(𝑥, 𝑦) of the plate. Hence find the temperature distribution 

if 𝑓(𝑦) = 𝑢0  where 𝑢0 is a constant. 

    The physical situation is illustrated in Figure-1.4. With the notation we have used several 

times before, the two-dimensional heat diffusion equation satisfied by the temperature 

𝑢(𝑥, 𝑦, 𝑡) is  

                                                     𝜅 (
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) =

𝜕𝑢

𝜕𝑡
. 

where 𝜅 = 𝑘/(𝐶𝜌), 𝑘 being the heat conductivity, 𝜌 the density, and 𝐶 the specific heat of 

the medium. In this case, however, we are asked to find the steady-state temperature, which 

corresponds to 𝜕𝑢/𝜕𝑡 = 0, and so we are led to consider the (two-dimensional) Laplace 

equation 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0. 
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    We saw that assuming a separable solution of the form 𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) led to 

solutions such as (1.44) or (1.45), or equivalent forms with 𝑥 and 𝑦 interchanged. In the 

current problem we have to satisfy the boundary conditions 𝑢(𝑥, 0) = 0 =  𝑢(𝑥, 𝑏) and so 

a solution that is sinusoidal in 𝑦 seems appropriate. Furthermore, since we require 

𝑢(∞, 𝑦)  =  0 it is best to write the 𝑥-dependence of the solution explicitly in terms of 

exponentials rather than of hyperbolic functions. We therefore write the separable solution 

in the form (1.45) as 

𝑢(𝑥, 𝑦) = [𝐴 exp 𝜆𝑥 + 𝐵 exp(−𝜆𝑥)](𝐶 cos 𝜆𝑦 + 𝐷 sin 𝜆𝑦 ). 

 

 

Figure-1.4 A semi-infinite metal plate whose edges are kept at fixed temperatures. 

Applying the boundary conditions, we see firstly that 𝑢(∞, 𝑦) = 0 implies 𝐴 = 0 if we 

take 𝜆 >  0. Secondly, since 𝑢(𝑥, 0)  =  0 we may set 𝐶 = 0, which, if we absorb the 

constant 𝐷 into 𝐵, leaves us with 

𝑢(𝑥, 𝑦) = 𝐵 exp(−𝜆𝑥) sin 𝜆𝑦 . 

But, using the condition 𝑢(𝑥, 𝑏) = 0, we require sin 𝜆𝑏 =  0 and so 𝜆 must be equal 

to 𝑛𝜋/𝑏, where 𝑛 is any positive integer.  

    Using the principle of superposition (1.46), the general solution satisfying the given 

boundary conditions can therefore be written                          

                                   𝑢(𝑥, 𝑦) = ∑ 𝐵𝑛 exp (−
𝑛𝜋𝑥

𝑏
) sin (

𝑛𝜋𝑦

𝑏
)∞

𝑛=1 ,                              (1.47)                  

for some constants 𝐵𝑛. Notice that in the sum in (1.47) we have omitted negative values  

of n since they would lead to exponential terms that diverge as 𝑥 → ∞. The 𝑛 = 0 term is 

also omitted since it is identically zero. Using the remaining boundary condition 𝑢(0, 𝑦) =
𝑓(𝑦) we see that the constants 𝐵𝑛 must satisfy                                         

                                            𝑓(𝑦) = ∑ 𝐵𝑛 sin (
𝑛𝜋𝑦

𝑏
)∞

𝑛=1 .                                               (1.48) 
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    This is clearly a Fourier sine series expansion of 𝑓(𝑦). For (1.48) to hold, however, the 

continuation of 𝑓(𝑦) outside the region 0 ≤ 𝑦 ≤ 𝑏 must be an odd periodic function with 

period 2𝑏  (see figure 1.5). We also see from figure 1.5 that if the original function 𝑓(𝑦) 
does not equal zero at either of 𝑦 = 0 and 𝑦 = 𝑏 then its continuation has a discontinuity 

at the corresponding point(s); nevertheless, the Fourier series will converge to the mid-

points of these jumps and hence tend to zero in this case. If, however, the top and bottom 

edges of the plate were held not at 0°𝐶 but at some other non-zero temperature, then, in 

general, the final solution would possess discontinuities at the corners 𝑥 = 0, 𝑦 = 0 and 

𝑥 = 0, 𝑦 = 𝑏. 

    Bearing in mind these technicalities, the coefficients 𝐵𝑛 in (1.48) are given by                                             

                                              𝐵𝑛 =
2

𝑛
∫ 𝑓(𝑦) sin (

𝑛𝜋𝑦

𝑏
) 𝑑𝑦

𝑏

0
.                                         (1.49) 

 

 

Figure-1.5 The continuation of 𝑓(𝑦) for a Fourier sine series.    

    Therefore, if 𝑓(𝑦) =  𝑢0 (i.e. the temperature of the side at 𝑥 = 0 is constant along its 

length), (1.49) becomes 

𝐵𝑛 =
2

𝑏
∫ 𝑢0 sin (

𝑛𝜋𝑦

𝑏
) 𝑑𝑦

𝑏

0

= [−
2𝑢0
𝑏

𝑏

𝑛𝜋
cos (

𝑛𝜋𝑦

𝑏
)]
0

𝑏

 

 = −
2𝑢0
𝑛𝜋

[(−1)𝑛 − 1] = {

4𝑢0
𝑛𝜋

              𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑

0                    𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛
 

    Therefore, the required solution is 

                                   𝑢(𝑥, 𝑦) = ∑
4𝑢0

𝑛𝜋
exp (−

𝑛𝜋𝑥

𝑏
) sin (

𝑛𝜋𝑦

𝑏
) .𝑛 𝑜𝑑𝑑  

    In the above example the boundary conditions meant that one term in each part of the 

separable solution could be immediately discarded, making the problem much easier to 

solve. Sometimes, however, a little ingenuity is required in writing the separable solution 

in such a way that certain parts can be neglected immediately. 
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    Suppose that the semi-infinite rectangular metal plate in the previous example is 

replaced by one that in the x-direction has finite length 𝑎. The temperature of the right-

hand edge is fixed at 0°𝐶 and all other boundary conditions remain as before. Find the 

steady-state temperature in the plate. 

    As in the previous example, the boundary conditions 𝑢(𝑥, 0)  = 0 = 𝑢(𝑥, 𝑏) suggest a 

solution that is sinusoidal in 𝑦. In this case, however, we require 𝑢 = 0 on 𝑥 = 𝑎 (rather 

than at infinity) and so a solution in which the 𝑥-dependence is written in terms of 

hyperbolic functions, such as (1.44), rather than exponentials is more appropriate. 

Moreover, since the constants in front of the hyperbolic functions are, at this stage, 

arbitrary, we may write the separable solution in the most convenient way that ensures that 

the condition 𝑢(𝑎, 𝑦) = 0 is straightforwardly satisfied. We therefore write 

                 𝑢(𝑥, 𝑦) = [𝐴 cosh 𝜆(𝑎 − 𝑥) + 𝐵 sinh 𝜆(𝑎 –  𝑥) ](𝐶 cos 𝜆𝑦 + 𝐷 sin 𝜆𝑦 ).     

    Now the condition 𝑢(𝑎, 𝑦) = 0 is easily satisfied by setting 𝐴 = 0. As before the 

conditions 𝑢(𝑥, 0) = 0 =  𝑢(𝑥, 𝑏) imply 𝐶 = 0 and 𝜆 = 𝑛𝜋/𝑏 for integer 𝑛. Superposing 

the solutions for different 𝑛 we then obtain                     

                              𝑢(𝑥, 𝑦) = ∑ 𝐵𝑛 sinh [
𝑛𝜋(𝑎−𝑥)

𝑏
] sin (

𝑛𝜋𝑦

𝑏
) ,∞

𝑛=1                                  (1.50)    

for some constants 𝐵𝑛. We have omitted negative values of n in the sum (1.50) since the 

relevant terms are already included in those obtained for positive 𝑛. Again the 𝑛 = 0 term 

is identically zero. Using the final boundary condition 𝑢(0, 𝑦) = 𝑓(𝑦) as above we find 

that the constants 𝐵𝑛 must satisfy  

𝑓(𝑦) = ∑𝐵𝑛 sinh [
𝑛𝜋𝑎

𝑏
] sin (

𝑛𝜋𝑦

𝑏
) ,

∞

𝑛=1

 

and the constants 𝐵𝑛 are given, as discussed before, by 

                                𝐵𝑛 =
2

𝑏 sinh(𝑛𝜋𝑎/𝑏)
∫ 𝑓(𝑦) sin (

𝑛𝜋𝑦

𝑏
) 𝑑𝑦.

𝑏

0
                                      (1.51) 

    For the case where 𝑓(𝑦) = 𝑢0, following the working of the previous example gives 

(1.51) as 

                             𝐵𝑛 =
4𝑢0

𝑛𝜋 sinh(𝑛𝜋𝑎/𝑏)
 for 𝑛 odd, 𝐵𝑛 = 0  for  𝑛 even                       (1.52) 

The required solution is thus 

𝑢(𝑥, 𝑦) = ∑
4𝑢0

𝑛𝜋 sinh(𝑛𝜋𝑎/𝑏)
sinh [

𝑛𝜋(𝑎 − 𝑥)

𝑏
] sin (

𝑛𝜋𝑦

𝑏
) .

∞

𝑛 𝑜𝑑𝑑

 

We note that, as required, in the limit 𝑎 →  ∞ this solution tends to the solution of the 

previous example. 
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    Often the principle of superposition can be used to write the solution to problems with 

more complicated boundary conditions as the sum of solutions to problems that each satisfy 

only some part of the boundary condition but when added together satisfy all the 

conditions. 

    

1.9 Methods of Integral Transforms 

In the method of separation of variables our aim was to keep the independent variables in 

a PDE as separate as possible. We now discuss the use of integral transforms in solving 

PDEs, a method by which one of the independent variables can be eliminated from the 

differential coefficients. 

    The method consists simply of transforming the PDE into one containing derivatives 

with respect to a smaller number of variables [1,80]. Thus, if the original equation has just 

two independent variables, it may be possible to reduce the PDE into a soluble ODE. The 

solution obtained can then (where possible) be transformed back to give the solution of the 

original PDE. As we shall see, boundary conditions can usually be incorporated in a natural 

way. 

    Which sort of transform to use, and the choice of the variable  (𝑠) with respect to which 

the transform is to be taken, is a matter of experience; we illustrate this in the example 

below. In practice, transforms can be taken with respect to each variable in turn, and the 

transformation that affords the greatest simplification can be pursued further.  

1.9-1 Laplace Transform 

We have dealt with the Laplace transform when solving linear ODEs with constant 

coefficients, where the equations are transformed in this way to algebraic equations. This 

idea can be easily extended to PDEs, where the transformation leads to the decrease of the 

number of independent variables. PDEs in two variables are thus reduced to ODEs. 

    Let  𝑢 = 𝑢(𝑡)  be a piecewise continuous function on  [0,∞)  that “does not grow too 

fast”. Let us assume, for example, that u is of exponential order, which means that   
|𝑢(𝑡)| ≤ 𝑐𝑒𝑎𝑡 for 𝑡 large enough, where  𝑎, 𝑐 > 0  are appropriate constants. The Laplace 

transform of the function  𝑢  is then defined by the formula                                       

                                          (ℒ𝑢)(𝑠) = 𝑈(𝑠) = ∫ 𝑢(𝑡)
∞

0
𝑒−𝑠𝑡d𝑡.                                  (1.53) 

Here 𝑈 and 𝑠 are the transformed variables, 𝑈 is the dependent one, 𝑠 is the independent 

one, and 𝑈 is defined for 𝑠 > 𝑎 with 𝑎 > 0, depending on 𝑢(𝑡). The function 𝑈 is called 

the Laplace image of the function 𝑢, which is then called the original. The Laplace 

transform is a linear mapping, that is, 

                                                 ℒ(𝑐1𝑢 + 𝑐2𝑣) = 𝑐1ℒ𝑢 + 𝑐2ℒ𝑣,                                                           

 where 𝑐1, 𝑐2 are arbitrary constants. If we know the Laplace image 𝑈(𝑠), then the original 

𝑢(𝑡) can be obtained by the inverse Laplace transform of the image 𝑈(𝑠): ℒ−1𝑈 = 𝑢.  The 
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couples of Laplace images and their originals can be found in tables, or, in some cases, the 

transformation can be done using various software packages. 

    An important property of the Laplace transform, as well as of other integral transforms, 

is the fact that it turns differential operators in originals into multiplication operators in 

images. The following formulas hold [80]: 

                                                  (ℒ𝑢′)(𝑠) = 𝑠𝑈(𝑠) − 𝑢(0),                                         (1.54) 

              (ℒ𝑢(𝑛))(𝑠) = 𝑠𝑛𝑈(𝑠) − 𝑠𝑛−1𝑢(0) − 𝑠𝑛−2𝑢′(0) − ⋯− 𝑢(𝑛−1)(0),             (1.55) 

if the derivatives considered are transformable (i.e., piecewise continuous functions of 

exponential order). To be precise, we should write lim
𝑡→0+

𝑢(𝑡), lim
𝑡→0+

𝑢′(𝑡)

 

, …   instead of  

𝑢(0), 𝑢′(0),… . However, without loss of generality, we can assume that the function 𝑢 

and its derivatives are continuous from the right at 0. Relations (1.54), (1.55) can be easily 

derived directly from the definition using integration by parts. Applying the Laplace 

transform to a linear ODE with constant coefficients, we obtain a linear algebraic equation 

for the unknown function 𝑈(𝑠). After solving it, we find the original function  𝑢(𝑡) by the 

inverse transform. 

    The same idea can be exploited also when solving PDEs for functions of two variables, 

say 𝑢 = 𝑢(𝑥, 𝑡). The transformation will be done with respect to the time variable 𝑡 ≥ 0, 

the spatial variable 𝑥 will be treated as a parameter unaffected by this transform. In 

particular, we define the Laplace transform of a function 𝑢(𝑥, 𝑡) by the formula 

                                     (ℒ𝑢)(𝑥, 𝑠) ≡ 𝑈(𝑥, 𝑠) = ∫ 𝑢(𝑥, 𝑡)
∞

0
𝑒−𝑠𝑡d𝑡.                            (1.56) 

The time derivatives are transformed in the same way as in the case of functions of one 

variable, that is, for example, 

                                                      (ℒ𝑢𝑡)(𝑥, 𝑠) = 𝑠𝑈(𝑥, 𝑠) − 𝑢(𝑥, 0).                                                      

 The spatial derivatives remain unchanged, that is,   

                 (ℒ𝑢𝑥)(𝑥, 𝑠) = ∫
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡)

∞

0
𝑒−𝑠𝑡d𝑡 =

𝜕

𝜕𝑥
∫ 𝑢(𝑥, 𝑡)
∞

0
𝑒−𝑠𝑡d𝑡 = 𝑈𝑥(𝑥, 𝑠).    

Thus, applying the Laplace transform to a PDE in two variables 𝑥 and 𝑡, we obtain an ODE 

in the variable 𝑥 and with the parameter 𝑠. 

Example-1 (Constant Boundary Condition) 

Using the Laplace transform, we solve the following initial boundary value problem for 

the diffusion equation. Let 𝑢 = 𝑢(𝑥, 𝑡) denote the concentration of a chemical contaminant 

dissolved in a liquid on a half-infinite domain 𝑥 > 0. Let us assume that, at time 𝑡 = 0, the 

concentration is zero. On the boundary 𝑥 = 0, constant-unit concentration of the 

contaminant is kept for 𝑡 > 0. Assuming the unit diffusion constant, the behavior of the 

system is described by a mathematical model 
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                                            𝑢𝑡 − 𝑢𝑥𝑥 = 0,        𝑥 > 0, 𝑡 > 0,   

                                            𝑢(𝑥, 0) = 0,                                                                          

                                           𝑢(0, 𝑡) = 1,        𝑢(𝑥, 𝑡)   bounded.                                    (1.57) 

Here the boundedness assumption is related to the physical properties of the model and its 

solution. If we apply the Laplace transform to both sides of the equation, we obtain the 

following relation for the image  𝑈: 

                                                𝑠𝑈(𝑥, 𝑠) − 𝑈𝑥𝑥(𝑥, 𝑠) = 0.  

This is an ODE with respect to the variable 𝑥 and with real positive parameter 𝑠. Its general 

solution has the form  

                                            𝑈(𝑥, 𝑠) = 𝑎(𝑠)𝑒−√𝑠𝑥 + 𝑏(𝑠)𝑒  √𝑠𝑥.  

Since we require the solution  𝑢 to be bounded in both variables 𝑥 and 𝑡, the image 𝑈 must 

be bounded in 𝑥 as well. Thus, 𝑏(𝑠) must vanish, and hence 

                                               𝑈(𝑥, 𝑠) = 𝑎(𝑠)𝑒−√𝑠𝑥 .  

Now, we apply the Laplace transform to the boundary condition obtaining 𝑈(0, 𝑠) =
ℒ(1) = 1 𝑠⁄ . It implies 𝑎(𝑠) = 1 𝑠⁄  and the transformed solution has the form  

                                                     𝑈(𝑥, 𝑠) =  
1

𝑠
𝑒−√𝑠𝑥.  

Using the tables of the Laplace transform or some of the software packages, we easily find 

out that 

                                                 𝑢(𝑥, 𝑡) = erfc (
𝑥

√4𝑡
),  

where erfc is the function defined by the relation [80] 

                                   erfc(𝑦) = 1 −
2

√π
∫ 𝑒−𝑟

2
d𝑟 = 1 − erf(𝑦).

𝑦

0
  

In the previous example, we were able to find the original 𝑢(𝑥, 𝑡) to the Laplace image  

𝑈(𝑥, 𝑠) using tables or software packages. There exists a general formula for inverse 

Laplace transform, which is based on theory of functions of complex variables [80]. It has 

a theoretical character, and from the practical point of view, it is used very rarely. In most 

cases, it is more or less useless. 

1.9-2 Fourier Transform 

The Fourier transform is another integral transform with properties similar to the Laplace 

transform. Since it again turns differentiation of the originals into multiplication of the 

images, it is a useful tool in solving differential equations. Contrary to the Laplace 

transform, which usually uses the time variable, the Fourier transform is applied to the 

spatial variable on the whole real line. 
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    First, we start with functions of one spatial variable. The Fourier transform of a function 

𝑢 = 𝑢(𝑥), 𝑥 ∈ ℝ, is a mapping defined by the formula 

                                               (ℱ𝑢)(𝜉) ≡ �̂�(𝜉) = ∫ 𝑢(𝑥)e−iξ𝑥
∞

−∞
d𝑥.                          (1.58)  

If  |𝑢| is integrable in ℝ, that is, ∫ |𝑢|
∞

−∞
d𝑥 < ∞,  then  �̂� exists. However, the theory of 

the Fourier transform usually works with a smaller set of functions. We define the so called 

Schwartz space  𝒮 as the space of functions on  ℝ  that have continuous derivatives of all 

orders and that, together with their derivatives, decrease to zero for  𝑥 → ±∞  more rapidly 

than  |𝑥|−𝑛  for an arbitrary  𝑛 ∈ ℕ. It means [80] 

           𝒮 = {𝑢 ∈ 𝐶∞; ∃𝑀 = 𝑀(𝑢) ∈ ℝ, |
d𝑘𝑢

d𝑥𝑘
| ≤ 𝑀

1

|𝑥|𝑛
 for |𝑥| → ∞, 𝑘 ∈ ℕ⋃{0}; 𝑛 ∈ ℕ}.  

It can be shown that, if 𝑢 ∈ 𝒮, then �̂� ∈ 𝒮, and vice versa. We say that the Schwartz space 

𝒮  is closed with respect to the Fourier transform. 

    It is important to mention that there exists no established convention how to define the 

Fourier transform. In literature, we can meet an equivalent of the definition formula (1.58) 

with the constant  1 √2𝜋⁄   or  1 2𝜋⁄  in front of the integral. There also exist definitions 

with positive sign in the exponent. We must keep this fact in mind while working with 

various sources or using the transformation tables. 

    The fundamental formula of the Fourier transform is that for the image of the  𝑘𝑡ℎ 

derivative 𝑢(𝑘):  

                                                    (ℱ𝑢(𝑘))(𝜉) = (𝑖𝜉)𝑘�̂�(𝜉), 𝑢 ∈ 𝒮                             (1.59)    

The derivation of this formula is based on integration by parts where all “boundary values” 

vanish due to zero values of the function and its derivatives at infinity. In the case of 

functions of two variables, say 𝑢 = 𝑢(𝑥, 𝑡), the variable 𝑡 plays the role of a parameter and 

we define 

                                               (ℱ𝑢 )(𝜉, 𝑡) ≡ �̂�(𝜉, 𝑡) = ∫ 𝑢(𝑥, 𝑡)e−iξ𝑥
∞

−∞
d𝑥.               (1.60) 

The derivatives with respect to the spatial variable are transformed analogously as (1.59), 

the derivatives with respect to the time variable t stay unchanged; thus, for instance,                                                   

(ℱ𝑢𝑥
 )(𝜉, 𝑡) = (i𝜉)�̂�(𝜉, 𝑡), 

                                                  (ℱ𝑢𝑥𝑥
 )(𝜉, 𝑡) = (i𝜉)2�̂�(𝜉, 𝑡),  

                                                  (ℱ𝑢𝑡
 )(𝜉, 𝑡) = �̂�𝑡(𝜉, 𝑡).  

The PDE in two variables  𝑥, 𝑡  passes under the Fourier transform to an ODE in the 𝑡-
variable. By its solving, we obtain the transformed function (the image)  �̂�  which can be 

converted to the original function  𝑢  by the inverse Fourier transform  

                                         (ℱ−1�̂�)(𝑥, 𝑡) ≡ 𝑢(𝑥, 𝑡) =
1

2𝜋
∫ �̂�(𝑥, 𝑡)eiξ𝑥
∞

−∞
d𝜉.                (1.61) 
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In comparison with the inverse Laplace transform, where the general inverse formula is 

quite complicated, this relation is very simple. Nevertheless, it is convenient to use the 

transformation tables or some software packages when solving particular problems. 

Example-2 (Cauchy Problem for Wave Equation)  

Let us solve the Cauchy problem 

                                                𝑢𝑡𝑡 − 𝑐
2𝑢𝑥𝑥 = 0,           𝑥 ∈ ℝ, 𝑡 > 0,         

                                                                                                                                      (1.62)    

                                             𝑢(𝑥, 0) = 𝜑(𝑥),       𝑢𝑡(𝑥, 0) = 𝜓(𝑥).   

We apply again the Fourier transform with respect to the spatial variable to the equation  

and both initial conditions. Thus, we obtain the transformed problem 

                                             �̂�𝑡𝑡(𝜉, 𝑡) + 𝑐
2𝜉2�̂�(𝜉, 𝑡) = 0,  

                                            �̂�(𝜉, 0) = �̂�(𝜉),       �̂�𝑡(𝜉, 0) = �̂�(𝜉 ).  

Its solution is the function 

                                          �̂�(𝜉, 𝑡) = �̂�(𝜉) cos 𝑐𝜉𝑡 +
1

𝑐𝜉
�̂�(𝜉 ) sin 𝑐𝜉𝑡.  

The solution of the original problem is then found by the inverse Fourier transform: 

                     𝑢(𝑥, 𝑡) =
1

2𝜋
∫ [�̂�(𝜉) cos 𝑐𝜉𝑡 +

1

𝑐𝜉
�̂�(𝜉 ) sin 𝑐𝜉𝑡] eiξ𝑥d𝜉.

∞

−∞
                    (1.63)    

This integral expression, where, moreover, the Fourier transforms of the initial conditions 

occur, is not very transparent. Nevertheless, it can be converted to d’Alembert’s formula 

[80]. Indeed, substituting the complex representation of the sine and cosine functions into 

(1.63), we obtain 

𝑢(𝑥, 𝑡) =
1

2𝜋
∫

1

2
 �̂�(𝜉)(eicξ𝑡 + e−icξ𝑡)eiξ𝑥d𝜉 +

1

2𝜋
∫

1

2icξ
 �̂�(𝜉)(eicξ𝑡 − e−icξ𝑡)eiξ𝑥d𝜉.

∞

−∞

∞

−∞
   (1.64) 

The first integral on the right-hand side can be written as 

                                                
1

4𝜋
∫ (�̂�(𝜉)ei(𝑥+c𝑡)ξ + �̂�(𝜉)ei(𝑥−c𝑡)ξ)d𝜉,
∞

−∞
  

which is (using the definition of the inverse Fourier transform (1.61)) exactly the first term 

in d’Alembert’s formula 

                                                            
1

2
(𝜑(𝑥 + 𝑐𝑡) + 𝜑(𝑥 − 𝑐𝑡)).  

Similarly, the second integral term in (1.64) equals 

                          
1

4𝜋𝑐
∫

1

i𝜉
�̂�(𝜉)(ei(𝑥+c𝑡)ξ − ei(𝑥−c𝑡)ξ)d𝜉 =

1

4𝜋𝑐
∫ �̂�(𝜉) ∫ e𝑖𝑦𝜉

𝑥+c𝑡

𝑥−c𝑡

∞

−∞

∞

−∞
d𝑦d𝜉.  
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Changing the order of integration and using again the inverse Fourier transform, we obtain 

the second term in d’Alembert’s formula 

                                                                    
1

2𝑐
∫ 𝜓(𝑦)
𝑥+c𝑡

𝑥−c𝑡
d𝑦.  

Remark-1 

In some cases, the methods of integral transforms are applicable also to equations with 

non-constant coefficients. Let us consider, for example, the Cauchy problem for the 

transport equation 

                                                        𝑡𝑢𝑥 + 𝑢𝑡 = 0,     𝑥 ∈ ℝ,   𝑡 > 0,    

                                                        𝑢(𝑥, 0) = 𝑓(𝑥).  

Since the varying coefficient is-in this case-the time variable 𝑡, we use the Fourier 

transform with time playing the role of a parameter. We have                                                             

                                                       ℱ(𝑡𝑢𝑥) = 𝑡ℱ(𝑢𝑥)𝑖𝜉𝑡�̂�.  

Transforming the equation and the initial conditions, we obtain 

                                                        𝑖𝜉𝑡�̂� + �̂�𝑡 = 0,     �̂�(𝜉, 0) = 𝑓(𝜉),  

and hence 

                                                         �̂�(𝜉, 𝑡) = 𝑓(𝜉)𝑒−𝑖
𝑡2

2
𝜉 .  

By the inverse Fourier transform (e.g., using the transformation formulas), we obtain the 

solution of the original equation in the form 

                                                         𝑢(𝑥, 𝑡) = 𝑓 (𝑥 −
𝑡2

2
).  

Remark-2 

The Laplace and Poisson equations can also be solved, in some cases, by the method of 

integral transforms. As an example, let us consider the problem 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0,     𝑥 ∈ ℝ,   𝑦 > 0, 

                                                      𝑢(𝑥, 0) = 𝑓(𝑥),  

                                                     𝑢(𝑥, 𝑦) bounded for  𝑦 → ∞  

We will search for a solution using the Fourier transform with respect to 𝑥. Its application 

to our problem leads to the equation 

                                                                      �̂�𝑦𝑦 − 𝜉
2�̂� = 0,  
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whose general solution is �̂�(𝜉, 𝑦) = 𝑎(𝜉)𝑒−𝜉𝑦 + 𝑏(𝜉)𝑒𝜉𝑦.  The boundedness assumption 

implies 

                                                             𝑏(𝜉) = 0        𝑓𝑜𝑟 𝜉 > 0,  

                                                            𝑎(𝜉) = 0        𝑓𝑜𝑟 𝜉 > 0.  

Hence,  �̂�(𝜉, 𝑦) = 𝑐(𝜉)𝑒−|𝜉|𝑦. Here, 𝑎, 𝑏, 𝑐 are arbitrary functions. If we take into account 

the boundary condition, we derive  𝑐(𝜉) = 𝑓(𝜉)  and thus 

                                                          �̂�(𝜉, 𝑦) = 𝑒−|𝜉|𝑦𝑓(𝜉).  

The inverse transformation leads to the solution of the original problem in the form of a 

convolution:  

                                             𝑢(𝑥, 𝑡) = (
𝑦

𝜋

1

𝑥2+𝑦2
) ∗ 𝑓 =

𝑦

𝜋
∫

𝑓(𝜏)𝜏

(𝑥−𝜏)2+𝑦2
.

∞

−∞
 

It is noticed that in this convolution  𝑦 is just a parameter. 

 

1.10 Methods of Green’s Functions  

1.10-1 Green's Function 

Green's functions are named after the mathematician and physicist George Green who was 

born in Nottingham in 1793 and "invented" the Green's function in 1828. This invention 

was developed in an essay written by Green entitled "Mathematical Analysis to the 

Theories of Electricity and Magnetism" originally published in Nottingham in 1828 and 

reprinted by the George Green Memorial Committee to mark the bicentenary of the birth 

of George Green in 1993 [81]. In this essay, Green's function solutions to the Laplace and 

Poisson equation are formulated (but not in the manner considered in this section, in which 

the Green's function is defined using the delta function). 

    The Green's function is possibly one of the most powerful tools for solving partial 

differential equations - a tool that is all the more enigmatic in that the work of George 

Green was neglected for nearly 30 years after his death in 1841 and to this day no one 

knows what he looked like or how and why he developed his revolutionary ideas.    

    The Green's function was successfully applied to classical electromagnetism and 

acoustics in the late 19th century. More recently, the Green's function has been the working 

tool of calculations in particle physics, condensed matter and solid-state physics, quantum 

mechanics and many other topics of advanced applied mathematics and mathematical 

physics. Just as the Green's function revolutionized classical field theory in the 19th century 

(hydrodynamics, electrostatics, and magnetism) so it revolutionized quantum field theory 

in the mid-20th century through the introduction of quantum Green's functions. This 

provided the essential link between the theories of quantum electrodynamics in the 1940s 

and 1950s and has played a major role in theoretical physics ever since. It is interesting to 

note that the pioneering work of Richard Feynman in the 1950s and 1960s which led to the 
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development of the Feynman diagram was based on the Green's function; in fact, the 

Feynman diagram can be considered to be a pictorial representation of a Green's function 

(a Green's function associated with wave operators) - what Feynman referred to as a 

"propagator" [81].  

    Accordingly, the method of Green's functions is an important technique for solving 

boundary value, initial and boundary value, and Cauchy problems for partial differential 

equations. It is most commonly identified with the solution of boundary value problems 

for Laplace's equation and a Green's function has already been introduced in that context. 

We begin by constructing generalizations of Green's second theorem that are appropriate 

for the second order differential equations introduced in the present chapter. These integral 

theorems are then used to show how boundary value, initial and boundary value, and 

Cauchy problems can be solved in terms of appropriately defined Green's functions for 

each of these problems. Even though the construction of Green's functions requires that a 

problem like the original (given) problem must be solved, it is often easier to solve the 

Green's function problem in a number of important cases as we shall see. In this regard the 

fundamental solutions, of which Green's functions are a special case, play an important 

role. Since the determination and use of Green's functions require the use of generalized 

functions such as the Dirac delta function, a brief discussion of the theory of generalized 

functions will be given. Most of the discussion, however, is devoted to the construction 

and use of Green's functions for problems involving equations of elliptic, hyperbolic, and 

parabolic types. 

    Green's functions are used mainly to solve certain types of linear inhomogeneous partial 

differential equations (although homogeneous partial differential equations can also be 

solved using this approach). In principle, the Green's function technique can be applied to 

any linear constant coefficient inhomogeneous partial differential equation (either scalar or 

vector) in any number of independent variables although in practice difficulties can arise 

in computing the Green's function analytically. In fact, Green's functions provide more than 

just a solution; it could be said that they transform a partial differential equation 

representation of a physical problem into an integral equation representation - the kernel 

of the integral equation being composed (completely or partly) of the Green's function 

associated with the partial differential equation. This is why Green's function solutions are 

considered to be one of the most powerful analytical tools we have for solving partial 

differential equations - equations that arise in areas such as electromagnetism (Maxwell's 

equations), wave mechanics (elastic wave equation), optics (Helmholtz equation), quantum 

mechanics (Schrodinger and Dirac equations), fluid dynamics (viscous fluid equation), 

relativistic particle dynamics (Klein-Gordon equation), general relativity (Einstein 

equations) to name but a few. 

1.10-2 Integral Theorems and Green's Functions 

In this section we construct integral theorems appropriate for the elliptic hyperbolic, and 

parabolic equations introduced in this chapter. Each of these theorems follows from an 

application of the divergence theorem and represents a generalization of Green's second 

theorem. These theorems form the basis for the construction of the Green's functions we 

consider in this section. Technically, the theorems are valid only if the functions occurring 

in the integrals are sufficiently smooth and this is generally not the case for Green's 

https://alexjournals.org/AlexJournal/Mathematics/


ALEXANDRIA JOURNAL OF MATHEMATICS Volume 10 Number 1 September 2021 (ISSN 2090-4320) 

 
 

 

AVAILABLE ONLINE AT www.mathematics.alexjournals.org 56  

 

functions. Nevertheless, we shall assume these theorems are formally valid in all cases and 

rely on the theory of generalized functions to form a basis for their validity, even though 

this is not demonstrated.  

    By way of a short introduction we now consider two short examples. The first example 

is based on considering point sources to generate a solution to an ordinary differential 

equation and is based on a "qualitative analysis". The second example makes specific use 

of the delta function and its properties to develop a solution which is based on a more 

systematic analysis. 

Example-1    

Consider the following inhomogeneous ordinary differential equation 

                                                             �̂�𝑢(𝑥) = 𝑓(𝑥),                                                 (1.65) 

where �̂� is a linear differential operator and  𝑓(𝑥) is a given function (the source term), the 

solution being required on the interval 0 ≤ 𝑥 ≤ 𝑎 where a is some constant. Instead of 

considering  𝑓(𝑥) as a continuous source function, let us approximate it by a set of discrete 

source functions 𝑓( 𝜉1), 𝑓(𝜉2), … , 𝑓(𝜉𝑛) acting at the points 𝑥 = 𝜉1 , 𝑥 = 𝜉2, … , 𝑥 = 𝜉𝑛  all 

for 𝑥 ∈ [0, 𝑎]. Now, define the function  𝑔(𝑥; 𝜉𝑖) to be the solution to equation (1.65) due 

to a point source acting at  𝜉𝑖. The solution due to the single effect of this point source is 

𝑔(𝑥; 𝜉𝑖)𝑓(𝜉𝑖). The solution for  𝑢(𝑥) is then obtained by summing the results for all the n-

point source terms acting over the interval  0 ≤ 𝑥 ≤ 𝑎 and takes the form 

                                             𝑢(𝑥) = ∑ 𝑔(𝑥; 𝜉𝑖)𝑓(𝜉𝑖).
𝑛
𝑖=1   

As  𝑛  becomes larger, so that the number of point source  𝑓(𝜉𝑖) increases, a better 

approximation to  𝑓(𝑥)  is obtained. In the limit as  𝑛 → ∞, so  |𝜉𝑖 − 𝜉𝑖+1| → 0  ∀𝑖 the 

summation in the equation above may be replaced by an integral to give the required 

solution to equation (1.65) in the form                                                              

                                            𝑢(𝑥) = ∫ 𝑔(𝑥;  𝜉)𝑓(𝜉𝑖)𝑑𝜉
𝑎

0
.  

The function  𝑔(𝑥;  𝜉)  is called the Green's function of the problem. The notation used to 

write a Green's function changes considerable from author to author. They are usually 

written in the form  𝑔(𝑥;  𝜉)  (as in this example) or  𝑔(𝑥| 𝜉), both forms actually being 

equivalent to  𝑔(|𝑥 −  𝜉|)  as we shall see later. Similar results to the one given above may 

be obtained for linear partial differential equations: for example, the solution of the Poisson 

equation in two dimensions.                                          

                        ∇2𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦);         𝑥 ∈ [0, 𝑎],       𝑦 ∈ [0, 𝑏]  

may be written as 

                             𝑢(𝑥, 𝑦) = ∫ ∫ 𝑔(𝑥, 𝑦; 𝜉, 휂)
𝑏

0

𝑎

0
𝑓(𝜉, 휂 )𝑑𝜉𝑑휂,  

where 𝑔(𝑥, 𝑦; 𝜉, 휂)  is the Green's function of the problem. The approach for developing a 

Green's function solution discussed in this example is based on considering point sources 
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to provide a set of elementary results and then summing up the results to give the required 

solution. In optics and acoustics, this principle is often referred to as Huygens' principle 

which allows the optical or acoustic field generated by a given source to be computed by 

considering the field generated from a single point on the source and then summing up the 

field generated from a large collection of such points. In this sense, the principle behind a 

Green's function solution is effectively the same as Huygens' principle, i.e. find the solution 

to the problem for a single point and then integrate over all such points. The relationship 

between a point source which is described mathematically by the delta function and the 

Green's function is an important one. 

    By way of a short introduction to the use of the delta function for solving partial 

differential equations using Green's functions, we consider the following example which 

in comparison with the first example, provides a more complete form of analysis to develop 

a Green's function solution for the one-dimensional inhomogeneous wave equation. 

Example-2   

Consider the equation 

                                                   (
𝜕2

𝜕𝑥2
+ 𝑘2) 𝑢(𝑥, 𝑘) = 𝑓(𝑥)                                       (1.66)     

where  𝑘  (the wave number) is a constant and 𝑓(𝑥) is the source term, the solution being 

required over all space  𝑥 ∈ (−∞,∞)  subject to the conditions that  𝑢  and  𝜕𝑢 𝜕𝑥⁄   are 

zero at ±∞. This equation describes the behavior of "steady waves" (constant wavelength  

𝜆 = 2𝜋 𝑘⁄ ) due to a source  𝑓(𝑥). 

    Define the Green's function as being the solution to the equation obtained by replacing 

the source term with a delta function which represents a point source at 𝑥0  say, giving the 

equation 

                                                (
𝜕2

𝜕𝑥2
+ 𝑘2) 𝑔(𝑥|𝑥0, 𝑘) = 𝛿(𝑥 − 𝑥0)                            (1.67) 

where  𝛿  has the following fundamental property 

                                                      ∫ 𝑢(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥 = 𝑢(𝑥0)
∞

−∞
.  

Multiplying equation (1.66) by 𝑔 gives   

                                                   𝑔 (
𝜕2

𝜕𝑥2
+ 𝑘2) 𝑢 = 𝑔𝑓  

and multiplying equation (1.67) by  𝑢  gives 

                                                 𝑢 (
𝜕2

𝜕𝑥2
+ 𝑘2)𝑔 = 𝑢𝛿(𝑥 − 𝑥0).  

Now subtract the two results and integrate to obtain 

                               ∫ (𝑔
𝜕2𝑢

𝜕𝑥2
− 𝑢

𝜕2𝑔

𝜕𝑥2
) 𝑑𝑥 =  ∫ 𝑓𝑔𝑑𝑥 − ∫ 𝑢𝛿(𝑥 − 𝑥0)𝑑𝑥.

∞

−∞

∞

−∞

∞

−∞
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Using the generalized sampling property of the delta function given above and rearranging 

the result, we obtain 

                                       𝑢(𝑥0, 𝑘) = ∫ 𝑓𝑔𝑑𝑥 − ∫ (𝑔
𝜕2𝑢

𝜕𝑥2
− 𝑢

𝜕2𝑔

𝜕𝑥2
) 𝑑𝑥

∞

−∞
 

∞

−∞
.  

Evaluating the second integral on the right-hand side, 

    ∫ (𝑔
𝜕2𝑢

𝜕𝑥2
− 𝑢

𝜕2𝑔

𝜕𝑥2
) 𝑑𝑥

∞

−∞
= ∫ [

𝜕

𝜕𝑥
(𝑔

𝜕𝑢

𝜕𝑥
) −

𝜕𝑔

𝜕𝑥

𝜕𝑢

𝜕𝑥
−

𝜕

𝜕𝑥
(𝑢

𝜕𝑔

𝜕𝑥
) +

𝜕𝑢

𝜕𝑥

𝜕𝑔

𝜕𝑥
]

∞

−∞
𝑑𝑥 

        = ∫
𝜕

𝜕𝑥
(𝑔

𝜕𝑢

𝜕𝑥
)

∞

−∞
𝑑𝑥 − ∫

𝜕

𝜕𝑥
(𝑢

𝜕𝑔

𝜕𝑥
)

∞

−∞
𝑑𝑥   = [𝑔

𝜕𝑢

𝜕𝑥
] ∞
−∞

− [𝑢
𝜕𝑔

𝜕𝑥
] ∞
−∞

 = 0,  

provided 𝑢 and  𝜕 𝑢 𝜕𝑥⁄  are zero at 𝑥 = ±∞. With these conditions, we obtain the Green's 

function solution to equation (1.66) in the form  

                                      𝑢(𝑥0, 𝑘) = ∫ 𝑓(𝑥)
∞

−∞
𝑔(𝑥|𝑥0, 𝑘)𝑑𝑥.  

Note, that this result is a “type” of convolution - the convolution of the source function  𝑓  

with the Green's function 𝑔. Physically, Green's functions associated with wave type 

problems as in this example, represents the way in which a wave propagates from one point 

in space to another. For this reason, they are sometimes referred to as propagators. In this 

case, the Green's function is a function of the “path length” between 𝑥 and 𝑥0 irrespective 

of whether 𝑥 > 𝑥0 or  𝑥 < 𝑥0. The path length is given by |𝑥 − 𝑥0| and the Green's function 

is a function of this path length which is why, using the notation  𝑥|𝑥0 ≡|𝑥 − 𝑥0|, we write  

𝑔(𝑥|𝑥0). 

    The solution given above is of little value unless the Green's function can be computed. 

Before the computational techniques associated with Green's functions can be studied, it is 

necessary to be familiar with a class of functions known as generalized functions and in 

particular, one of the most commonly used generalized function, the delta function.  

1.10-3 Green's Functions for the Time-independent Wave Equation 

In this section, we shall concentrate on the computation of Green's functions for the time-

independent wave equation in one, two and three dimensions. The solution is over all space 

and the Green's function is not constrained to any particular boundary conditions (except 

those at ±∞). It is therefore referred to as a free space Green's function. 

(i) The One-dimensional Green's Function 

We start by reconsidering Example-2 given in Section 1.10-2 which, through the 

application of the sampling property of the delta function together with some relatively 

simple analysis, demonstrated that the solution to the inhomogeneous wave equation 

                                           (
𝜕2

𝜕𝑥2
+ 𝑘2) 𝑢(𝑥, 𝑘) = 𝑓(𝑥),  

for constant 𝑘 and 𝑥 ∈ (−∞,∞) subject to the boundary conditions 
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                               𝑢(𝑥, 𝑘)|±∞ = 0             and              [
𝜕

𝜕𝑥
𝑢(𝑥, 𝑘)]

±∞
= 0,         

 is given by  

                                𝑢(𝑥0, 𝑘) = ∫ 𝑓(𝑥)
∞

−∞
𝑔(𝑥|𝑥0, 𝑘)𝑑𝑥,  

where 𝑔 is the Green's function. This solution is of course worthless without an expression 

for the Green's function which is given by the solution to the equation 

                                            (
𝜕2

𝜕𝑥2
+ 𝑘2) 𝑔(𝑥|𝑥0, 𝑘) = −𝛿(𝑥 − 𝑥0),                            (1.68)   

subject to 𝑔(𝑥|𝑥0, 𝑘)|±∞ = 0  and  [𝜕𝑔(𝑥|𝑥0, 𝑘) 𝜕𝑥⁄ ]±∞ = 0. We shall therefore start by 

looking at the evaluation of the Green's function for this case. Note that in this case, the 

Green's function is defined for −𝛿 on the right-hand side instead of +𝛿. This is for 

convenience only in the computations which follow; it does not affect the analysis and is 

merely a convention which ultimately reduces the number of negative signs associated with 

the calculation. For this reason, many authors define the Green's function with  – 𝛿,  a 

definition which may also be used. 

    The solution to this equation is based on employing the properties of the Fourier 

transform. Writing   𝑋 = |𝑥 − 𝑥0|,  we express  𝑔  and  𝛿  as Fourier transforms, that is 

                                          𝑔(𝑋, 𝑘) =
1

2𝜋
∫ 𝐺(𝑢, 𝑘)
∞

−∞
exp(𝑖𝑢𝑋)𝑑𝑢,                             (1.69) 

and 

                                                     𝛿(𝑋) =
1

2𝜋
∫ exp(𝑖𝑢𝑋)𝑑𝑢.
∞

−∞
  

Substituting these expressions into equation (1.68) and differentiating gives 

                             
1

2𝜋
∫ (−𝑢2 + 𝑘2)𝐺(𝑢, 𝑘)
∞

−∞
exp(𝑖𝑢𝑋)𝑑𝑢 = −

1

2𝜋
∫ exp(𝑖𝑢𝑋)𝑑𝑢
∞

−∞
,  

from which it follows that 

                                                    𝐺(𝑢, 𝑘) =
1

𝑢2−𝑘2
.  

Substituting this result back into equation (1.69), we obtain 

                       𝑔(𝑋, 𝑘) =
1

2𝜋
∫

exp(𝑖𝑢𝑋)

𝑢2−𝑘2

∞

−∞
𝑑𝑢 =

1

2𝜋
∫

exp(𝑖𝑢𝑋)

(𝑢 −𝑘 )(𝑢 +𝑘 )

∞

−∞
𝑑𝑢.  

The problem is therefore reduced to that of evaluating the above integral. This can be done 

using Cauchy's integral formula [82], 

                            ∮ 𝑓(𝑧)𝑑𝑧 =
𝐶

2𝜋𝑖 × (sum of the residues enclosed by 𝐶), 
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where 𝐶  is the contour defining the path of integration. In order to evaluate the integral 

explicitly using this formula, we must consider the singular nature or poles of the integrand 

at  𝑧 = −𝑘  and  𝑧 = 𝑘. For now let us consider a contour which encloses both poles.  

    The residue at 𝑧 = 𝑘. is given by exp(𝑖𝑘𝑋) (2𝑘)⁄  and at 𝑧 = −𝑘 by  −exp(−𝑖𝑘𝑋) (2𝑘).⁄    

Hence, the Green's function is given by 

                             𝑔(𝑋, 𝑘) = 2𝜋𝑖 (
exp(𝑖𝑘𝑋)

4𝜋𝑘
−
exp(−𝑖𝑘𝑋)

4𝜋𝑘
) = −

1

𝑘
sin(𝑘𝑋). 

This Green's function represents the propagation of waves travelling away from the point 

disturbance at  𝑥 = 𝑥0  or “outgoing waves” and also waves travelling towards the point 

disturbance or “incoming waves”. Since 𝑥 and 𝑥0 are points along a line, we can consider 

the result to be the sum of waves travelling to the left of  𝛿(𝑥 − 𝑥0) in which 𝑥 < 𝑥0  and 

to the right of 𝛿(𝑥 − 𝑥0) where  𝑥 > 𝑥0.  In most applications it is convenient to consider 

the Green's function for outgoing or (more rarely) incoming waves but not both. Here, the 

Green's function for incoming waves is given by 

                                            𝑔(𝑥|𝑥0, 𝑘) = −
𝑖

2𝑘
exp(−𝑖𝑘|𝑥 − 𝑥0|),  

and for outgoing waves is 

                                        𝑔(𝑥|𝑥0, 𝑘) =  
𝑖

2𝑘
exp( 𝑖𝑘|𝑥 − 𝑥0|).  

(ii) The Two-dimensional Green's Function 

In two dimensions, the same method can-be used to obtain the (free space) Green's function 

[82], that is to solve the equation 

                                              (∇2 + 𝑘2)𝑔(𝐫|𝐫0, 𝑘) = −𝛿
2(𝐫 − 𝐫0)   

subject to some boundary conditions at  |𝐫| = ∞,  where  

                                              𝐫 = �̂�𝑥 + �̂�𝑦;         𝐫0 = �̂�𝑥0 + �̂�𝑦0   

and 

                                             ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
.  

Note that 

                                          𝛿2(𝐫 − 𝐫0) ≡ 𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0).  

Also note that 𝑔 is a function of the path length  |𝐫 − 𝐫0|.  Writing 𝐑 = 𝐫 − 𝐫0 and using 

the same technique as before, namely the one used to derive an integral representation of 

the one-dimensional Green's function, we obtain 

                                        𝑔(𝑅, 𝑘) =
1

(2𝜋)2
∫

exp(𝑖𝐮∙𝐑)

𝑢2−𝑘2
𝑑2u.

∞

−∞
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In polar coordinates this result becomes 

                                     𝑔(𝑅, 𝑘) =
1

(2𝜋)2
∫ ∫

𝑒𝑥𝑝(𝑖𝑢𝑅 𝑐𝑜𝑠 𝜃)

𝑢2−𝑘2
 𝑢𝑑𝑢𝑑휃.

∞

−∞

𝜋

0
  

Integrating over 𝑢 first and using Cauchy's residue theorem, we have                                        

                                         ∮
𝑧 exp(𝑖𝑧𝑅 cosθ)

(𝑧+𝑘)(𝑧−𝑘)
𝑑𝑧 = 𝑖𝜋

𝐶
exp(𝑖𝑘𝑅 cos 휃),  

where the contour of integration  𝐶  has been chosen to enclose just one of the poles at  𝑧 =
𝑘. This provides an expression for the "outgoing" Green's function in which the wave 

propagates away from the point disturbance at  r0. 

    A solution for the pole at  𝑧 = −𝑘  would provide a solution which represents a wave-

field converging on 𝐫0. The "outgoing" Green's function is usually the most physically 

significant result (accept for an implosion for example). Thus, the (outgoing) Green's 

function can be written in the form 

                                             𝑔(𝑅, 𝑘) =
𝑖

4𝑘
∫ exp(𝑖𝑘𝑅 cos 휃)𝑑휃
𝜋

0
.  

Writing the Green's function in this form allows us to employ the result 

                                               𝐻0
(1)(𝑘𝑅) =

𝑖

 𝜋
∫ exp(𝑖𝑘𝑅 cos 휃)𝑑휃
𝜋

0
,  

where 𝐻0
(1)

 is the Hankel function (of the first kind and of order zero). This is the integral 

representation for the Hankel transform and it can be used to write the two-dimensional 

Green's function as 

                                                𝑔(𝐫|𝐫0, 𝑘) =
𝑖

4
𝐻0
(1)(𝑘|𝐫 − 𝐫0|).  

A useful form of this function can be obtained by employing the asymptotic approximation 

                                          𝐻0
(1)(𝑘𝑅) ≃ √

2

𝜋
exp(−𝑖𝜋 4⁄ )

exp(−𝑖𝑘𝑅 )

√𝑘𝑅
, 

which is valid when 

                                                                     𝑘𝑅 ≫ 1.  

This condition means that the wavelength of the wave originating from  𝐫0  is very small 

compared with the distance between  𝐫0  and  𝐫  which is physically reasonable in many 

cases and so a two-dimensional Green's function of the following form can be used: 

                                        𝑔(𝐫|𝐫0, 𝑘) =
1

√8𝜋
exp(𝑖𝜋 4⁄ )

exp(𝑖𝑘|𝐫−𝐫0|)

√𝑘|𝐫−𝐫0|
. 

(iii) The Three-dimensional Green's Function 

In three-dimensions, the free space Green’s function is given by the solution to the equation 
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                                         (∇2 + 𝑘2)𝑔(𝐫|𝐫0, 𝑘) = −𝛿
3(𝐫 − 𝐫0), 

with boundary conditions at |𝐫| = ∞,  where 

                                    𝐫 = �̂�𝑥 + �̂�𝑦 + �̂�𝑧;         𝐫0 = �̂�𝑥0 + �̂�𝑦0 + �̂�𝑧0; 

                                        𝛿3(𝐫 − 𝐫0) ≡ 𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0)𝛿(𝑧 − 𝑧0), 

and 

                                                       ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
. 

In this case 

𝑔(𝑅, 𝑘) =
1

(2𝜋)3
∫
exp(𝑖𝐮 ∙ 𝐑)

𝑢2 − 𝑘2
𝑑3u.

∞

−∞
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CHAPTER - 2 

NUMERICAL METHODS OF SOLUTIONS OF SECOND 

ORDER LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

 

2.1 Introduction 

Many problems in mathematics, science and engineering are not simple and cannot be 

solved by exact closed-form analytical formulas. It is often necessary to obtain approximate 

numerical or asymptotic solutions rather than exact solutions. Many numerical methods 

that have evolved over the years reduce algebraic or differential equations to discrete form 

which can be solved easily by computer. However, if the numerical method is not carefully 

chosen, the numerically computed solution may not be anywhere close to the true solution. 

Another problem is that the computation for a difficult problem may take so long that it is 

impractical for a computer to carry out [1]. 

    Partial differential equations are involved in the description of virtually every physical 

situation where quantities vary in space or in space and time. These include phenomena as 

diverse as diffusion, electromagnetic waves, hydrodynamics, and quantum mechanics 

(Schrödinger waves). In all but the simplest cases, these equations cannot be solved 

analytically, and so numerical methods must be employed for quantitative results. In a 

typical numerical treatment, the dependent variables (such as temperature or electrical 

potential) are described by their values at discrete points (a lattice) of the independent 

variables (e.g., space and time) and, by appropriate discretization, the partial differential 

equation is reduced to a large set of difference equations. Although these difference 

equations then can be solved, in principle, by the direct matrix methods, the large size of 

the matrices involved (dimension comparable to the number of lattice points, often more 

than several thousand) makes such an approach impractical. Fortunately, the locality of the 

original equations (i.e., they involve only low-order derivatives of the dependent variables) 

makes the resulting difference equations “sparse” in the sense that most of the elements of 

the matrices involved vanish. For such matrices, iterative methods of inversion and 

diagonalization can be very efficient. 

    An important aspect of numerical analysis of partial differential equations is the 

numerical solution of the finite linear algebraic systems that are generated by the discrete 

equations. These are in general very large, but with sparse matrices, which makes iterative 

methods suitable. The development of convergence analysis for such methods has 

paralleled that of the error analysis sketched above. In the 1950s and 1960s particular 

attention was paid to systems associated with finite difference approximation of positive 

type of second-order elliptic equations, particularly the five-point scheme, and starting with 

the Jacobi and Gauss-Seidel methods techniques were developed such as the Frankel and 

Young successive over relaxation and the Peaceman-Rachford (1955) alternating direction 

methods, as described in the influential book of Varga [83]. In later years, systems with 

positive-definite matrices stemming from finite element methods have been solved first by 

the conjugate gradient method proposed by Hestenes and Stiefel (1952), and then making 
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this more effective by preconditioning. The multigrid method was first introduced for finite 

difference methods in the 1960s by Fedorenko and Bahvalov and further developed by 

Brandt in the 1970s. For finite elements the multigrid method and the associated method 

of domain decomposition have been and are being intensely pursued by, e.g., Braess, 

Hackbusch, Bramble, and Widlund.  

    In this section we attempt to give a personal account of the development of numerical 

analysis of partial differential equations. We begin with the introduction in the 1930s and 

further development of the finite difference method and then describe the subsequent 

appearance around 1960 and increasing role of the finite element method. Even though 

clearly some ideas may be traced back further, our starting point will be the fundamental 

theoretical paper by Courant, Friedrichs and Lewy (1928) on the solution of problems of 

mathematical physics by means of finite differences. In that paper a discrete analogue of 

Dirichlet's principle was used to define an approximate solution by means of the five-point 

approximation of Laplace's equation, and convergence as the mesh width tends to zero was 

established by compactness. A finite difference approximation was also defined for the 

wave equation, and the CFL stability condition was shown to be necessary for 

convergence; again, compactness was used to demonstrate convergence. Since the purpose 

was to prove existence of solutions, no error estimates or convergence rates were derived. 

With its use of a variational principle for discretization and its discovery of the importance 

of mesh-ratio conditions in approximation of time-dependent problems that paper points 

forward and has had a great influence on numerical analysis of partial differential 

equations.  

    Error bounds for difference approximations of elliptic problems were first derived by 

Gerschgorin (1930) whose work was based on a discrete analogue of the maximum 

principle for Laplace's equation. This approach was actively pursued through the 1960s by, 

e.g., Collatz, Motzkin, Wasow, Bramble, and Hubbard, and various approximations of 

elliptic equations and associated boundary conditions were analyzed.  

    For time-dependent problems considerable progress in finite difference methods was 

made during the period of, and immediately following, the Second World War, when large-

scale practical applications became possible with the aid of computers. A major role was 

played by the work of von Neumann, partly reported in O'Brien, Hyman and Kaplan 

(1951). For parabolic equations a highlight of the early theory was the important paper by 

John (1952). For mixed initial-boundary value problems the use of implicit methods was 

also established in this period by, e.g., Crank and Nicolson (1947). The finite difference 

theory for general initial value problems and parabolic problems then had an intense period 

of development during the 1950s and 1960s, when the concept of stability was explored in 

the Lax equivalence theorem and the Kreiss matrix lemmas, with further major 

contributions given by Douglas, Lees, Samarskii, Widlund and others. For hyperbolic 

equations, and particularly for nonlinear conservation laws, the finite difference method 

has continued to play a dominating role up until the present time, starting with work by, 

e.g., Friedrichs, Lax, and Wendroff. Standard references on finite difference methods are 

the textbooks of Collatz [84], Forsythe and Wasow [85] and Richtmyer and Morton [86].  

    The idea of using a variational formulation of a boundary value problem for its numerical 

solution goes back to Lord Rayleigh (1894, 1896) and Ritz (1908), see, e.g., Kantorovich 
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and Krylov [87]. In Ritz's approach the approximate solution was sought as a finite linear 

combination of functions such as, for instance, polynomials or trigonometrical 

polynomials. The use in this context of continuous piecewise linear approximating 

functions based on triangulations adapted to the geometry of the domain was proposed by 

Courant (1943) in a paper based on an address delivered to the American Mathematical 

Society in 1941. Even though this idea had appeared earlier, also in work by Courant 

himself (see Babuska [88]), this is often thought of as the starting point of the finite element 

method, but the further development and analysis of the method would occur much later. 

The idea to use an orthogonality condition rather than the minimization of a quadratic 

functional is attributed to Galerkin (1915); its use for time-dependent problems is 

sometimes referred to as the Faedo-Galerkin method, cf. Faedo (1949), or, when the 

orthogonality is with respect to a different space, as the Petrov- Galerkin or Bubnov-

Galerkin method.  

    As a computational method the finite element method originated in the engineering 

literature, where in the mid-1950s structural engineers had connected the well-established 

framework analysis with variational methods in continuum mechanics into a discretization 

method in which a structure is thought of as divided into elements with locally defined 

strains or stresses. Some of the pioneering work was done by Turner, Clough, Martin and 

Topp (1956) and Argyris [89] and the name of the finite element method appeared first in 

Clough (1960). The method was later applied to other classes of problems in continuum 

mechanics; a standard reference from the engineering literature is Zienkiewicz [90].  

    Independently of the engineering applications a number of papers appeared in the 

mathematical literature in the mid-1960s which were concerned with the construction and 

analysis of finite difference schemes by the Rayleigh-Ritz procedure with piecewise linear 

approximating functions, by, e.g., Oganesjan (1962, 1966), Friedrichs (1962), Cea (1964), 

Demjanovic (1964), Feng (1965), and Friedrichs and Keller (1966) (who considered the 

Neumann problem). Although, in fact, special cases of the finite element method, the 

methods studied were conceived as finite difference methods; they were referred to in the 

Russian literature as variational difference schemes.  

    In the period following this, the finite element method with piecewise polynomial 

approximating functions was analyzed mathematically in work such as Birkhoff, Schultz 

and Varga (1968), in which the theory of splines was brought to bear on the development, 

and Zlamal (1968), with the first stringent a priori error analysis of more complicated finite 

elements. The so called mixed finite element methods, which are based on variational 

formulations where, e.g., the solution of an elliptic equation and its gradient appear as 

separate variables and where the combined variable is a saddle point of a Lagrangian 

functional, were introduced in Brezzi (1974); such methods have many applications in fluid 

dynamical problems and for higher-order elliptic equations.  

    Following Babuska (1976), Babuska and Rheinboldt (1978), much effort has been 

devoted to showing a posteriori error bounds which depend only on the data and the 

computed solution. Such error bounds can be applied to formulate adaptive algorithms 

which are of great importance in computational practice. Comprehensive references for the 

analysis of the finite element method are Babuska and Aziz [91], Strang and Fix [92], 

Ciarlet [93], and Brenner and Scott [94].  
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    Simultaneous with this development other classes of methods have arisen which are 

related to the above, and we will sketch four such classes: In a collocation method an 

approximation is sought in a finite element space by requiring the differential equation to 

be satisfied exactly at a finite number of collocation points, rather than by an orthogonality 

condition. In a spectral method one uses globally defined functions, such as eigenfunctions, 

rather than piecewise polynomials approximating functions, and the discrete solution may 

be determined by either orthogonality or collocation. A finite volume method applies to 

differential equations in divergence form. Integrating over an arbitrary volume and 

transforming the integral of the divergence into an integral of a flux over the boundary, the 

method is based on approximating such a boundary integral. In a boundary integral method, 

a boundary value problem for a homogeneous elliptic equation in a J-dimensional domain 

is reduced to an integral equation on its d − 1-dimensional boundary, which in turn can be 

solved by, e.g., the Galerkin finite element method or by collocation.  

    Many ideas and techniques are common to the finite difference and the finite element 

methods, and in some simple cases they coincide. Nevertheless, with its more systematic 

use of the variational approach, its greater geometric flexibility, and the way it more easily 

lends itself to error analysis, the finite element method has become the dominating 

approach both among numerical analysts and in applications. The growing need for 

understanding the partial differential equations modeling the physical problems has seen 

an increase in the use of mathematical theory and techniques and has at- tracted the interest 

of many mathematicians. The computer revolution has made large-scale real-world 

problems accessible to simulation, and in later years the concept of computational 

mathematics has emerged with a somewhat broader scope than classical numerical 

analysis.  

    The most commonly used numerical methods are finite differences that give pointwise 

approximations of the governing equations. These methods can be used successfully to 

solve many difficult problems, but their major weakness is that they are not suitable for 

problems with irregular geometries, curved boundaries or unusual boundary conditions. 

For example, the finite difference methods are not particularly effective for a circular 

domain because a circle cannot be accurately partitioned into rectangles. However, there 

are other numerical methods including the finite element method and the boundary element 

method. Unlike finite difference methods, the finite element method can be used effectively 

to determine fairly accurate approximate solutions to a wide variety of governing equations 

defined over irregular regions. The entire solution domain can be modeled analytically or 

approximated by replacing it with small, interconnected discrete finite elements (hence the 

name finite element). The solution is then approximated by extremely simple functions 

(linear functions) on these small elements such as triangles. These small elements are 

collected together, and requirements of continuity and equilibrium are satisfied between 

neighboring elements. 

     In a nutshell, the basic idea of the finite element method (FEM) consists of decomposing 

a given domain into a set of finite elements of arbitrary shape and size. This decomposition 

is usually called a mesh or a grid with the restriction that elements cannot overlap nor leave 

any part of the domain uncovered. For each element, a certain number of points is 

introduced that can be located on the edges of the elements or inside. These points are 
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called nodes that are usually vertices of triangles as shown in Figure 2-2. Finally, these 

nodes are used to approximate a function under consideration over the whole domain by 

interpolation in the finite elements. 

     Historically, the finite element method was developed originally to study stress fields 

in complicated aircraft structures in the early 1960s. Subsequently, it has been extended 

and widely applied to find approximate solutions to a wide variety of problems in 

mathematics, science, and engineering. It was Richard Courant (1888–1972) [95] who first 

introduced piecewise continuous functions defined over triangular domains in 1943; he 

then used these triangular elements combined with the principle of minimum potential 

energy to study the St. Venant torsion problem in continuum mechanics. He also described 

element properties and finite element equations based on a variational principle. In 1965, 

the finite element method received an even broader interpretation when Zienkiewicz and 

Cheung (1965) [96] suggested that it is applicable to all field problems that can be cast in 

variational form. During the late 1960s and early 1970s, considerable attention has been 

given to errors, bounds and convergence criteria for finite element approximations to 

solutions of various problems in continuum mechanics. 

    

2.2 The Method of Relaxation Applied to a System of Linear Equations 

Suppose we have a system of linear equations [97]  

                                                 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1, 

                                                 𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2,                              (2.1) 

                                                  ………………………………….... 

                                                 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛  

We transform this system as follows: transpose the constant terms to the left and divide the 

first equation by −𝑎11, the second by −𝑎22, etc. We then obtain a system that is ready for 

relaxation: 

                                                −𝑥1 + 𝑏12𝑥2 +⋯+ 𝑏1𝑛𝑥𝑛 + 𝑐1 = 0, 

                                                   𝑏21𝑥1 − 𝑥2 +⋯+ 𝑏2𝑛𝑥𝑛 + 𝑐2 = 0,                            (2.2) 

                                                    ……………………………………                                                                                                                  

                                                   𝑏𝑛1𝑥1 + 𝑏𝑛2𝑥2 +⋯− 𝑥𝑛 + 𝑐𝑛 = 0,  

where  

                                                    𝑏𝑖𝑗 = −
𝑎𝑖𝑗

𝑎𝑖𝑖
(𝑖 ≠ 𝑗)    and    𝑐𝑖 =

𝑏𝑖

𝑎𝑖𝑖
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    Let  𝒙(0) = ( 𝑥1
(0), 𝑥2

(0), …  𝑥𝑛
(0))  be the initial approximation to the solution of system 

(2.2). Substituting these values into system (2.2), we get the residuals 

                                                                                                         

                                                     𝑅1
(0) = 𝑐1 − 𝑥1

(0) +∑ 𝑏1𝑗
𝑛
𝑗=2 𝑥𝑗

(0),  

                                                   

                                                     𝑅2
(0) = 𝑐2 − 𝑥2

(0) + ∑ 𝑏2𝑗
𝑛
𝑗=1
𝑗≠2

𝑥𝑗
(0),                             (2.3) 

                                                ……………………………….... 

                                                     𝑅𝑛
(0) = 𝑐𝑛 − 𝑥𝑛

(0) +∑ 𝑏𝑛𝑗
𝑛−1
𝑗=1 𝑥𝑗

(0)
  

    If we give an increment of 𝛿𝑥𝑠
(0)

 to one of the unknowns 𝑥𝑠
(0)

, then the corresponding 

residual 𝑅𝑠
(0)

 will be diminished by the quantity 𝛿𝑥𝑠
(0)

, and all the other residuals 

𝑅𝑖
(0)(𝑖 ≠ 𝑠) will be increased by the quantity 𝑏𝑖𝑠𝛿𝑥𝑠

(0)
. Thus, to make the next residual 𝑅𝑠

(1)
 

vanish, it suffices to give the quantity 𝑥𝑠
(0)

 an increment of  

                                                                       𝛿𝑥𝑠
(0) = 𝑅𝑠

(0)
  

and we have  

                                                                          𝑅𝑠
(1) = 0  

and   

                                                       𝑅𝑖
(1) = 𝑅𝑖

(0) + 𝑏𝑖𝑠𝛿𝑥𝑠
(0)

  for  𝑖 ≠ 𝑠 

    The method of relaxation [98,99] in its simplest form consists in reducing the 

numerically largest residual to zero at each step by changing the value of the appropriate 

component of the approximation. The process is terminated when all the residuals of the 

last transformed system are equal to zero within the required accuracy. We will not 

consider the question of the convergence of this process [99].  

 

Example 

Solve the following system by the method of relaxation [*]: 

                                                                10𝑥1 − 2𝑥2 − 2𝑥3 = 6, 

                                                               −𝑥1 + 10𝑥2 − 2𝑥3 = 7,                                  (2.4) 
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                                                                  −𝑥1 − 𝑥2 + 10𝑥3 = 8  

carrying the computations to two decimal places. 

Solution 

We reduce the system (2.4) to a form convenient for relaxation: 

                                                       −𝑥1 + 0.2𝑥2 + 0.2𝑥3 + 0.6 = 0, 

                                                       0.1𝑥1 − 𝑥2 ++0.2𝑥3 + 0.7 = 0, 

                                                       0.1𝑥1 + 0.1𝑥2−𝑥3 + 0.8 = 0   

    choosing the zero values 

                                                      𝑥1
(0) = 𝑥2

(0) = 𝑥3
(0) = 0  

for the initial approximations of the roots, we get the respective residuals: 

                                                     𝑅1
(0) = 0.60,   𝑅2

(0) = 0.70,   𝑅3
(0) = 0.80 

By the general theory, we assume 

                                                                𝛿𝑥3
(0) = 0.80  

whence we get the residuals  

                                           𝑅1
(1) = 𝑅1

(0) + 0.2 × 0.8 = 0.60 + 0.16 = 0.76, 

                                           𝑅2
(1) = 𝑅2

(0) + 0.2 × 0.8 = 0.70 + 0.16 = 0.86, 

                                           𝑅3
(1) = 𝑅1

(0) − 𝑅2
(0) = 0  

Now we set 

                                                         𝛿𝑥2
(1) = 0.86  

and so one. The result of the computations are given in Table 1.  

    Summing all the increments  𝛿𝑖
(𝑘) (𝑖 = 1, 2, 3;   𝑘 = 0, 1, … ), we get the values of the 

roots: 

𝑥1 = 0 + 0.93 + 0.07 = 1.00, 

𝑥2 = 0 + 0.86 + 0.13 + 0.01 = 1.00, 
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𝑥3 = 0 + 0.80 + 0.18 + 0.02 = 1.00 

    Check by substituting the values of the roots thus found into the original equations; in 

this case the system (2.4) has been solved exactly. 

 

Table-2.1 Solution of a linear system by the method of relaxation 

 𝑥1 𝑅1 𝑥2 𝑅2 𝑥3 𝑅3 

  

0 

 

 

 

 

0.93 

 

 

 

 

 

 

0.07 

 

 

0.60 

0.16 

0.76 

0.17 

0.93 

-0.93 

0 

0.04 

0.04 

0.03 

0.07 

-0.07 

0 

0 

0 

0 

0 

 

0 

 

 

0.86 

 

 

 

 

 

 

0.13 

 

 

 

 

 

0.01 

 

 

0.70 

0.16 

0.86 

-0.86 

0 

0.09 

0.09 

0.04 

0.13 

-0.13 

0 

0.01 

0.01 

0 

0.01 

-0.01 

0 

 

0 

0.80 

 

 

 

 

 

0.18 

 

 

 

 

 

 

0.02 

 

 

 

 

 

0.80 

-0.80 

0 

0.09 

0.09 

0.09 

0.18 

- 0.18 

0 

0.01 

0.01 

0.01 

0.02 

-0.02 

0 

0 

0 

∑  1.00  1.00  1.00  

 

2.3 Discretization and the Variational Principle 

Most of the physically important partial differential equations are of second order and can 

be classified into three types: elliptic, parabolic, and hyperbolic. Elliptic partial differential 

equations involve second order derivatives in each of the independent variables, each 

derivative having the same sign when all terms in the equation are grouped on one side. 

We will consider in the following discussion particular form of elliptic boundary value 

problem for a field in two spatial dimensions (𝑥, 𝑦). The boundary value problem involves 

the equation 

                                                     −(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝜑 = 𝑆(𝑥, 𝑦).                                       (2.5)     

    Although this is not the most general elliptic form, it nevertheless covers a wide variety 

of situations [100]. For example, in an electrostatic problem, 𝜑  is the potential and S is 
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related to the charge density, while in a steady-state heat diffusion problem, 𝜑 is the 

temperature, and  S is the local rate of heat generation or loss. Equation (2.5) by itself is an 

ill-posed problem, as some sort of boundary conditions is required [101]. These may be of 

the Dirichlet type [102] for the stream function and the vorticity, and of the Neumann type 

[102] for the pressure, in problems of fluid mechanics. Accordingly, 𝜑 is specified on some 

large closed curve in the (𝑥, 𝑦) plane (conveniently, the unit square). The boundary value 

problem is then to use (2.5) to find 𝜑 everywhere within the unit square. 

    Other classes of boundary value problems, such as Neumann (where the normal 

derivative of 𝜑 is specified on the surfaces) and mixed type (where a linear combination 

of 𝜑 and its normal derivative is specified), can be handled by very similar methods. 

    The eigenvalue problems we will be interested in might involve an equation of the form 

                                            −(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝜑 + 𝑉(𝑥, 𝑦)𝜑 = 휀𝜑,                                   (2.6)  

together with a set of Dirichlet boundary conditions. This might arise, for example, as the 

time-independent Schrödinger equation, where 𝜑 is the wave function, 𝑉 proportional to 

the potential, and  is related to the eigenvalue. Such an equation might also be used to 

describe the fields in an acoustic or electromagnetic waveguide, where  is then related to 

the square of the cut-off frequency. The eigenvalue problem then consists of finding the 

values 휀𝜆 and the associated eigenfunctions 𝜑𝜆 for which equation (2.6) and the boundary 

conditions are satisfied. As methods for solving such problems are closely related to those 

for solving a related parabolic equation we will defer their discussion later.  

   The ultimate goal of the field of computational fluid dynamics is to understand the 

physical events that occur in the flow of fluids around and within designated objects. These 

events are related to the action and interaction of phenomena such as dissipation, diffusion, 

convection, shock waves, slip surfaces, boundary layers, and turbulence. In the field of 

aerodynamics, all of these phenomena are governed by the compressible Navier-Stokes 

equations. Many of the most important aspects of these relations are nonlinear and, as a 

consequence, often have no analytic solution. This, of course, motivates the numerical 

solution of the associated partial differential equations. The use of numerical methods to 

solve partial differential equations introduces an approximation that, in effect, can change 

the form of the basic partial differential equations themselves. The new equations, which 

are the ones actually being solved by the numerical process, are often referred to as the 

modified partial differential equations. Since they are not precisely the same as the original 

equations, they can, and probably will, simulate the physical phenomena listed above in 

ways that are not exactly the same as an exact solution to the basic partial differential 

equation [102]. Mathematically, these differences are usually referred to as truncation 

errors. However, the theory associated with the numerical analysis of fluid mechanics was 

developed predominantly by scientists deeply interested in the physics of fluid flow and, 

therefore, these errors are often identified with a particular physical phenomenon on which 

they have a strong effect. Thus, methods are said to have a lot of artificial viscosity or said 

to be highly dispersive. This means that the errors caused by the numerical approximation 

result in a modified partial differential equation having additional terms that can be 
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identified with the physics of dissipation in the first case and dispersion in the second. 

There is nothing wrong, of course, with  

 

 

Figure-2.1 (Left) A two-dimensional boundary value problem with Dirichiet boundary 

conditions. Values of  are specified on the edges of the unit square and on the surfaces 

within. (Right) Discretization of the problem on a uniform Cartesian lattice. 

identifying an error with a physical process, nor with deliberately directing an error to a 

specific physical process, as long as the error remains in some engineering sense small. 

However, if used and interpreted properly, these methods give very useful information.   

    Our first step is to cast Eq. (2.5) in a form suitable for numerical treatment. To do so, we 

define a lattice of points covering the region of interest in the (𝑥, 𝑦) plane. For convenience, 

we take the lattice spacing, ℎ, to be uniform and equal in both directions, so that the unit 

square is covered by (𝑁 + 𝑙) × (𝑁 + 𝑙) lattice points (see Figure-2.1). These points can be 

labeled by indices (𝑖, 𝑗), each of which runs from 0 to 𝑁, so that the coordinates of the point 

(𝑖, 𝑗) are (𝑥𝑖  =  𝑖ℎ , 𝑦𝑗  =  𝑗ℎ). If we then define 
𝑖𝑗
=   (𝑥𝑖 , 𝑦𝑗), and similarly for 𝑆𝑖𝑗, it 

is then straightforward to apply the three-point difference approximation for the second 

derivative in each direction and so approximate (2.5) as 

                                       − [
𝜑𝑖+1,𝑗+𝜑𝑖−1,𝑗−2𝜑𝑖𝑗

ℎ2
+
𝜑𝑖,𝑗+1+𝜑𝑖,𝑗−1−2𝜑𝑖𝑗

ℎ2
] = Sij                         (2.7) 

or, in a more convenient notation, 

                                                −[𝛿𝑖
2𝜑𝑖𝑗 + 𝛿𝑗

2𝜑𝑖𝑗] = ℎ
2𝑆𝑖𝑗                                            (2.8)           

Here, 𝛿𝑖
2 is the second-difference operator in the 𝑖 index, 

                                               𝛿𝑖
2(𝜑𝑖𝑗) = 𝜑𝑖+1,𝑗 + 𝜑𝑖−1,𝑗 − 2𝜑𝑖𝑗  

and δi
2 is defined similarly. 

    Although equations (2.7), (2.8) are the equations we will be solving, it is useful to derive 

it in a different way, based on a variational principle. Such an approach is handy in cases 

y=0

x=0 x=1

y=1
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where the coordinates are not Cartesian, or when more accurate difference formulas are 

required. It is also guaranteed to lead to symmetric (or Hermitian) difference equations, an 

often-useful property. The variational method also affords some insight into how the 

solution algorithm works. A good review of this approach can be found in [103]. 

    Consider the quantity 𝐸, defined to be a functional of the field  of the form [100] 

                                               𝐸 = ∫ 𝑑𝑥
1

0
∫ 𝑑𝑦
1

0
[
1

2
(∇𝜑)2 − 𝑆𝜑]                                    (2.9)        

    In some situations, 𝐸 has a physical interpretation. For example, in electrostatics, −  

is the electric field and 𝑆 is the charge density, so that 𝐸 is indeed the total energy of the 

system. However, in other situations, such as the steady-state diffusion equation, 𝐸 should 

be viewed simply as a useful quantity. 

    It is easy to show that, at a solution to (2.5), 𝐸 is stationary under all variations  that 

respect the Dirichiet boundary conditions imposed. Indeed, the variation is                          

                                    𝛿𝐸 = ∫ 𝑑𝑥
1

0
∫ 𝑑𝑦
1

0
[∇𝜑 ∙ ∇δ𝜑 − 𝑆𝛿𝜑]                                      (2.10) 

which upon integrating the second derivative term by parts becomes. 

                        𝛿𝐸 = ∫ 𝑑𝑙 𝛿𝜑 n ∙ ∇𝜑 +
𝐶

∫ 𝑑𝑥
1

0
∫ 𝑑𝑦
1

0
𝛿𝜑 [−∇2𝜑 − 𝑆]                        (2.11) 

where the line integral is over the boundary of the region of interest (𝐶) and n is the unit 

vector normal to the boundary. Since we consider only variations that respect the boundary 

conditions,  vanishes on C, so that the line integral does as well. Demanding that 𝛿𝐸 be 

zero for all such variations then implies that 𝜑 satisfies (2.5). This then furnishes a 

variational principle for our boundary value problem. 

    To derive a discrete approximation to the partial differential equation based on this 

variational principle, we first approximate 𝐸 in terms of the values of the field at the lattice 

points and then vary with respect to them. The simplest approximation to 𝐸 is to employ 

the two-point difference formula to approximate each first derivative in ()2 at the points 

halfway between the lattice points and to use the trapezoidal rule for the integrals. This 

leads to [100] 

    𝐸 =
1

2
∑ ∑ [(𝜑𝑖𝑗 − 𝜑𝑖−1,𝑗)

2
+ (𝜑𝑖𝑗 − 𝜑𝑖,𝑗−1)

2
] − ℎ2∑ ∑ 𝑆𝑖𝑗𝜑𝑖𝑗

𝑁−1
𝑗=1

𝑁−1
𝑖=1

𝑁
𝑗=1

𝑁
𝑖=1        (2.12) 

putting 

                                                                
𝜕𝐸

𝜕𝜑𝑖𝑗
= 0  

for all 𝑖𝑗 then leads to the difference equation derived previously, (2.11), (2.12). Of course, 

a more accurate discretization can be obtained by using better approximations for the first 

derivatives and for the integrals, taking care that the accuracies of both are commensurate. 

It is also easy to show from (2.12) that not only is 𝐸 stationary at the solution, but that it is 

a minimum as well. 
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    We must now discuss where the boundary conditions enter the set of linear equations 

(2.7), (2.8). Unless the coordinate system is well adapted to the geometry of the surfaces 

on which the boundary conditions are imposed (e.g., the surfaces are straight lines in 

Cartesian coordinates or arcs in cylindrical or spherical coordinates), the lattice points will 

only roughly describe the geometry (see Figure-2.1). One can always improve the accuracy 

by using a non-uniform lattice spacing and placing more points in the regions near the 

surfaces or by transforming to a coordinate system in which the boundary conditions are 

expressed more naturally. In any event, the boundary conditions will then provide the 

values of the ij at some subset of lattice points. At a point far away from one of the 

boundaries, the boundary conditions do not enter (2.7), (2.8) directly. However, consider 

(2.7), (2.8) at a point just next to a boundary, say (𝑖 , 𝑁 −  1). Since 
𝑖𝑁

 is specified as part 

of the boundary conditions (as it is on the whole border of the unit square), we can rewrite 

(2.8) as 

                  4𝜑𝑖,𝑁−1 − 𝜑𝑖+1,𝑁−1 − 𝜑𝑖−1,𝑁−1 − 𝜑𝑖,𝑁−2 = ℎ
2𝑆𝑖,𝑁−1 + 𝜑𝑖𝑁;                   (2.13) 

that is
𝑖𝑁
 enters not as an unknown, but rather as an inhomogeneous, known term. 

Similarly, if a Neumann boundary condition were imposed at a surface, say 
𝜕𝜑

𝜕𝑦
= 𝑔(𝑥) at 

𝑦 =  1 or, equivalently, 𝑗 = 𝑁, then this could be approximated by the discrete boundary 

condition.         

                                                           
𝑖𝑁
− 

𝑖,𝑁−1
= ℎ𝑔𝑖  

which means that at 𝑗 =  𝑁 − 1, equation (2.7) would become 

                        3𝜑𝑖,𝑁−1 − 𝜑𝑖+1,𝑁−1 − 𝜑𝑖−1,𝑁−1 − 𝜑𝑖,𝑁−2 = ℎ
2𝑆𝑖,𝑁−1 + ℎ𝑔𝑖              (2.14) 

These considerations, and a bit more thought, show that the discrete approximation to the 

differential equation (2.5) is equivalent to a system of linear equations for the unknown 

values of φ at the interior points. In a matrix notation, this can be written as [100] 

                                                                M𝜑 = 𝑆,                                                       (2.15) 

where M is the matrix appearing in the linear system (2.7), (2.8) and the inhomogeneous 

term s is proportional to 𝑆 at the interior points and is linearly related to the specified values 

of  or its derivatives on the boundaries. In any sort of practical situation there are a very 

large number of these equations (some 2500 if 𝑁 = 50, say), so that solution by direct 

inversion of M is impractical. Fortunately, since the discrete approximation to the 

Laplacian involves only neighboring points, most of the elements of M vanish (it is sparse) 

and there are then efficient iterative techniques for solving (2.15). We begin their 

discussion by considering an analogous, but simpler, one-dimensional boundary value 

problem, and then return to the two-dimensional case. 
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2.4 An Iterative Method for Boundary Value Problems 

The one-dimensional boundary value problem analogous to the two-dimensional problem 

we have been discussing can be written as 

                                                          −
𝑑2𝜑

𝑑𝑥2
= 𝑆(𝑥),                                                     (2.16) 

with 𝜑(0) and 𝜑(1) specified. The related variational principle involves [100] 

                                                      𝐸 = ∫ 𝑑𝑥 [(
𝑑𝜑

𝑑𝑥
)
2
− 𝑆𝜑]

1

0
,                                      (2.17)                                                

Which can be discretized on a uniform lattice of spacing ℎ =  1/𝑁 as 

                                         𝐸 =
1

2ℎ
∑ (𝜑𝑖 − 𝜑𝑖−1)
𝑁
𝑖=1 − ℎ∑ 𝑆𝑖𝜑𝑖

𝑁−1
𝑖=1 ,                            (2.18) 

when varied with respect to 𝜑𝑖, this yields the difference equation. 

                                                   2𝜑𝑖 − 𝜑𝑖+1 − 𝜑𝑖−1 = ℎ
2𝑆𝑖 ,                                      (2.19)                                

which is, of course, just the naive discretization of equation. (2.16) 

    Methods of solving the boundary value problem by integrating forward and backward 

in 𝑥 may also be discussed, but we can also consider (2.19), together with the known values 

of 𝜑0 and 𝜑𝑁 as a set of linear equations. For a modest number of points (say 𝑁 < 100), 

the linear system above can be solved by the direct methods and, in fact, a very efficient 

special direct method exists for such “tri-diagonal” systems. However, to illustrate the 

iterative methods appropriate for the large sparse matrices of elliptic partial differential 

equations in two or more dimensions, we begin by rewriting (2.19) in a “solved” form for 

𝜑𝑖 :  

                                                    𝜑𝑖 =
1

2
[𝜑𝑖+1 + 𝜑𝑖−1 + ℎ

2𝑆𝑖].                                  (2.20) 

Although this equation is not manifestly useful, since we don’t know the 𝜑, 𝑆 on the right-

hand side, it can be interpreted as giving us an “improved” value for 𝜑𝑖 based on the values 

of  at the neighboring points. Hence the strategy (Gauss-Seidel iteration) is to guess some 

initial solution and then to sweep systematically through the lattice (say from left to right), 

successively replacing  at each point by an improved value. Note that the most “current” 

values of the 𝜑𝑖±1  are to be used in the right-hand side of equation (2.20). By repeating 

this sweep many times, an initial guess for 𝜑 can be “relaxed” to the correct solution. 

To investigate the convergence of this procedure, we generalize equation (2.20) so that at 

each step of the relaxation i is replaced by a linear mixture of its old value and the 

“improved” one given by (2.20): 

                                𝜑𝑖 → 𝜑𝑖
′ = (1 − 𝜔)𝜑𝑖 +

1

2
𝜔[𝜑𝑖+1 + 𝜑𝑖−1 + ℎ

2𝑆𝑖]                     (2.21) 
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Here, 𝜔 is a parameter that can be adjusted to control the rate of relaxation: “over-

relaxation” corresponds to 𝜔 > 1, while “underrelaxation” means 𝜔 < 1. The optimal 

value of  that maximizes the rate of relaxation will be discussed below. To see that (2.21) 

results in an “improvement” in the solution, we calculate the change in the energy 

functional (2.18), remembering that all 𝜑’s except 𝜑𝑖 are to be held fixed. After some 

algebra, one finds [100] 

                         𝐸′ − 𝐸 = −
𝜔(2−𝜔)

2ℎ
[
1

2
(𝜑𝑖+1 + 𝜑𝑖−1 + ℎ

2𝑆𝑖) − 𝜑𝑖]
2
≤ 0,                  (2.22) 

so that, as long as 0 < 𝜔 < 2, the energy never increases, and should thus converge to the 

required minimum value as the sweeps proceed. (The existence of other, spurious minima 

of the energy would imply that the linear system (2.19) is not well posed.) 

As an example of this relaxation method, let us consider the one-dimensional boundary-

value problem of the form (2.16) with 

                                            𝑆(𝑥) = 12𝑥2;        𝜑(0) = 𝜑(1) = 0. 

The exact solution is                          𝜑(𝑥) = 𝑥(1 − 𝑥3). 

And the energy is                           𝐸 = −
9

14
= −0.64286. 

Results for the energy as a function of iteration number are shown in Table 2.1 for three 

different values of 𝜔. [100] 

Table-2.2 Convergence of the energy functional during relaxation of a 1-D boundary value 

problem 

Iteration 𝜔 = 0.5 𝜔 = 1.0 𝜔 = 1.5 

1 

21 

41 

61 

81 

101 

121 

141 

161 

181 

201 

221 

241 

-0.01943 

-0.24267 

-0.36297 

-0.44207 

-0.49732 

-0.53678 

-0.56517 

-0.58563 

-0.60037 

-0.61100 

-0.61866 

-0.62418 

-0.62815 

-0.04959 

-0.44024 

-0.56343 

-0.61036 

-0.62795 

-0.63450 

-0.63693 

-0.63783 

-0.63817 

-0.63829 

-0.63834 

-0.63836 

-0.63836 

-0.09459 

-0.60688 

-0.63700 

-0.63631 

-0.63836 

-0.63837 

-0.63837 

-0.63837 

-0.63837 

-0.63837 

-0.63837 

-0.63837 

-0.63837 

---- ------- ------ ------- 

381 

401 

-0.63734 

-0.63763 

-0.63837 

-063837 

-0.63837 

-0.63837 
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Despite the rather poor initial guess for 𝜑, the iterations converge, and the converged 

energy is independent of the relaxation parameter but differs somewhat from the exact 

answer due to discretization errors (i.e., ℎ not vanishingly small); the discrepancy can be 

reduced, of course, by increasing 𝑁. A detailed examination of the solution indicates good 

agreement with the analytical result. Note that the rate of convergence clearly depends 

upon 𝜔. A general analysis [104] shows that the best choice for the relaxation parameter 

depends upon the lattice size and on the geometry of the problem; it is usually greater than 

1. The optimal value can be determined empirically by examining the convergence of the 

solution for only a few iterations before choosing a value to be used for many iterations. 

    The application of the relaxation scheme described above to two- (or even three-) 

dimensional problems is now straightforward. Upon solving (2.7) for 𝜑𝑖𝑗 we can generate 

the analogue of (2.17) [100]: 

                    𝜑𝑖𝑗 → 𝜑𝑖𝑗
′ = (1 − 𝜔)𝜑𝑖𝑗 +

𝜔

4
[𝜑𝑖+1,𝑗 + 𝜑𝑖,𝑗+1 + 𝜑𝑖,𝑗−1 + ℎ

2𝑆𝑖𝑗]           (2.23) 

If this algorithm is applied successively to each point in the lattice, say sweeping the rows 

in order from top to bottom and each row from left to right, one can show that the energy 

functional (2.12) always decreases (if 𝜔 is within the proper range) and that there will be 

convergence to the required solution. 

    Several considerations can serve to enhance this convergence in practice. First, starting 

from a good guess at the solution (perhaps one with similar, but simpler, boundary 

conditions) will reduce the number of iterations required. Second, an optimal value of the 

relaxation parameter should be used, either estimated analytically or determined 

empirically, as described above. Third, it may sometimes be more efficient to concentrate 

the relaxation process, for several iterations, in some sub-area of the lattice where the trial 

solution is known to be particularly poor, thus not wasting effort on already-relaxed parts 

of the solution. Finally, one can always do a calculation on a relatively coarse lattice that 

relaxes with a small amount of numerical work, and then interpolate the solution found 

onto a finer lattice to be used as the starting guess for further iterations. 

 

2.5 More on Discretization  

It is often the case that the energy functional defining a physical problem has a form more 

complicated than the simple “integral of the square of the derivative” that we have been 

considering so far. For example, in an electrostatics problem with spatially varying 

dielectric properties or in a diffusion problem with a spatially-varying diffusion coefficient, 

the boundary-value problem (2.5) is modified to 

                                                      −∇ ∙ 𝐷∇𝜑 = 𝑆(𝑥, 𝑦),                                              (2.24) 

where 𝐷(𝑥, 𝑦) is the dielectric constant or diffusion coefficient, and the corresponding 

energy functional is (compare equation (2.9)) 

                                             𝐸 = ∫ 𝑑𝑥
1

0
∫ 𝑑𝑦
1

0
[
1

2
𝐷(∇𝜑)2 − 𝑆𝜑].                                (2.25) 
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Although it is possible to discretize equation (2.24) directly, it should be evident from the 

previous discussion that a far better procedure is to discretize (2.25) first and then to 

differentiate with respect to the field variables to obtain the difference equations to be 

solved. 

    To see how this works out in detail, consider the analog of the one-dimensional problem 

defined by (2.17), 

                                           𝐸 = ∫ 𝑑𝑥
1

0
[
1

2
𝐷(𝑥) (

𝑑𝜑

𝑑𝑦
)
2
− 𝑆𝜑],                                      (2.26) 

The discretization analogous to (2.18) is [100] 

                                     𝐸 =
1

2ℎ
∑ 𝐷

𝑖−
1

2

(𝜑𝑖 − 𝜑𝑖−1)
2 − ℎ∑ 𝑆𝑖𝜑𝑖

𝑁−1
𝑖=1

𝑁
𝑖=1 ,                      (2.27) 

where 𝐷
𝑖−
1

2

 is the diffusion constant at the half-lattice points. This might be known directly 

if we have an explicit formula for 𝐷(𝑥), or it might be approximated with appropriate 

accuracy by 
1

2
 (𝐷𝑖  + 𝐷𝑖−1). Note that, in either case, we have taken care to center the 

differencing properly. Variation of this equation then leads directly to the corresponding 

difference equations (compare equation (2.19)), 

                                (𝐷
𝑖+
1

2

+ 𝐷
𝑖−
1

2

)𝜑𝑖 − 𝐷𝑖−1
2

𝜑𝑖+1 − 𝐷𝑖−1
2

𝜑𝑖−1 = ℎ
2𝑆𝑖.                    (2.28) 

These can then be solved straightforwardly by the relaxation technique described above. 

A problem treated in cylindrical or spherical coordinates presents very much the same kind 

of situation. For example, when the diffusion or dielectric properties are independent of 

space, the energy functional in cylindrical coordinates will involve [100] 

                                                𝐸 = ∫ 𝑑𝑟
∞

0
𝑟 [

1

2
(
𝑑𝜑

𝑑𝑟
)
2
− 𝑆𝜑],                                       (2.29) 

where 𝑟 is the cylindrical radius. (We suppress here the integrations over the other 

coordinates.) This is of the form (2.26), with 𝐷(𝑟) = 𝑟 and an additional factor of 𝑟 

appearing in the source integral. Discretization on a lattice 𝑟𝑖 = ℎ𝑖 in analogy to (2.27) then 

leads to the analog of (2.28), 

                                        2𝑟𝑖𝜑𝑖 − 𝑟𝑖+1
2

𝜑𝑖+1 − 𝑟𝑖−1
2

𝜑𝑖−1 = ℎ
2𝑟𝑖Si                                (2.30)       

At 𝑖 = 0, this equation just tells us that 
1
= 

−1
, or equivalently that 

𝜕𝜑

𝜕𝑟
= 0 at 𝑟 = 0 

This is to be expected, as, in the electrostatics language, Gauss’ law allows no radial electric 

field at 𝑟 = 0.  

    At 𝑖 = 1, equation (2.30) gives an equation involving three unknowns 𝜑0 , 𝜑1 , and  𝜑2, 

but putting 𝜑0 = 𝜑1  as a rough approximation to the zero derivative boundary condition 

gives an equation involving only two unknowns, which is what we expect at a boundary 

on the basis of our experience with the Cartesian problems discussed above. 
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    A more elegant discretization of problems with cylindrical symmetry naturally 

incorporates the zero-derivative boundary condition at 𝑟 =  0 by working on a lattice 

defined by 𝑟𝑖 = (1 −
1

2
) ℎ. In this case, equation (2.30) is still valid, but for 𝑖 = 1 the 

coefficient of the term involving 𝜑𝑡−1vanishes, giving directly an equation with only two 

unknowns, 𝜑1 and 𝜑2. 

 

2.6 The Finite Element Method  

In order to develop the finite element method [1], we recall Euler–Lagrange equation  

                                                    
𝜕𝐹

𝜕𝑢
−

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢′
) = 0,    𝑎 ≤ 𝑥 ≤ 𝑏.                              (2.31) 

with 𝑢(𝑎) = 𝛼 and 𝑢(𝑏) = 𝛽. We divide the interval 𝑎 ≤ 𝑥 ≤ 𝑏 into 𝑛 parts by the  𝑅𝑛+1 

set:  𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑏.  Each such subinterval is called an element. In 

general, the length of the elements need not be equal, though for simplicity, we assume that 

they are equal in length so that ℎ =
1

𝑛
(𝑏 − 𝑎). We set 𝑢𝑘 = 𝑢(𝑥𝑘), 𝑘 = 0, 1, 2, … , 𝑛 so that 

𝑢0(𝑥0) = 𝛼 and 𝑢𝑛(𝑥𝑛) = 𝛽, while 𝑢1, 𝑢2, … , 𝑢𝑛−1 are unknown quantities. We next 

rewrite the functional 

                                          𝐼(𝑢) = ∫ 𝐹(𝑥, 𝑢, 𝑢′)𝑑𝑥
𝑏

𝑎
,     𝑢′ =

𝑑𝑢

𝑑𝑥
,                                 (2.32) 

as 

     𝐼(𝑢) = ∫ 𝐹(𝑥, 𝑢, 𝑢′)
𝑥1
𝑥0

𝑑𝑥 + ∫ 𝐹(𝑥, 𝑢, 𝑢′)
𝑥2
𝑥1

𝑑𝑥 +⋯+ ∫ 𝐹(𝑥, 𝑢, 𝑢′)
𝑥𝑛
𝑥𝑛−1

𝑑𝑥.          (2.33) 

     We define a piecewise linear interpolating function 𝐿(𝑥) of 𝑢𝑖 as the function which is 

continuous on [𝑎, 𝑏] and whose graph consists of straight line segments joining the 

consecutive pairs of points (𝑥𝑘 , 𝑢𝑘), (𝑥𝑘+1, 𝑢𝑘+1) for 𝑘 = 0, 1, 2, … , (𝑛 − 1), that is, 

                     𝐿(𝑥) = 𝑢𝑘 +
1

ℎ
(𝑢𝑘+1 − 𝑢𝑘)(𝑥 − 𝑥𝑛),     𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1,                       (2.34) 

where 𝑘 = 0, 1, 2, … , (𝑛 − 1). 

     Substituting 𝐿 for 𝑢 and 𝐿′ for 𝑢′ in (2.33) and assuming that the integrals can be 

computed exactly yields 

                                             𝐼𝑛−1 = 𝐼𝑛−1(𝑢1, 𝑢2, … , 𝑢𝑛−1).                                         (2.35) 

     We next find the minimum of  𝐼𝑛−1 by solving the system of equations  

                                           
𝜕𝐼𝑛−1

𝜕𝑢𝑘
= 0,       𝑘 = 0, 1, 2, … , (𝑛 − 1).                                (2.36) 

The solution of this system (2.36) is then substituted into (2.34) to obtain a continuous, 

piecewise linear approximation for the exact solution  𝑢(𝑥). 
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Example 1.  (The Dirichlet problem for the Poisson equation in a plane).             

We consider the problem   

                                                   −∇2𝑢 = 𝑓(𝑥, 𝑦)  in  𝐷,                                              (2.37) 

                                               𝑢 = 0   on the boundary   𝜕𝐷.                                       (2.38) 

     The region 𝐷 is first triangulated so that it is approximated by a region 𝐷𝑛 which is the 

union of a finite number of triangles as shown in Figures-2.2(a) and 2.2(b). We denote the 

interior vertices by   𝑉1, 𝑉2, … , 𝑉𝑛.  

 

 

Figure-2.2 (a), (b), and (c). Triangular elements. 

    We next choose 𝑛 trial functions 𝑣1(𝑥, 𝑦), 𝑣2(𝑥, 𝑦), … 𝑣𝑛(𝑥, 𝑦), one for each interior 

vertex. Each trial function 𝑣𝑚(𝑥, 𝑦) is assumed to be equal to 1 at its vertices 𝑉𝑚 and 

equal to zero at all other vertices as in shown in Figure-2.2(c). 

     Each linear trial function 𝑣𝑚(𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐, where 𝑎, 𝑏, and 𝑐  are different for 

each trial function and for each triangle. This requirement determines 𝑣𝑚(𝑥, 𝑦) uniquely. 

Indeed, its graph is simply a pyramid of unit height with its peak at 𝑉𝑚 and it is zero on all 

the triangles which do not touch  𝑉𝑚. 

     We next approximate the solution 𝑢(𝑥, 𝑦) by a linear combination of the 𝑣𝑚(𝑥, 𝑦) so 

that 

   𝑢𝑛(𝑥, 𝑦) = 𝑎1𝑣1(𝑥, 𝑦) + 𝑎2𝑣2(𝑥, 𝑦) + ⋯+ 𝑎𝑛𝑣𝑛(𝑥, 𝑦) = ∑ 𝑎𝑚𝑣𝑚(𝑥, 𝑦),
𝑛
𝑚=1        (2.39) 

where the coefficients 𝑎1, 𝑎2, … , 𝑎𝑛   are to be determined. 

     We multiply the Poisson equation (2.37) by any function 𝑣(𝑥, 𝑦) which is zero on 𝜕𝐷 

and next use Green’s first identity to obtain 

                                    ∬ ∇𝑢
𝐷

∙ ∇𝑣𝑑𝑥𝑑𝑦 = ∬ 𝑓
𝐷

𝑣𝑑𝑥𝑑𝑦.                                          (2.40) 

     We assume that (2.40) is valid only for the first 𝑛 trial functions so that 𝑣 = 𝑣𝑘 for           

𝑘 = 0, 1, 2, … , 𝑛. With 𝑢(𝑥, 𝑦) = 𝑢𝑛(𝑥, 𝑦)  and  𝑣(𝑥, 𝑦) = 𝑣𝑘(𝑥, 𝑦), result (2.40) becomes 
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                         ∑ 𝑎𝑚 [∬ (∇𝑢𝑚𝐷
∙ ∇𝑣𝑘)𝑑𝑥𝑑𝑦] = ∬ 𝑓

𝐷
𝑣𝑘𝑑𝑥𝑑𝑦

𝑛
𝑚=1                           (2.41) 

This is a system of 𝑛 linear equations, where 𝑚 = 1, 2,… , 𝑛  in 𝑛 unknown coefficients 

𝑎𝑚, and can be rewritten in the form  

                                      ∑ 𝛼𝑚𝑘
𝑛
𝑚=1 𝑎𝑚 = 𝑓𝑘,      𝑘 = 1,2, … , 𝑛                                     (2.42) 

where 

                      𝛼𝑚𝑘 = ∬ (∇𝑢𝑚𝐷
∙ ∇𝑣𝑘)𝑑𝑥𝑑𝑦,            𝑓𝑘 = ∬ 𝑓

𝐷
𝑣𝑘𝑑𝑥𝑑𝑦.                   (2.43) 

Consequently, the finite element method leads to finding 𝛼𝑚𝑘 and 𝑓𝑘 from (2.43) and then 

solving (2.42). Finally, the approximate value of the solution 𝑢(𝑥, 𝑦) is then given by 

(2.39). 

     Several comments are in order. First, the trial functions 𝑣𝑚(𝑥, 𝑦) depend on the 

geometry of the problem and are completely known. Second, the approximate solution   

𝑢𝑛(𝑥, 𝑦) vanishes on the boundary 𝜕𝐷𝑛. Third, at a vertex 𝑉𝑖 = (𝑥𝑖 , 𝑦𝑖), 

                  𝑢𝑛(𝑥𝑖 , 𝑦𝑖) = 𝑎𝑖𝑣𝑖(𝑥𝑖 , 𝑦𝑖) + ⋯+ 𝑎𝑛𝑣𝑛(𝑥𝑖 , 𝑦𝑖) = ∑ 𝑎𝑟
𝑛
𝑟=1 𝑣𝑟(𝑥𝑖 , 𝑦𝑖) = 𝑎𝑖,   

where 

                                                        𝑣𝑟(𝑥𝑘 , 𝑦𝑘) = {
0,      𝑟 ≠ 𝑘           
1,      𝑟 = 𝑘.           

  

Fourth, the coefficients 𝑎𝑖 are exactly the values of the approximate solution at the vertices 

𝑉𝑖 = (𝑥𝑖 , 𝑦𝑖). 

 

Example-2 

 We consider the variational problem of finding the extremes of the functional 

                                      𝐼(𝑢) = ∫ (𝑢′
2
+ 𝑢2 − 2𝑢 − 2𝑥𝑢)

6

0
𝑑𝑥,                                  (2.44) 

with the boundary conditions 𝑢(0) = 1 and 𝑢(6) = 7. 

    We divide 0 ≤ 𝑥 ≤ 6 into three equal parts of length ℎ = 2 by 𝑥0 = 0,  𝑥1 = 2,  𝑥2 = 4, 
and 𝑥3 = 6. We set 𝑢𝑘 = 𝑢(𝑥𝑘) so that 𝑢0 = 𝑢(0) = 1 and 𝑢3 = 𝑢(6) = 7, while 𝑢1 and 

𝑢2 are unknown quantities. We have 

                                 𝐹(𝑥, 𝑢, 𝑢′) = 𝑢′
2
+ 𝑢2 − 2𝑢 − 2𝑥𝑢                                           (2.45) 

so that 

                𝐼 = ∫ 𝐹(𝑥, 𝑢, 𝑢′)𝑑𝑥 + ∫ 𝐹(𝑥, 𝑢, 𝑢′)𝑑𝑥 + ∫ 𝐹(𝑥, 𝑢, 𝑢′)𝑑𝑥
6

4

4

2

2

0
                      (2.46)                     

We take 
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                      𝐿(𝑥) =

{
 
 

 
 𝑢0 +

1

2
(𝑢1 − 𝑢0)𝑥,                   0 ≤ 𝑥 ≤ 2 

𝑢1 +
1

2
(𝑢2 − 𝑢1)(𝑥 − 2),       2 ≤ 𝑥 ≤ 4,

𝑢2 +
1

2
(𝑢3 − 𝑢1)(𝑥 − 4),        4 ≤ 𝑥 ≤ 6,

                              (2.47) 

so that its derivative is 

                                𝐿′(𝑥) =

{
 
 

 
 
1

2
(𝑢1 − 𝑢0),        0 ≤ 𝑥 ≤ 2 

1

2
(𝑢2 − 𝑢1),       2 ≤ 𝑥 ≤ 4 

1

2
(𝑢3 − 𝑢1),        4 ≤ 𝑥 ≤ 6.

                                         (2.48) 

Substituting (2.47) and (2.48) into (2.46) and using (2.45) we get 

𝐼 = ∫ [(
𝑢1−𝑢0

2
)
2
+ {𝑢0 +

1

2
(𝑢1 − 𝑢0)𝑥}

2
− 2 {𝑢0 +

1

2
(𝑢1 − 𝑢0)𝑥} − 2𝑥 {𝑢0 +

1

2
(𝑢1 −

2

0

𝑢0)𝑥}] 𝑑𝑥 + ∫ [(
𝑢2−𝑢1

2
)
2
+ {𝑢1 +

1

2
(𝑢2 − 𝑢1)(𝑥 − 2)}

2
− 2 {𝑢1 +

1

2
(𝑢2 − 𝑢1)(𝑥 − 2)} −

4

2

2𝑥 {𝑢1 +
1

2
(𝑢2 − 𝑢1)(𝑥 − 2)}] 𝑑𝑥 + ∫ [(

𝑢3−𝑢1

2
)
2
+ {𝑢2 +

1

2
(𝑢3 − 𝑢1)(𝑥 − 4)}

2
− 2 {𝑢2 +

6

4

1

2
(𝑢3 − 𝑢1)(𝑥 − 4)} − 2𝑥 {𝑢2 +

1

2
(𝑢3 − 𝑢1)(𝑥 − 4)}] 𝑑𝑥.   

Using the known values of 𝑢0 and 𝑢3 and integrating we obtain (𝑛 = 3)  

                                𝐼2 =
7

3
(𝑢1

2 + 𝑢2
2) −

1

3
𝑢1𝑢2 −

37

3
𝑢1 −

67

3
𝑢2 −

101

3
.  

Consequently, equation (2.36) gives two equations 

                                                   
𝜕𝐼2

𝜕𝑢1
=

14

3
𝑢1 −

1

3
𝑢2 −

37

3
= 0,  

                                                 
𝜕𝐼2

𝜕𝑢2
= −

1

3
𝑢1 +

14

3
𝑢2 −

67

3
= 0.   

Thus, the solutions for 𝑢1 and 𝑢2 are 𝑢1 = 3 and 𝑢2 = 5. 

     Putting these values into (2.47) leads to the approximate solution 

                                     𝐿(𝑥) = 1 + 𝑥,         0 ≤ 𝑥 ≤ 6.                                                (2.49) 

     In this problem, the Euler–Lagrange equation for (2.44) is given by 

                                              𝑢′′ − 𝑢 = −(1 + 𝑥).                                                       (2.50)  

Solving this equation with 𝑢(0) = 1 and 𝑢(6) = 7 yields the exact solution 

                                                      𝑢(𝑥) = 1 + 𝑥.                                

     In this example, the exact and approximate solutions are identical due to the simplicity 

of the problem. In general, these solutions will be different. 
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    We close this section by adding some comments on another numerical technique known 

as the boundary element method (boundary integral equation method). This method was 

widely used in early research in solid mechanics, fluid mechanics, potential theory and 

electromagnetic theory. However, the major breakthrough in the boundary integral 

equation method came in 1963 when two classic papers were published by Jaswon (1963) 

[105] and Symm (1963) [106]. The boundary element method is based on the mathematical 

aspect of finding the Green’s function solution of differential equations with prescribed 

boundary conditions. It also uses Green’s theorem to reduce a volume problem to a surface 

problem, and a surface problem to a line problem. This technique is not only very useful 

but also very accurate for linear problems, especially for three dimensional problems with 

rapidly changing variables in fracture and contact problems in solid mechanics. However, 

this method is computationally less efficient than the finite element method and is not 

widely used in industry. It is fairly popular for finding numerical solutions of acoustic 

problems. Since the early 1970s the boundary element method has continued to develop at 

a fast pace and has been extended to include a wide variety of linear and nonlinear problems 

in continuum mechanics. 

 

2.7 The Boundary Element Methods 

Over recent decades, the boundary element method (BEM) has received much attention 

from researchers and has become an important technique in the computational solution of 

a number of physical problems. In common with the better-known finite element method 

(FEM) and finite difference method (FDM), the boundary element method is essentially a 

method for solving partial differential equations (PDEs) and can only be employed when 

the physical problem can be expressed as such. As with the other methods mentioned, the 

boundary element method is a numerical method and hence it is an important subject of 

research amongst the numerical analysis community. However, the potential advantages of 

the BEM have seemed so considerable that the strongest impetus behind its development 

has come from the engineering community, in its enthusiasm to obtain flexible and efficient 

computer-based solutions to a range of engineering problems. The boundary element 

method has found application in such diverse topics as stress analysis, potential flow, 

fracture mechanics and acoustics. 

    The boundary element method is derived through the discretization of an integral 

equation that is mathematically equivalent to the original partial differential equation. The 

essential re-formulation of the PDE that underlies the BEM consists of an integral equation 

that is defined on the boundary of the domain and an integral that relates the boundary 

solution to the solution at points in the domain. The former is termed a boundary integral 

equation (BIE) and the BEM is often referred to as the boundary integral equation method 

or boundary integral method. Over the years the term boundary element method has 

become more popular [107]. The other terms are still used in the literature however, 

particularly when authors wish to refer to the overall derivation and analysis of the 

methods, rather than their implementation or application. 

    An integral equation re-formulation can only be derived for certain classes of PDE. 

Hence, the BEM is not widely applicable when compared to the near-universal adaptability 
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of the finite element and finite difference method. However, in the cases in which the 

boundary element method is applicable, it often results in a numerical method that is easier 

to use and more computationally efficient than the competing methods. 

    The advantage in the boundary element method arises from the fact that only the 

boundary (or boundaries) of the domain of the PDE requires sub-division. (In the finite 

element method or finite difference method the whole domain of the PDE requires 

discretization.) Thus the dimension of the problem is effectively reduced by one, for 

example an equation governing a three-dimensional region is transformed into one over its 

surface. In cases where the domain is exterior to the boundary, as it is in acoustic radiation 

and scattering models, the extent of the domain is infinite and hence the advantages of the 

BEM are even more striking; the equation governing the infinite domain is reduced to an 

equation over the (finite) boundary [107].  

    In a boundary integral method, a boundary value problem for a homogeneous PDE in a 

domain 𝛺 with the solution 𝑢 given on the boundary 𝛤 is reformulated as an integral 

equation over 𝛤. This equation may then be used as a basis for numerical approximation. 

We shall illustrate this approach for the model problem [108] 

                                ∇2𝑢 = 0  in   𝛺 ⊂ R2,   with   𝑢 = 𝑔  on   𝛤 ,                              (2.51) 

where we assume that 𝛤 is smooth. To pose the boundary integral equation, let 

                                                   𝑈(𝑥) = −
1

2𝜋
𝐿𝑛|𝑥|,  

be the fundamental solution of the Laplacian in R2. For any 𝑢 with ∇2𝑢 = 0 on 𝛤 we have 

by Green’s formula  

            𝑢(𝑥) = ∫ 𝑈(𝑥 − 𝑦)
𝜕𝑢

𝜕𝑛𝑦
(𝑦)

𝛤
d𝑠𝑦 − ∫

𝜕𝑈

𝜕𝑛𝑦
(𝑥 − 𝑦)𝑢(𝑦)

𝛤
d𝑠𝑦,  𝑥 ∈ 𝛺.           (2.52) 

With 𝑥 on 𝛤 the integrals on the right define the single- and double-layer potentials   

𝑉 𝜕𝑢 𝜕𝑛⁄  and 𝑊𝑢. We note that although 𝛻 𝑈(𝑥 − 𝑦) has a singularity of order  

𝑂(|𝑥 − 𝑦|−1), the kernel (𝜕𝑈 𝜕𝑛𝑦⁄ )(𝑥 − 𝑦) is bounded for 𝑥, 𝑦 ∈ 𝛤,  so that the operator  

𝑊 is well defined. For 𝑥 ∈ 𝛺 approaching 𝛤 the two integrals tend to 𝑉 𝜕𝑢 𝜕𝑛⁄  and 
1

2
𝑢 +

𝑊𝑢,  respectively, so that (2.52) yields 

                                            
1

2
𝑢 = 𝑉 𝜕𝑢 𝜕𝑛⁄ −𝑊𝑢   on  𝛤.                            

With 𝑢 = 𝑔 on 𝛤 this is a Fredholm integral equation of the first kind for the determination 

of 𝜕𝑢 𝜕𝑛⁄  on 𝛤, which inserted into (2.52) together with 𝑢 = 𝑔 on 𝛤  gives the solution of 

(2.51). Instead of this direct method one may use the indirect method of assuming that the 

solution of (2.52) may be represented as a potential of a function on   𝛤,  so that  

        𝑢(𝑥) = ∫ 𝛷(𝑥 − 𝑦)𝜐(𝑦)
𝛤

d𝑠𝑦   or   𝑢(𝑥) = ∫
𝜕𝛷

𝜕𝑛𝑦
(𝑥 − 𝑦)𝑤(𝑦)

𝛤
d𝑠𝑦 ,    𝑥 ∈ 𝛺.        
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With 𝑉 and 𝑊 as above, if such functions 𝜐 and 𝒲 exist, they satisfy the first and second 

kind Fredholm integral equations [108]  

                                    𝑉𝜐 = 𝑔  and  
1

2
𝑤 +𝑊𝑤 = 𝑔    on  𝛤.                                     (2.53) 

Writing 𝐻𝑠 = 𝐻𝑠(𝛤), 𝑉 and 𝑊 are so-called pseudo differential operators of order −1, i.e., 

bounded linear operators 𝐻𝑠 → 𝐻𝑠+1, in particular compact on 𝐻𝑠. The first kind equation 

is uniquely solvable provided a certain measure, the transfinite diameter  𝛿𝛤 of   𝛤, is such 

that 𝛿𝛤 ≠ 1, and the second kind equation in (2.53) always has a unique solution. Similar 

reformulations may be used also for Neumann boundary conditions, for a large number of 

other problems involving elliptic type equations, and for exterior problems; in fact, this 

approach to the numerical solution is particularly useful in the latter case. 

    In the Boundary Element Method (BEM) one determines the approximate solution in a 

piecewise polynomial finite element type space of a boundary integral formulation such as 

the above, using the Galerkin or the collocation method. 

    For the second kind equation in (2.53), using Galerkin’s method and a finite dimensional 

subspace 𝑆ℎ of 𝐿2(𝛤), we determine the discrete approximation  𝑤ℎ ∈ 𝑆ℎ  to   𝑤 from 

                   
1

2
〈𝑤ℎ, 𝜒〉 + 〈𝑊𝑤ℎ, 𝜒〉 = 〈𝑔, 𝜒〉,    ∀𝜒 ∈ 𝑆ℎ ,   where   〈. , . 〉 = (. , . ) 𝐿2(𝛤). 

Writing | . |𝑠 for the norm in 𝐻𝑠(𝛤), one has |𝑤ℎ − 𝑤|0 ≤ 𝐶𝑟(𝑤)ℎ
𝑟 if 𝑆ℎ is accurate of 

order 𝑂(ℎ𝑟), and by a duality argument one may show the superconvergent order negative 

norm estimate |𝑤ℎ − 𝑤|−𝑟 ≤ 𝐶𝑟(𝑤)ℎ
2𝑟; using an iteration argument this may be used to 

define an approximate solution  �̃�ℎ  with |�̃�ℎ − 𝑤|0 = 𝑂(ℎ
2𝑟). 

    Consider for example the numerical solution of the first kind equation in (2.53) in the 

finite dimensional space 𝑆ℎ of periodic smoothest splines of order 𝑟, i.e., 𝑆ℎ ⊂ 𝐶
𝑟−2   

consists of piecewise polynomials in ∏𝑟−1. Our discrete problem is then to find 𝜐ℎ ∈ 𝑆ℎ   

such that 

                                                        〈𝑉𝜐ℎ , 𝜒〉 = 〈𝑔, 𝜒〉,       ∀𝜒 ∈ 𝑆ℎ .  

It can be shown that [108] the bilinear form 〈𝑉𝑣 , 𝑤〉 associated with 𝑉 is symmetric, 

bounded, and coercive with respect to the norm | . |
−
1

2

 in a certain Sobolev space 𝐻−
1

2(𝛤), 

so that  

             〈𝑉𝑣 , 𝑤〉 = 〈𝑣 , 𝑉𝑤〉 ≤ 𝐶|𝑣|
−
1

2

|𝑤|
−
1

2

  and 〈𝑉𝑣 , 𝑣〉 ≥ 𝑐|𝑣|
−
1

2

2 , with  𝑐 > 0. 

One may then show that [108] 

                                    |𝜐ℎ − 𝑣|−1
2

≤ 𝐶 inf
𝜒∈𝑆ℎ 

|𝜒 − 𝑣|
−
1

2

≤ 𝐶ℎ𝑟+
1

2|𝑣|𝑟 ,   
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and a duality argument implies |𝜐ℎ − 𝑣|−𝑟−1 ≤ 𝐶ℎ2𝑟+1|𝑣|𝑟,  where we use the norm in 

𝐻−𝑟−1(𝛤). For 𝑥 an interior point of 𝛺 we therefore find for 𝑢ℎ = 𝑉𝜐ℎ that           

|𝑢ℎ(𝑥) − 𝑢(𝑥)| ≤ 𝐶𝑥|𝜐ℎ − 𝑣|−𝑟−1 ≤ 𝐶ℎ
2𝑟+1, since 𝛷(𝑥 − 𝑦) is smooth when 𝑦 ≠ 𝑥. 

    Expressed in terms of a basis {∅𝑗} of 𝑆ℎ  this problem may be written in matrix form as     

𝐴𝛼 = �̃�, where 𝐴 is symmetric positive definite. However, although the dimension of  𝐴  

has been reduced by the reduction of the original two-dimensional problem to a one-

dimensional one, in contrast to the finite element method for a differential equation 

problem, the matrix 𝐴 is now not sparse. We also note that the elements 〈𝑉𝛷𝑖 , 𝛷𝑗〉  require 

two integrations, one in forming 𝑉𝛷𝑖 and one in forming the inner product.  

     In order to reduce this work one may apply the collocation method and determine 𝜐ℎ  

from 𝑉𝜐ℎ (𝑥(𝑠𝑗)) = 𝑔 (𝑥(𝑠𝑗)) at 𝑀ℎ quadrature points 𝑠𝑗 in [0, 𝑙], where 𝑥 = 𝑥(𝑠) is a 

parametrization of 𝛤 and 𝑀ℎ = dim(𝑆ℎ). 

     In the vast literature on the numerical boundary integral methods much attention has 

been paid to the complications arising when our above regularity assumptions fail to be 

satisfied, such as for domains with corners in which case 𝑉 and 𝑊 are not compact. 

  

 

Figure-2.3 The boundary represented by a set of straight line panels.   

    There are a variety of techniques for deriving the system of linear equations from a given 

integral equation (see [109], [110], for example). In general, a method can be derived by 

replacing the integrals in an integral equation by a quadrature formula or by a weighted 

residual method such as the Galerkin method. Many methods for solving integral equation 

can be used to develop a particular boundary element method [111]. The application of 

collocation to a boundary integral equation requires that the boundary is represented by a 

set of panels. For example, a two-dimensional boundary can be approximated by a set of 

straight lines as illustrated in Figure-2.3. In order to complete the discretisation of the 

integral equations, the boundary functions also need to be approximated on each panel. In 

this work, it is the characteristics of the panel and the representation of the boundary 

function on the panel that together define the element in the boundary element method. 

Finally, by representing the boundary functions by a characteristic form on each panel, the 

boundary integral equations can be written as a linear system of equations.  
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CHAPTER - 3 

PROJECT- 1 

TWO-DIMENSIONAL FLUID FLOW PAST A 

RECTANGULAR PLATE 

 

3.1   The Equations of Motion 

The description of the flow of fluids is one of the richest and most challenging problems 

that can be treated on a computer. The non-linearity of the equations and the complexity of 

phenomena they describe (e.g., turbulence) sometimes make computational fluid dynamics 

more of an art than a science, and several book-length treatments are required to cover the 

field adequately. In this project, we will consider one relatively simple situation that can 

be treated by the relaxation methods for elliptic equations described in Chapter - 2 and that 

will serve to give some idea of the problems involved. This situation is the time-

independent flow of a viscous, incompressible fluid past an object. For simplicity, we will 

take the object to be translationally invariant in one direction transverse to the flow, so that 

the fluid has a non-trivial motion only in two-coordinates, (𝑥 , 𝑦); this might describe a rod 

or beam placed in a steady flow of water. For the initial velocity we will consider two 

cases: the first is constant and the second is a varying function. Thus, in Case (1) we take 

the incident velocity equals 𝑉0 and in Case (2) it is 𝑉0𝑒
−𝑥. We will also consider only the 

case where the cross-section of this rod is a rectangle with dimensions 2𝑊 transverse to 

the flow and T along the flow (see Fig. 3.1). This will greatly simplify the coding needed 

to treat the boundary conditions, while still allowing the physics to be apparent. We begin 

with an exposition of the basic equations and their discretization, follow with a brief 

discussion of the boundary conditions, and then give some guidance in writing the program 

and in extracting some understanding from it. 

    The non-linearity of the equations and the complexity of the flow of the fluid sometimes 

cause instability in the specific numerical method and divergence in the solution such as in 

turbulence phenomena [112]. The steady-state hydrodynamics in two dimensions, in our 

case, was considered and worked for different Reynolds-number. The Reynolds-number 

𝑅𝑒  in our case of incompressible fluid, is physically defined as the ratio of mass diffusion 

time constant to mass convection time constant. This is mathematically defined as  𝑅𝑒 =
V0h

ν
,  where h is the step size dimension. It is seen that the Reynolds-number is inversely 

proportional to viscosity ν. The magnitude of the initial flowing velocity field was defined 

here by V0. Two fundamental equations are required for the mass density, 𝜌,  and the 

velocity of the fluid element at each point in space, 𝑽. The first of which is the continuity 

equation [113]  

                                                           
𝜕𝜌

𝜕𝑡
+ ∇. 𝜌𝑽 = 0,                                                   (3.1) 

and the second is the Navier-Stokes equation [113]  
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𝜕𝑽

𝜕𝑡
= −(𝑽. 𝛻)𝑽 −

1

𝜌
𝛻𝑃 + 𝜈𝛻2𝑽,                                   (3.2) 

where 𝑃 is the pressure and 𝜈 is the kinematic viscosity, assumed constant. The first 

equation expresses the conservation of mass, and states that the density can change at a 

point in space only due to a net in–or out-flow of matter. The second equation expresses 

the conservation of momentum, and states that the velocity changes in response to 

convection, (𝑽. ∇)𝑽, spatial variations in the pressure, ∇𝑃, and viscous forces 𝜈∇2𝑽. We 

will assume that the temperature is constant throughout the fluid. 

 

Figure-3.1 Geometry of the two-dimensional flow past a plat to be treated in this project. 

 

Furthermore, we will be interested in studying time-independent incompressible fluid 

flows, so that equations (3.1) and (3.2) can be rewritten in the following forms 

                                                                ∇. 𝑽 = 0,                                                         (3.3) 

                                                   (𝑽. ∇)𝑽 = −
1

𝜌
∇𝑃 + 𝜈∇2𝑽.                                         (3.4)   

For two-dimensional flow, these equations can be written explicitly in terms of the 𝑥 and 

𝑦 components of the velocity field, denoted by 𝑢 and v, respectively: 

                                                               
𝜕𝑢

𝜕𝑥
+

𝜕v

𝜕𝑦
= 0;                                                    (3.5) 

                                                 𝑢
𝜕𝑢

𝜕𝑥
+ v

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝜈∇2𝑢;                                       (3.6) 

                                                  𝑢
𝜕v

𝜕𝑥
+ v

𝜕v

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑦
+ 𝜈∇2v.                                       (3.7) 
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Equations (3.5), (3.6) and (3.7) are three scalar equations for the fields u, v and P. While 

these equations could be solved directly, it is more convenient for two-dimensional 

problems to replace the velocity fields by two equivalent scalar fields: the stream function, 

𝜓 (𝑥, 𝑦), and the vorticity,  (𝑥, 𝑦). The first of these is introduced as a convenient way of 

satisfying the continuity equation (3.5). The stream function is defined so that [100] 

                                                   𝑢 =
𝜕𝜓

𝜕𝑦
;      v = −

𝜕𝜓

𝜕𝑥
                                                   (3.8) 

such a 𝜓 function exists for all flows that satisfy the continuity equation. It can be seen 

also that 𝑽 is tangent to contour lines of constant 𝜓, the streamlines. The vorticity is given 

by      

                                                              휁 =
∂u

∂y
−
∂v

∂x
                                                       (3.9) 

which is seen to be (the negative of) the curl of the velocity field. From the definition (3.8), 

it follows that 휁 is related to the stream function 𝜓 by  

                                                                  ∇2𝜓 = 휁                                                      (3.10) 

An equation for 휁 can be derived by differentiating (3.6) with respect to 𝑦 and (3.7) with 

respect to  𝑥, we get 

                            
∂𝑢

∂𝑦

𝜕𝑢

𝜕𝑥
+ 𝑢

∂2𝑢

𝜕𝑥𝜕𝑦
+

𝜕v

𝜕𝑦

𝜕𝑢

𝜕𝑦
+ v

∂2𝑢

𝜕𝑦2
= −

1

𝜌

𝜕2𝑃

𝜕𝑦𝜕𝑥
+ 𝜈

𝜕

𝜕𝑦
 (∇2𝑢)                 (3.11)     

and 

                             
𝜕𝑢

𝜕𝑥

𝜕v

∂𝑥
+ 𝑢

𝜕2v

∂𝑥2
+

𝜕v

∂𝑥

𝜕v

∂𝑦
+ v

∂2v

∂𝑦 ∂𝑥
= −

1

𝜌

𝜕2𝑃

𝜕𝑥𝜕𝑦
+ 𝜈

𝜕

𝜕𝑥
 (∇2v)               (3.12)      

    

Subtracting (3.11) from (3.12) and invoking the continuity equation (3.5) and definition 

(3.8), we get 

𝜕𝑢

𝜕𝑥
(
𝜕𝑢

𝜕𝑦
−
𝜕v

𝜕𝑥
) + 𝑢 (

∂2𝑢

𝜕𝑥𝜕𝑦
−
𝜕2v

∂𝑥2
) +

𝜕v

∂𝑦
(
∂𝑢

∂𝑦
−
𝜕v

∂𝑥
) + v(

∂2𝑢

𝜕𝑦2
−

∂2v

∂𝑦 ∂𝑥
)

= ν (
𝜕

𝜕𝑦
 (∇2𝑢) −

𝜕

𝜕𝑥
 (∇2v)) 

(
𝜕𝑢

𝜕𝑦
−
𝜕v

𝜕𝑥
) (
𝜕𝑢

𝜕𝑥
+
𝜕v

∂𝑦
) + 𝑢 (

∂2𝑢

𝜕𝑥𝜕𝑦
−
𝜕2v

∂𝑥2
) + v(

∂2𝑢

𝜕𝑦2
−

∂2v

∂𝑦 ∂𝑥
)

= ν (
𝜕

𝜕𝑦
 (∇2𝑢) −

𝜕

𝜕𝑥
 (∇2v)) 

𝑢
𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑦
−
𝜕v

𝜕𝑥
) + v

𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑦
−
𝜕v

𝜕𝑥
) = ν ( ∇2

𝜕𝑢

𝜕𝑦
− ∇2

𝜕v

𝜕𝑥
) = ν∇2 (

𝜕𝑢

𝜕𝑦
−
𝜕v

𝜕𝑥
) 
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                                                                                     𝑢
𝜕𝜁

𝜕𝑥
+ v 

𝜕𝜁

𝜕𝑦
=  ν∇2휁. 

Therefore 

                                                      ν∇2휁 =
𝜕𝜓

𝜕𝑦

𝜕𝜁

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝜁

𝜕𝑦
.                                            (3.13) 

Finally, an equation for the pressure can be derived by differentiating (3.6) with respect to 

𝑥, and (3.7) with respect to 𝑦, we get 

                                 
𝜕𝑢

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕2𝑢

𝜕𝑥2
+

𝜕v

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ v

𝜕2𝑢

𝜕𝑥𝜕𝑦
= −

1

𝜌

𝜕2𝑃

𝜕𝑥2
+ 𝜈

𝜕

𝜕𝑥
(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)                      (3.14) 

                                   
𝜕𝑢

𝜕𝑦

𝜕v

𝜕𝑥
+ 𝑢

𝜕2v

𝜕𝑦𝜕𝑥
+

𝜕v

∂𝑦

𝜕v

∂𝑦
+ v

𝜕2v

𝜕𝑦2
= −

1

𝜌

𝜕2𝑃

𝜕𝑦2
+ 𝜈

𝜕

𝜕𝑦
(
∂2v

∂x2
+
∂2v

∂y2
)               (3.15) 

Now adding (3.14) to (3.15), we get 

𝜕𝑢

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕v

𝜕𝑥
+ 𝑢

𝜕2𝑢

𝜕𝑥2
+ 𝑢

𝜕2v

𝜕𝑦𝜕𝑥
+
𝜕v

𝜕𝑥

𝜕𝑢

𝜕𝑦
+
𝜕v

∂𝑦

𝜕v

∂𝑦
+ v

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ v

𝜕2v

𝜕𝑦2

= −
1

𝜌
∇2𝑃 + 𝜈 (

𝜕

𝜕𝑥
(∇2𝑢) +

𝜕

𝜕𝑦
(∇2v)) 

(
𝜕2𝜓

𝜕𝑥𝜕𝑦
)

2

− 2
𝜕2𝜓

𝜕𝑦2
𝜕2𝜓

𝜕𝑥2
+
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑦
(
𝜕2𝜓

𝜕𝑥2
) −

𝜕𝜓

𝜕𝑦

𝜕2

𝜕𝑥2
𝜕𝜓

𝜕𝑦
+ (

𝜕2𝜓

𝜕𝑦𝜕𝑥
)

2

−
𝜕𝜓

𝜕𝑥
(
𝜕2

𝜕𝑥𝜕𝑦

𝜕𝜓

𝜕𝑦
−
𝜕2

𝜕𝑦2
𝜕𝜓

𝜕𝑥
) = −

1

𝜌
∇2𝑃 + 𝜈∇2 (

𝜕𝑢

𝜕𝑥
+
𝜕v

𝜕𝑦
) 

2(
𝜕2𝜓

𝜕𝑥𝜕𝑦
)

2

− 2
𝜕2𝜓

𝜕𝑥2
𝜕2𝜓

𝜕𝑦2
+
𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑦𝜕𝑥2
−
𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑦𝜕𝑥2
−
𝜕𝜓

𝜕𝑥
[
𝜕2

𝜕𝑥𝜕𝑦
(
𝜕𝜓

𝜕𝑦
−
𝜕𝜓

𝜕𝑦
)]

= −
1

𝜌
∇2𝑃 

                                             ∇2𝑃 = 2𝜌 {
∂2ψ

∂x2
∂2ψ

∂y2
− (

∂2ψ

∂x∂y
)
2

}                                       (3.16)     

Equations (3.9), (3.13) and (3.16) are a set of non-linear elliptic equations, equivalent to 

the original equations (3.5), (3.6) and (3.7). 

 

3.2   The Boundary Conditions 

The boundary conditions on the centerline surfaces A and E of the plate are determined by 

symmetry. The y component of the velocity, v, must vanish on A and E, so that 
𝜕𝜓

𝜕𝑥
  vanishes 

and accordingly A and E are streamlines. Moreover, since the normal velocity also vanishes 

on B, C, and D, the entire surface ABCDE is a single streamline. From symmetry, we can 
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also conclude that the vorticity vanishes on A and E. The upstream surface F is contiguous 

with the smoothly flowing incident fluid, so that we can put                                             

                                               v = −
𝜕𝜓

𝜕𝑥
= 0;        휁 = 0    on F.                                   (3.17)   

 

                                                                   

 

  

 

F:  휁 = 0,                           

 
𝜕𝜓

𝜕𝑥
= 0                   

               

               

휁𝑖,𝑗 =
2

ℎ2
𝜓𝑖−1,𝑗             

           

          𝜓 = 0       

  

E:  𝜓 = 휁 = 0 

 G:      
𝜕𝜓

𝜕𝑦
= 𝑉0, or 𝑉0𝑒

−𝑥,  휁 = 0          

                                                   

                                                              
𝜕𝜓

𝜕𝑥
=

0     

𝜓 = 0,  휁𝑖,𝑗 =
2

ℎ2
𝜓𝑖,𝑗+1 

        C 

 

 

D            B 

              H:   
𝜕𝜁

𝜕𝑥
= 0,

𝜕𝜓

 𝜕𝑥
= 0   

휁𝑖,𝑗 =
2

ℎ2
𝜓𝑖+1,𝑗   

 

𝜓 = 0  

 

 

A:       𝜓 = 휁 = 0   

 

Figure-3.2 Boundary conditions on 𝜓 and 휁 for the flowing system and the obstacle for 

the upper part, in symmetry. 

The boundary conditions on the upper boundary G are similarly straightforward. We may 

expect G to be in free flow, if the lattice is large enough. Hence, 

                                        𝑢 =
𝜕𝜓

𝜕𝑦
= 𝑉0 or 𝑉0𝑒

−𝑥;    휁 = 0    on 𝐺,                                (3.18) 

is one appropriate choice. 

The downstream boundary H is much more ambiguous and, so long as it is sufficiently far 

from the plate one convenient choice is 
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𝜕𝜓

𝜕𝑥
=

𝜕𝜁

𝜕𝑥
= 0    on 𝐻.                                            (3.19) 

At the walls of the plates, (𝐵, 𝐶, and 𝐷) one of the correct boundary conditions is that 

                                                  v = −
𝜕𝜓

𝜕𝑥
= 0         on 𝐵, 𝐶, 𝐷.                                    (3.20) 

However, the other boundary condition appropriate for viscous flow is that the tangential 

velocity be zero, 

                                                  𝑢 =
𝜕𝜓

𝜕𝑦
= 0             on 𝐵, 𝐶, 𝐷.                                    (3.21) 

The above boundary conditions are illustrated in Figure-3.2. 

The boundary conditions for the pressure on all surfaces are of the Neumann type, and 

follow from equations (3.6) and (3.7). From the symmetry  
𝜕𝑃

𝜕𝑦
= 0  on the centerlines A 

and E. 

 

3.3   The Method of Solution  

To solve equations (3.9), (3.13) and (3.16) numerically we introduce a two-dimensional 

lattice of uniform spacing h having 𝑁𝑥 and 𝑁𝑦 points in the 𝑥 and 𝑦 directions, 

respectively, and use the indices 𝑖 and 𝑗 to measure these coordinates (see Figure-3.3). It is 

convenient to scale the equations by measuring all lengths in units of ℎ and all velocities 

in units of the magnitude of the incident fluid velocity, 𝑉0. The stream function is then 

measured in units of 𝑉0ℎ, while the vorticity is in units of 
𝑉0

ℎ
 , and the pressure is 

conveniently scaled by 𝜌𝑉0
2. The second step is to differencing equations (3.9), (3.13) and 

(3.16) by using symmetric second- and first-difference operators [114]. Accordingly, the 

lattice Reynolds number, 𝑅𝑒 =
V0h

ν
, is a dimensionless measure of the strength of the 

viscous forces.   
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Figure-3.3 The lattice to be used in calculating the fluid flow past the plate illustrated in 

Figure-3.1. 

    Our numerical method of solution of the resulting coupled non-linear elliptic partial 

differential equations for the stream function and the vorticity is by using the relaxation 

method iteratively [6]. In the model, a rectangular obstacle was defined with height 16ℎ 

and width 8ℎ. Since, for simplicity, the incident fluid was in free-flowing case parallel and 

far enough from the obstacle, the symmetry property was used. For solving the upper part 

of the flowing system in lattice space we take 𝑁𝑥 = 70,  𝑁𝑦 = 24,  the vorticity relaxation 

= 0.3, and the stream relaxation = 0.3.  Furthermore, the lattice Reynolds number was 

allowed to take on the values from 0.5 to 300. We begin the iteration scheme by choosing 

trial values corresponding to the free-flowing solution 𝜓 = 𝑦 and 휁 = 0. We then perform 

one relaxation sweep of the first equation to get an improved value of 𝜓.  

    Using the finite differencing scheme, the first equation of (3.9) can be written as follows 

                                     𝜓𝑖+1,𝑗 + 𝜓𝑖−1,𝑗 + 𝜓𝑖,𝑗+1 + 𝜓𝑖,𝑗−1 − 4𝜓𝑖,𝑗 = ℎ
2휁𝑖,𝑗.               (3.22)       

The next step is to transform the equations to dimensionless ones in   and   by 

introducing new variables 𝜓′ 𝑎𝑛𝑑 휁′, defined by  𝜓 = 𝜓′𝑉0ℎ  and 휁 =
𝑉0

ℎ
휁′, so that [115] 

                               𝜓𝑖+1,𝑗
′ + 𝜓𝑖−1,𝑗

′ + 𝜓𝑖,𝑗+1
′ + 𝜓𝑖,𝑗−1

′ − 4𝜓𝑖,𝑗
′ =

ℎ

𝑉0
휁𝑖,𝑗 = 휁𝑖,𝑗

,
.           (3.23) 

Therefore, the values of 𝜓′ and 휁′  are in units of  𝑉0ℎ  and  
𝑉0

ℎ
.  

    The right-hand side of equation (3.13) can be similarly written as  

 휁𝑖+1,𝑗
′ + 휁𝑖−1,𝑗

′ + 휁𝑖,𝑗+1
′ + 휁𝑖,𝑗−1

′ − 4휁𝑖,𝑗
′ −

𝑅𝑒

4
[
(휁𝑖+1,𝑗
′ − 휁𝑖−1,𝑗

′ )(𝜓𝑖,𝑗+1
′ − 𝜓𝑖,𝑗−1

′ )

−(휁𝑖,𝑗+1
′ − 휁𝑖,𝑗−1

′ )(𝜓𝑖+1,𝑗
′ − 𝜓𝑖−1,𝑗

′ )
] = 0.      (3.24)         
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The two coupled partial differential equations (3.23) and (3.24) can be written in the 

following form [115]  

(𝑎1)𝑖+1,𝑗𝜓𝑖+1,𝑗
′ + (𝑏1)𝑖−1,𝑗𝜓𝑖−1,𝑗

′ + (𝑐1)𝑖,𝑗+1𝜓𝑖,𝑗+1
′  

                                       +(𝑑1)𝑖,𝑗−1𝜓𝑖,𝑗−1
′ + (𝑒1)𝑖,𝑗𝜓𝑖,𝑗

′ = (𝑓1)𝑖,𝑗, 

                               (𝑎2)𝑖+1,𝑗휁𝑖+1,𝑗
′ + (𝑏2)𝑖−1,𝑗휁𝑖−1,𝑗

′ + (𝑐2)𝑖,𝑗+1휁𝑖,𝑗+1
′                         (3.25) 

                                       +(𝑑2)𝑖,𝑗−1휁𝑖,𝑗−1
′ + (𝑒2)𝑖,𝑗휁𝑖,𝑗

′ = (𝑓2)𝑖,𝑗                                                                      

where the corresponding coefficient-matrix elements are defined by [115]: 

𝑎1𝑖+1,𝑗 = 1,                      𝑎2𝑖+1,𝑗 = 1 −
𝑅𝑒

4
[𝜓𝑖,𝑗+1

′ − 𝜓𝑖,𝑗−1
′ ],   

                       𝑏1𝑖−1,𝑗 = 1,                     𝑏2𝑖−1,𝑗 = 1 +
𝑅𝑒

4
[𝜓𝑖,𝑗+1

′ − 𝜓𝑖,𝑗−1
′ ]  

                       𝑐1𝑖,𝑗+1 = 1,                      𝑐2𝑖,𝑗+1 = 1 −
𝑅𝑒

4
[𝜓𝑖+1,𝑗

′ − 𝜓𝑖−1,𝑗
′ ],                 (3.26) 

                       𝑑1𝑖,𝑗−1 = 1,                    𝑑2𝑖,𝑗−1 = 1 −
𝑅𝑒

4
[𝜓𝑖+1,𝑗

′ − 𝜓𝑖−1,𝑗
′ ]  

𝑒1𝑖,𝑗 = −4,         𝑒2𝑖,𝑗 = −4,       𝑓1𝑖,𝑗 = 휁𝑖,𝑗
′ ,            𝑓2𝑖,𝑗 = 0                                                     

These constant coefficients are such that the arrays declaration were avoided and simply 

replaced by their corresponding constant values. The coefficients matrix elements have the 

same dimensions.  

    Furthermore, the velocity field 𝑽 = 𝑢𝒊 + v𝒋 was related to the stream function 𝜓(𝑥, 𝑦), 
but by using central differencing scheme for the equations 

                                   𝑢 =
𝜕𝜓

𝜕𝑦
=

𝜕𝜓′𝜈0ℎ

𝜕𝑦
       𝑎𝑛𝑑     v = −

𝜕𝜓

𝜕𝑥
= −

𝜕𝜓′𝜈0ℎ

𝜕𝑥
.                    (3.27)      

Accordingly 

                                    𝑢𝑖,𝑗 =
1

2
(𝜓𝑖,𝑗+1

′ − 𝜓𝑖,𝑗−1
′ ),   v𝑖,𝑗 = −

1

2
(𝜓𝑖+1,𝑗

′ − 𝜓𝑖−1,𝑗
′ ).       (3.28) 

The boundary conditions are, now, simply given by 

At boundary A,      𝜓′ = 0,          𝜓𝑖,𝑗
′ = 0,     휁′ = 0,        휁𝑖,𝑗

′ = 0 

At boundary B,      𝜓𝑖,𝑗
′ = 0,         휁𝑖,𝑗

′ = 2𝜓𝑖+1,𝑗
′  

At boundary C,     𝜓𝑖,𝑗
′ = 0,          휁𝑖,𝑗

′ = 2𝜓𝑖,𝑗+1
′  

At boundary D,     𝜓𝑖,𝑗
′ = 0,          휁𝑖,𝑗

′ = 2𝜓𝑖−1,𝑗
′  
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At boundary E,      𝜓′ = 0           𝜓𝑖,𝑗
′ = 0       휁′ = 0            휁𝑖,𝑗

′ = 0 

At boundary F, because of the initial parallel free flow assumption and using forward finite 

differencing scheme, 
𝜕𝜓

𝜕𝑥
= 0           𝜓𝑖−1,𝑗

′ = 𝜓𝑖,𝑗
′                   휁′ = 0            휁𝑖,𝑗

′ = 0 

At boundary G, because of the far away from the obstacle and using backward finite 

differencing scheme 

                            
𝜕𝜓

𝜕𝑦
= 𝑉0, or 𝑉0𝑒

−𝑥,     𝜓𝑖,𝑗
′ − 𝜓𝑖,𝑗−1

′ = 1,    휁′ = 0, and  휁𝑖,𝑗
′ = 0 

At boundary H, because of the far away enough from the obstacle, the boundary conditions 

were assumed that the parallel free flow was restored so that, by using backward finite 

differencing scheme, we get 

Set-1 condition:  
𝜕𝜓

𝜕𝑥
= 0         𝜓𝑖,𝑗

′ = 𝜓𝑖−1,𝑗
′            

𝜕𝜁

𝜕𝑥
= 0            휁𝑖,𝑗

′ = 휁𝑖−1,𝑗
′  

Set-2 condition:  
𝜕𝜓

𝜕𝑥
= 0         𝜓𝑖,𝑗

′ = 𝜓𝑖−1,𝑗
′            휁 = 0            휁𝑖,𝑗

′ = 0  

In the program both of the two sets of boundary conditions at H were used and the results 

were reported.  

    Accordingly, the successive over relaxation (SOR) method [6] was used. It is of interest 

to notice that for 10 < 𝑖 < 18 and  0 < 𝑗 < 8, there was forbidden region. For the SOR 

method, the residue vectors have the following magnitudes  

                              𝑅𝐸𝑆(𝜓)𝑖,𝑗 = 𝜓𝑖,𝑗
′ −

𝜔(𝜁𝑖,𝑗)𝜓

(𝑒1)𝑖,𝑗
                  𝑅𝐸𝑆(휁)𝑖,𝑗 = 휁𝑖,𝑗

′ −
𝜔(𝜁𝑖,𝑗)𝜁

(𝑒2)𝑖,𝑗
, 

where 𝜔 is the over-relaxation factor [6]. The steady state of the relaxation was approached 

and RES (𝜓) were lesser than 10−6 . The algorithm used in the program was firstly to 

initialize the stream function 𝜓 and the vorticity 휁. The pressure 𝑃 was initialized as for 

parallel free of flow over the space excluding the forbidden region.  

𝜓𝑖,𝑗
′ = 𝑗           ;            휁𝑖,𝑗

′ = 0 

    Then, the coefficient matrices of the partial differential equations for the stream function 

were updated and followed by doing the relaxation for the stream function at the interior 

points. After the relaxation has been made once for the stream function, the boundary 

conditions must be checked and then the coefficient matrices of the partial differential 

equations are to be calculated at the interior points. The procedures were iteratively 

repeated until both magnitudes of the residue vectors: 𝑅𝑒𝑠(휁) and 𝑅𝑒𝑠(𝜓) converged and 

have values less than 10−6. The over-relaxation factor 𝜔 was used and assumed the value 

of 0.7 which was out of the range 1 ≤ 𝜔 ≤ 2. This is because the nonlinear set of partial 

differential equations for the vorticity function is sensitively diverge for the over-

relaxation. For our case, the larger values of the Reynolds-number are used and the smaller 

value of the allowed maximum over-relaxation factor 𝜔 was found. Therefore, for the 
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comparison of the convergence rate for different situations, the values of 𝜔 were 0.7 and 

0.2, for  𝑅𝑒 = 300. 

 

3.4   Results and Conclusions 

A computer program is written in FORTRAN to solve for 𝜓, 휁, and 𝑃 subject to the 

boundary conditions discussed in section-3.2 and the numerical method of solution 

discussed in section-3.3 of this chapter. In Case (1), we present the resulting values when 

the initial velocity is constant and equals 𝑉0. In Case (2), we present the resulting values 

when the initial velocity is variable and equals 𝑉0𝑒
−𝑥.  

    

Case (1): The initial velocity is constant and equals 𝑉0  

In Table-3.1 we present the resulting values of the pressure force, the viscous force, and 

the minimum and maximum values of the vorticity and the stream function. The iteration 

step is given in the first column of Table-3.1.  

    It is seen from the resulting values in the last two rows that our method converges and 

gives exactly the same values after the 5000-iteration step. 

    It is of interest to notice that the pressure force is equal to (0.6318 𝜌𝑉0
2),  while the 

viscous force is equal to (0.3323 𝑅𝑒). The vorticity varies between (-0.0145 
𝑉0

ℎ
) and (0.5109 

𝑉0

ℎ
).  

Table-3.1 The resulting values of the pressure force, the viscous force, and the minimum 

and maximum values of the vorticity and the stream function. The iteration step is given in 

the first column.  

     N   

Iterations 

Pressure 

Force 

Viscous 

Force 

Vorticity 

min.        max. 

Stream Function 

min.       max. 

1 75.0459 8.5549 0.0000 11.1900 0.0000 19.000 

10 17.0205 4.1333 0.0000 5.6470 0.0000 19.000 

20 4.8771 2.3708 0.0000 4.2160 0.0000 19.000 

30 2.7476 1.7373 -0.2171 3.5060 -0.1085 19.000 

40 2.2888 1.4435 -0.2798 3.0690 -0.1399 19.000 

50 2.1410 1.2765 -0.2813 2.7620 -0.2007 19.000 

60 2.0657 1.1681 -0.2667 2.5300 -0.2326 19.000 

70 2.0142 1.0918 -0.2475 2.3460 -0.2392 19.000 

80 1.9736 1.0349 -0.2272 2.1970 -0.2673 18.990 

90 1.9387 0.9907 -0.2080 2.0730 -0.2771 18.980 

100 1.9071 0.9551 -0.1906 1.9690 -0.2766 18.970 

200 1.6509 0.7508 -0.1018 1.4330 -0.3063 18.550 

300 1.4648 0.6879 -0.0670 1.2170 -0.1732 17.850 

400 1.3158 0.6272 -0.0507 1.0840 -0.0968 17.100 

500 1.1918 0.5784 -0.0427 0.9842 -0.0700 16.400 
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600 1.0885 0.5372 -0.0381 0.9018 -0.0574 15.760 

700 1.0033 0.5023 -0.0345 0.8323 -0.0484 15.180 

800 0.9335 0.4728 -0.0314 0.7735 -0.0412 14.680 

900 0.8766 0.4481 -0.0288 0.7240 -0.0359 14.250 

1000 0.8303 0.4275 -0.0265 0.6824 -0.0312 13.870 

2000 0.6555 0.3445 -0.0162 0.5322 -0.0124 12.200 

3000 0.6345 0.3337 -0.0147 0.5134  -0.0101 11.950 

4000 0.6321 0.3325 -0.0148 0.5111 -0.0098 11.920 

5000 0.6318 0.3323 -0.0147   0.5109 -0.0098 11.920 

6000 0.6318 0.3323 -0.0145   0.5109 -0.0098 11.920 

     

    The number of iterations, N, required for the convergence of the solutions for the 

different Reynolds-numbers, 𝑅𝑒, together with the over-relaxation factor 𝜔, was shown in 

Table-3.2, together with the maximum and minimum values of the computed functions  

𝜓, 휁. 𝑃, and the velocity magnitude V. 

 

Table-3.2 The number of iterations, N, required for convergence of solutions for different 

Reynolds-numbers 𝑅𝑒, together with the over-relaxation factor 𝜔. The maximum and 

minimum values of the computed functions are also given.  

𝑅𝑒 𝜔 N Stream function 

𝜓 

Vorticity function 휁 

 

Static Pressure 𝑃 Velocity 

magnitude 

Max Min Max Min Max Min Max Min 

0.5 0.7 2330 0.003 0 0.003297 1×
10−7   

7.1×
10−6 

-2 × 10−6 27.8×
10−6 

0 

1.0 0.7 536 0.006 0 0.00728 3×
10−7 

146×
10−4  

-6× 10−7  555×
10−4 

0 

10 0.7 458 0.0614 0 0.1558 53×
10−7 

2.49×
10−4  

-168×
10−6  

555×
10−6   

0 

20 0.7 374 0.1242 0 0.3882 1×
10−5 

7.5×
10−4  

-7.9×
10−6 

116×
10−5 

0 

100 0.7 451 0.679 0 2.327 2×
10−5  

0.0158 -0.0165 597×
10−5 

0 

200 0.7 3120 1.432 0 4.677 7×
10−5  

0.065 -0.052 0.012 0 

300 0.2 893 2.194 0 7.05 26×
10−5  

0.1466 -0.1066 0.018 0 

 

In Figures-3.4 to 3-18, we present the plots of the static pressure, the vorticity magnitude 

and the stream function for Reynolds number Re = 10, 20, 100, 200, and 300, respectively.    

    From the results of Table-3.2 we notice that for large values of the Reynolds number, 

the pressure in front of the obstacle increases knowing that when velocity increases the 

pressure is decreasing so that the pressure above the obstacle decreases when the velocity 

decreases. The velocity magnitude increased with increasing the Reynolds number. Also, 

at high Reynolds numbers the position of high velocity of fluid are forward with the flow.    
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    The number of iterations used to approach the steady state of the relaxation was found 

that, for larger value of Reynolds number, the number of iterations for convergence of the 

stream function was slower than that for the vorticity function. The number of iterations 

used for vorticity function indicates that the first consumed iterations for the vorticity 

function reached and stayed within the convergence limit. The vorticity function was still 

refreshed differently for different iteration step because the dependence of the stream 

function was slower than that of the vorticity function. The results of this case are published 

in [115]  

 

                   Figure-3.4 Counters of static pressure for Reynolds number 𝑅𝑒 = 10  
 

 

Figure-3.5 Counters of vorticity magnitude (1/s) for Reynolds number 𝑅𝑒 = 10 
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Figure-3.6 Stream function (Kg/s) for Reynolds number 𝑅𝑒 = 10 

 

Figure-3.7 Counters of static pressure for Reynolds number 𝑅𝑒 = 20 

 

Figure-3.8 Counters of vorticity magnitude (1/s) for 𝑅𝑒 = 20 
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Figure-3.9 Stream function (Kg/s) for Reynolds number 𝑅𝑒 = 20 

 

Figure-3.10 Counters of static pressure for Reynolds number 𝑅𝑒 = 100 

 

Figure-3.11 Counters of vorticity magnitude (1/s) for Reynolds number 𝑅𝑒 = 100 
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Figure-3.12 Stream function (Kg/s) for Reynolds number 𝑅𝑒 = 100 

 

Figure-3.13 Counters of static pressure for Reynolds number 𝑅𝑒 = 200 

 

Figure-3.14 Counters of vorticity magnitude (1/s) for Reynolds number 𝑅𝑒 = 200 
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Figure-3.15 Stream function (Kg/s) for Reynolds number 𝑅𝑒 = 200 

 

Figure-3.16 Counters of static pressure for Reynolds number 𝑅𝑒 = 300 

 

Figure-3.17 Counters of vorticity magnitude (1/s) for Reynolds number 𝑅𝑒 = 300 
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Figure-3.18 Stream function (Kg/s) for Reynolds number 𝑅𝑒 = 300 

  

Case (2): The initial velocity is variable and equals 𝑉0𝑒
−𝑥 

The number of iterations, N, required for the convergence of the solutions for the different 

Reynolds-numbers, 𝑅𝑒, together with the over-relaxation factor 𝜔, was shown in Table-

3.3, together with the maximum and minimum values of the computed functions  

𝜓, 휁. 𝑃, and the velocity magnitude V. 

Table-3.3 the number of iterations used for convergence of the solutions and their related 

minimum and maximum values for 𝑣 = 𝑉0𝑒
−𝑥, decaying flow in the 𝑥 − direction.  

 

𝑅𝑒 𝜔 N Stream 

function 

𝜓 

Vorticity 

magnitude 

휁 

Static Pressure 

𝑃 

Velocity 

magnitude 

Max Min Max Min Max Min Max Min 
0.5 0.7 390 0.003 0 0.0025 1𝑥10−7  7.3 𝑥10−6  -2 𝑥10−7  27.7 𝑥10−6  0 

1.0 0.7 390 0.006 0 0.0056 0 15 𝑥10−6  -1 𝑥10−6  555 𝑥10−4 0 

10 0.7 290 0.0613 0 0.1187 5𝑥10−6  2.55 𝑥10−4  -135 𝑥10−6  5.52 𝑥10−4  0 

20 0.7 260 0.1242 0 0.294 4𝑥10−5  7.6 𝑥10−4  -6.4 𝑥10−4  0.00114 0 

100 0.7 480 0.669 0 2.017 5.8𝑥10−5  0.0156 -14.9 e-3 0.00597 0 

200 0.7 340 1.404 0 4.205 2.8𝑥10−5  0.054 -5.1 e-2 0.0119 0 

300 0.2 9450 1.955 0 6.415 18.7𝑥10−5  0.1912 -0.062 0.0178 0 

 

    In Figures-3.19 to 3.46 we present the variations of the static pressure, the velocity 

magnitude, the vorticity magnitude and the stream function, as functions of position, for 

𝑅𝑒 = 0.5, 1, 10, 20, 100, 200 and 300, respectively [115]. 
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    From the results we notice that for large values of the Reynolds number, the pressure in 

front of the obstacle increases, knowing that when velocity increases the pressure is 

decreasing so that the pressure above the obstacle decreases when the velocity decreases. 

    The velocity magnitude will be increased with increasing the Reynolds number. Also, at 

high Reynolds numbers the position of high velocity of fluid is translated forward with the 

flow.  

       The convergence rates of the pressure function for different Reynolds number is seen 

in the figures.   

    The number of iterations used to approach the steady state of the relaxation shows that, 

for larger value of the Reynolds number, the number of iterations for convergence of the 

stream function was slower than that for the vorticity function. The number of iterations 

for the vorticity function, indicates that the first consumed iterations for the vorticity 

function is reached and stayed within the convergence limit. The vorticity function was 

still refreshed differently for different iteration step because the dependence of the stream 

function was slower than that of the vorticity function. The convergence rates of the stream 

function and the vorticity function for different Reynolds number is shown in the figures.   

    The convergence rates in case - 1 [114], with initial velocity equals 𝑉0, were found to be 

closed to that of our present situation, but the overall number of iterations is larger than 

that of the previous case in [114]. In general, for more strictly conditions such as in the 

present case, the used iterations could be larger comparing to the previous case of [114]. 

Also, the same effects are obtained for greater value of Reynolds number.  

    The obtained results for Reynolds number 𝑅𝑒 = 1.0 in the present case, show that the 

number of iterations was, abnormally, lesser than that of the previous case [114]. From 

Figure-3.25, we notice, for the steady-state flowing system of Reynolds number 𝑅𝑒 = 1.0 

of vorticity near the boundary, that the tail of the vorticity near the boundary H was 

distorted due to the new condition at G. This implied that the dimension in boundary A, 

was not sufficiently large enough. Therefore, by using the new condition at higher value of 

the Reynolds number, the dimensions of the artificial boundaries required to be larger and 

involved more computational work. 

    The low Reynolds number flowing system, for high value of viscosity, was actually a 

lubricant flow. For the Reynolds number 𝑅𝑒 = 0.5, according to Figure-3.22 for the stream 

function contour, the flowing streamlines were smoothly overcome the obstacle and the 

shape was likely symmetric about the mid-axis but shifted to the right of the obstacle along 

the y-direction. Considering the plot of the vorticity, Figure-3.21, the local maximum 

vortex were observed near the point-edge (𝑖 = 10, 𝑗 = 8) and (𝑖 = 18, 𝑗 = 8), and the 

rotational axes were found to be pointing out from the paper of the graph (z-direction). 

There was no curl enter (eddy current) observed behind the obstacle for Reynolds’s number 

𝑅𝑒 = 0.5 situation.  

    Comparing the vorticity contour plots for Reynolds number 𝑅𝑒 = 0.5, 1, and 10, 

Figures-3.21, 3.25 and 3.29, respectively, the front section was found to be compressed 

and the tail was elongated as the Reynolds number increased. For the higher Reynolds 
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number system, the greater distortion was observed. For the Reynolds number 𝑅𝑒 = 0.5, 
the positive maximum value of the vertex at the point edge was shifted to the front one and 

the latter one disappeared or is difficult to be observed.  

    However, there was a negative vortex, for Reynolds number 𝑅𝑒 = 0.5, 1.0 and 10. The 

negative value of the vortex means that the curl exists but the rotation axis is anti-parallel 

to the z-direction (pointed into the paper) and the curl was eddy current. 

    According to the results of the velocity curves, Figures-3.20, 3.24 and 3.28, for Reynolds 

number 𝑅𝑒 = 0.5, 1.0 and 10, there were found center of the curl and are found to be 

behind to the obstacle. 

    The center of the eddy was found to be shifted to the right for larger Reynolds number, 

which was different from the vortex near the point edge of the obstacle. The eddy was 

found to be larger value (more negative) for larger Reynolds number. 

    For the classical fluid model, when there is a low-density region created behind the 

obstacle, the fluid in the nearby region would be similar to the fluid into this low density 

region. The fluid flow into this region and the pattern was different for different Reynolds 

number systems. For low Reynolds number, it has large viscosity. This is possible for the 

lubricant flow, which is massive, such as for polymers or highly intermolecular force. The 

neighborhoods are highly effective to the flowing path, therefore the laminar flow is 

observed, for the high Reynolds number system (the larger value of the ratio of mass-

diffusion time constant to mass-convection time constant). This implies that the jet existing 

through the divergent side and recirculation zones are easily appeared and the reversibility 

for the Reynolds number system is reduced. Therefore, for higher Reynolds number, the 

steady state solution is more difficultly to be approached due to the lowered reversibility.  

  

 

Figure-3.19 Static pressure (𝑅𝑒= o.5) 
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Figure-3.20 Velocity magnitude (𝑅𝑒 = o.5) 

 

Figure-3.21 Vorticity magnitude (1/s) (𝑅𝑒 = o.5) 

 

Figure-3.22 Stream function (Kg/s) (𝑅𝑒 = o.5) 
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Figure-3.23 Static pressure (𝑅𝑒 = 1) 

 

Figure-3.24 Velocity (𝑅𝑒 = 1) 

 

Figure-3.25 Vorticity magnitude (1/s) (𝑅𝑒 = 1) 
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Figure-3.26 Stream function (Kg/s) (𝑅𝑒 = 1) 

 

Figure-3.27 Static pressure (𝑅𝑒 = 10) 

 

Figure-3.28 Velocity (𝑅𝑒 = 10) 
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Figure-3.29 Vorticity magnitude (1/s) (𝑅𝑒 = 10) 

 

Figure-3.30 Stream function (Kg/s) (𝑅𝑒 = 10) 

 

Figure-3.31 Static pressure (𝑅𝑒 = 20) 
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Figure-3.32 Velocity (𝑅𝑒 = 20) 

 

Figure-3.33 Vorticity magnitude (1/s) (𝑅𝑒 = 20) 

 

Figure-3.34 Stream function (Kg/s) (𝑅𝑒 = 20) 
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Figure-3.35 Static pressure (𝑅𝑒 = 100) 

 

Figure-3.36 Velocity (𝑅𝑒 = 100) 

 

Figure-3.37 Vorticity magnitude (1/s) (𝑅𝑒 = 100) 
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Figure-3.38 Stream function (Kg/s) (𝑅𝑒 = 100) 

 

Figure-3.39 Static pressure (𝑅𝑒 = 200) 

 

Figure-3.40 Velocity (𝑅𝑒 = 200) 
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Figure-3.41 Vorticity magnitude (1/s) (𝑅𝑒 = 200) 

 

Figure-3.42 Stream function (Kg/s) (𝑅𝑒 = 200) 

 

Figure-3.43 Static pressure (𝑅𝑒 = 300) 
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Figure-3.44 Velocity (𝑅𝑒 = 300)   

 

Figure-3.45 Vorticity magnitude (1/s) (𝑅𝑒 = 300) 

 

Figure-3.46 Stream function (Kg/s) (𝑅𝑒 = 300) 
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CHAPTER - 4 

PROJECT-2 

THE SINGLE PARTICLE SCHRÖDINGER FLUID 

As an example of the applications of the second order linear parabolic partial differential 

equations in quantum mechanics we study in this chapter the solutions of the single particle 

time dependent Schrödinger wave equation for a nucleon (proton or neutron) which is 

moving in the average field, created due to the presence of the other (𝐴 − 1) particles, 

where 𝐴 is the number of nucleons in the nucleus (the mass number). We carry out this 

treatment in framework of the so-called single particle Schrödinger fluid. The single 

particle Schrödinger fluid [73] is a concept which is used to describe the motion of a single 

nucleon in an axially deformed potential of the nucleus. This concept is carried out by a 

suitable choice of the time- dependent part of the nucleon wave function in the time-

dependent Schrödinger equation. This concept can be applied to study the rotational motion 

of a deformed nucleus.  

    In this Chapter we carry out the derivations of this concept and accordingly clarify how 

the moment of inertia of an axially deformed nucleus can be obtained in framework of this 

concept. As examples for the application of this concept to the calculations of the nuclear 

moments of inertia we have calculated the cranking-model and the rigid body-model 

moments of inertia of the even-even axially deformed nuclei in the s-d shell; i.e. the nuclei 
20Ne, 24Mg, 28Si, 32S and 36Ar. The variations of the nuclear moments of inertia with respect 

to the deformation parameter 𝛽 have been also given in this chapter. 

4.1 The Fluid Dynamical Equations 

We assume that each nucleon (proton or neutron), with mass 𝑚 in a nucleus, consisting of 

𝐴 nucleons, is moving in a single-particle potential 𝑉(𝒓, 𝑎(𝑡)), which is deformed with 

time 𝑡, through its parametric dependence on a classical shape variable 𝛼(𝑡). Here, 𝛼(𝑡) is 

assumed to be an externally prescribed function of 𝑡. Thus, the Hamiltonian for the present 

problem is given by [73]  

                                    𝐻(𝒓, 𝒗, 𝑎(𝑡)) = −
ℏ2

2𝑚
𝛻2 + 𝑉(𝒓, 𝑎(𝑡)).                                     (4.1) 

The operator ∇ in equation (4.1) appeared due to the fact that in, Quantum Mechanics, the 

operator associated with the particle momentum 𝑚𝒗 is given by −𝑖ℏ∇, where 𝒗 is the 

particle velocity. The single-particle time-dependent wave function Ψ(𝐫, α(t), t) which 

satisfies the time-dependent Schrödinger wave equation, that describes the motion of a 

nucleon, is defined as  

                                H(𝒓, 𝒗, α(𝑡))Ψ(𝒓, α(𝑡), 𝑡) = 𝑖ℏ
∂

∂t
Ψ(𝒓, α(𝑡), 𝑡).                            (4.2) 

    To obtain a fluid dynamical description of the wave function Ψ(𝒓, α(𝑡), 𝑡), we use the 

polar form of the wave function. We first isolate the explicit time dependence in the form 
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                            Ψ(𝒓, α(𝑡), 𝑡) = ψ(𝒓, α(𝑡))exp {−
𝑖

ℏ
∫ ϵ(α(𝑡′))𝑑𝑡′
t

0
},                        (4.3) 

where ϵ is the energy density which depends on the time through the parameter α(𝑡). Then, 

we write the complex wave function ψ(𝒓, α(𝑡)) in the following polar form  

                               ψ(𝒓, α(𝑡)) = Φ(𝒓, α(𝑡))exp {−
𝑖𝑀

ℏ
𝑆(𝒓, α(𝑡))},                             (4.4) 

where Φ(𝒓, α(𝑡)) and 𝑆(𝒓, α(𝑡)) are assumed to be real functions of 𝒓 and α(𝑡). Finally, 

we assume that the function Φ(𝒓, α(𝑡)) is positive definite. In the case of rotation, the 

parameter α(𝑡) becomes the angle of rotation, θ = Ω𝑡, where Ω is the angular velocity.  

    Substituting equations (4.1), (4.3) and (4.4) into (4.2) we get  

𝐻Ψ(𝒓, 𝛼(𝑡), 𝑡) = exp{−
𝑖

ℏ
∫휀(𝛼(𝑡′))𝑑𝑡′

𝑡

0

}

× {−
ℏ2

2𝑚
∇2 + 𝑉(𝒓, 𝛼(𝑡))} {Φ(𝒓, α(t))exp {−

iM

ℏ
S(𝒓, α(𝑡))}}

= 𝑖ℏ
𝜕

𝜕𝑡
[Φ(𝒓, 𝛼(𝑡)) exp {−

𝑖𝑀

ℏ
𝑆(𝒓, 𝛼(𝑡))} exp{−

𝑖

ℏ
∫휀(𝛼(𝑡′))𝑑𝑡′

𝑡

0

}]  

So that 

𝐻Ψ(𝒓, 𝛼(𝑡), 𝑡) = exp {−
𝑖

ℏ
∫ 𝜖(𝛼(𝑡′))𝑑𝑡′
𝑡

0
} exp {−

𝑖𝑀

ℏ
𝑆(𝒓, 𝛼(𝑡)} × [𝜖(𝛼(𝑡)Φ(𝒓, 𝛼(𝑡) +

𝑀Φ(𝒓, 𝛼(𝑡))
𝜕

𝜕𝑡
𝑆(𝒓, 𝛼(𝑡)) + 𝑖ℏ

𝜕

𝜕𝑡
 Φ(𝒓, 𝛼(𝑡))] .                                                           (4.5) 

Hence, 

{−
ℏ2

2𝑚
∇2 + 𝑉(𝒓, 𝛼(𝑡))} {Φ(𝒓, 𝛼(𝑡)) exp {−

𝑖𝑀

ℏ
 𝑆(𝒓, 𝛼(𝑡))}} =

exp {−
𝑖𝑀

ℏ
𝑆(𝒓, 𝛼(𝑡))} [𝜖(𝛼(𝑡))Φ(𝒓, 𝛼(𝑡)) + 𝑀Φ(𝒓, 𝛼(𝑡))

∂

∂𝑡
𝑆(𝒓, 𝛼(𝑡) +

𝑖ℏ
𝜕

𝜕𝑡
 Φ(𝒓, 𝛼(𝑡))] .                                                                                                          (4.6) 

But we know that 

∇2 (Φexp {−𝑖
𝑀𝑆

ℏ
}) = (∇2Φ) exp {−𝑖

𝑀𝑆

ℏ
} + Φ∇2 (exp {−𝑖

𝑀𝑆

ℏ
}) 

                                                        +2(∇Φ) ∙ ∇ (exp {−𝑖
𝑀𝑆

ℏ
}),                             (4.7)      

Also we have                                                                                                                     

∇ (exp {−𝑖
𝑀𝑆

ℏ
}) = −𝑖

𝑀

ℏ
 (∇𝑆) exp {−𝑖

𝑀𝑆

ℏ
} , 

and 
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∇2 (exp {−𝑖
𝑀𝑆

ℏ
}) = −𝑖

𝑀

ℏ
∇ ∙ [(∇𝑆) exp {−𝑖

𝑀𝑆

ℏ
}]

= −𝑖
𝑀

ℏ
[(∇2𝑆) exp {−𝑖

𝑀𝑆

ℏ
} − 𝑖

𝑀

ℏ
(∇𝑆) ∙ (∇) exp {−𝑖

𝑀𝑆

ℏ
}]

= −𝑖
𝑀

ℏ
(∇2𝑆) exp {−𝑖

𝑀𝑆

ℏ
} −

𝑀2

ℏ2
 (∇𝑆) ∙ (∇𝑆) exp {−𝑖

𝑀𝑆

ℏ
}. 

Substituting from the above results into equation (4.6) we get 

𝑖ℏ
𝜕Φ

𝜕𝑡
 exp {−𝑖

𝑀𝑆

ℏ
} + 𝑀Φ

𝜕𝑆

𝜕𝑡
exp {−𝑖

𝑀𝑆

ℏ
} + 𝜖Φexp {−𝑖

𝑀𝑆

ℏ
} = −

ℏ2

2𝑀
 exp {−𝑖

𝑀𝑆

ℏ
} ∇2Φ+

𝑀

2
Φexp {−𝑖

𝑀𝑆

ℏ
} (∇𝑆) ∙ (∇𝑆) +

𝑖ℏ

2
Φexp {−𝑖

𝑀𝑆

ℏ
} (∇2𝑆) + 𝑖ℏ(∇Φ) ∙ (∇𝑆) exp {−𝑖

𝑀𝑆

ℏ
} +

𝑉Φexp {−𝑖
𝑀𝑆

ℏ
} .                                                                                                             (4.8)                                

Dividing all the terms by exp {−𝑖
𝑀𝑆

ℏ
} we get 

𝑖ℏ
𝜕Φ

𝜕𝑡
 + 𝑀Φ

𝜕𝑆

𝜕𝑡
+ 𝜖Φ = −

ℏ2

2𝑀
 ∇2Φ+

𝑖ℏ

2
Φ(∇2𝑆) +

𝑀

2
Φ(∇𝑆)2 + 𝑖ℏ(∇Φ) ∙ (∇𝑆)+𝑉Φ.          (4.9) 

Hence, 

𝑖 [ℏ
𝜕Φ

𝜕𝑡
−
ℏ

2
Φ(∇2𝑆) − ℏ(∇Φ) ∙ (∇𝑆)]  + 𝑀Φ

𝜕𝑆

𝜕𝑡
+ 𝜖Φ − 𝐻Φ −

𝑀

2
Φ(∇𝑆) ∙ (∇𝑆) = 0.           (4.10) 

    This yields, from its real and imaginary parts, a pair of coupled equations for Φ and 𝑆 as 

follows: 

                                        [𝐻 −𝑀 (
𝜕𝑆

𝜕𝑡
−
1

2
∇𝑆 ∙ ∇𝑆)]Φ = 𝜖Φ.                                      (4.11)                        

and 

                                            
1

2
Φ(∇2𝑆) + (∇Φ) ∙ (∇𝑆) =

𝜕Φ

𝜕𝑡
.                                        (4.12) 

    We may call equation (4.11) modified Schrödinger equation because it differs from the 

usual time-independent Schrödinger equation 𝐻Φ = 𝜖Φ by an added term which we refer 

to as the “dynamical modification potential” 

                                           𝑉𝑑𝑦𝑛 = −𝑀 [
𝜕𝑆

𝜕𝑡
−
1

2
(∇𝑆) ∙ (∇𝑆)].                                      (4.13) 

 

4.2 Interpretation of the Probability as a Fluid Continuity Equation 

When we identify the probability density of the single particle as the square of the 

amplitude |Φ|2 and recognize that equation (4.12), when multiplied by 2Φ, gives  

                                                Φ2∇2𝑆 + ∇Φ2 ∙ ∇𝑆 =
𝜕Φ2

𝜕𝑡
,                                           (4.14) 
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then, we will obtain two equations, the first is 

                                                𝜌∇ ∙ 𝒗 + 𝒗 ∙ ∇𝜌 = −
𝜕𝜌

𝜕𝑡
,                                                (4.15) 

where 𝒗 is the irrotational velocity and 𝜌 is the density. It is the well-known equation of 

continuity in fluid mechanics. It can be rewritten in the form:  

                                                       ∇ ∙ (𝜌𝒗) = −
𝜕𝜌

𝜕𝑡
,                                                    (4.16) 

where 𝜌 = Φ2 and 𝒗 = −∇𝑆.  

The second equation is 

                                                     (𝐻 + 𝑉𝑑𝑦𝑛)Φ = 𝜖Φ,                                                (4.17) 

which is a modified Schrödinger equation with 

                                                 𝑉𝑑𝑦𝑛 = −𝑀 (
𝜕𝑆

𝜕𝑡
−
1

2
𝒗2 ).                                             (4.18) 

 

4.3 The Relationship Between the Velocity Field and the Current 

From equation (4.4) we can easily obtain  

                                                          𝑆 =
𝑖ℏ

2𝑀
ln (

𝜓

𝜓∗
).                                                   (4.19) 

We know that, 

𝜓 = Φexp {−𝑖
𝑀𝑆

ℏ
},              𝜓∗ = Φexp {𝑖

𝑀𝑆

ℏ
} , 

and 

𝒗 = −∇𝑆 = −
𝑖ℏ

2𝑀
∇(ln (

𝜓

𝜓∗
)) = −

𝑖ℏ

2𝑀
[∇(ln(𝜓))  − ∇(ln(𝜓∗))] =

𝑖ℏ

2𝑀
[
∇𝜓∗

𝜓∗
−
∇𝜓

𝜓
]. 

Therefore, 

𝒗 =
𝑖ℏ

2𝑀|𝜓|2
[𝜓∇𝜓∗ − 𝜓∗∇𝜓]. 

The current of the single particle state is defined by 

𝒋 = 𝜌𝒗 =
𝑖ℏ𝜌

2𝑀|𝜓|2
[𝜓∇𝜓∗ − 𝜓∗∇𝜓]. 

Putting 𝜌 = |Φ|2, we get 
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𝒋 =
𝑖ℏ

2𝑀

 |Φ|2

|𝜓|2
 [𝜓∇𝜓∗ − 𝜓∗∇𝜓]. 

Since, 

|𝜓|2 =  |Φ|2 |𝑒−
𝑖𝑀𝑆
ℏ |

2

=  |Φ|2, 

we finally get 

                                                    𝒋 =
𝑖ℏ

2𝑀
[𝜓∇𝜓∗ − 𝜓∗∇𝜓].                                          (4.20) 

 

4.4 Euler’s Equation and the Equation of State 

Euler’s equation for the non-viscous fluid flow is given by 

                                                      
𝜕𝒗

𝜕𝑡
+ (𝒗 ∙ ∇)𝒗 = −

∇𝑃

𝜌
,                                             (4.21) 

where 𝑃 is the pressure on the fluid at a point 𝑃(𝒓) at an instant of time 𝑡. For an ideal 

fluid, ∇𝑃 is related to the enthalpy per unit mass, 𝑤, of the fluid by the following manner 

                                                             
∇𝑃

𝜌
= ∇𝑤.                                                          (4.22) 

Therefore, Euler’s equation can be rewritten as 

                                                    
𝜕𝒗

𝜕𝑡
+ (𝒗 ∙ ∇)𝒗 = −∇𝑤.                                              (4.23) 

After integration and using 𝒗 =  −∇𝑠 we get 

                                                          
𝜕𝑆

𝜕𝑡
−
1

2
𝑣2 = 𝑤.                                                    (4.24) 

Using also 

𝑣2 = (∇𝑆)2, 

we get 

                                                        
𝜕𝑆

𝜕𝑡
−
1

2
(∇𝑆)2 = 𝑤,                                                 (4.25) 

where 𝑆 is the velocity potential for 𝒗, (𝒗 =  −∇𝑆) and the constant of integration in 

equation (4.24) chosen here to be zero. Therefore, we can write 

                                                  𝑉𝑑𝑦𝑛 = −𝑀 [
𝜕𝑆

𝜕𝑡
−
1

2
(∇𝑆)2],                                        (4.26) 

                                                              𝑉𝑑𝑦𝑛 = −𝑀𝑤,                                                 (4.27) 
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and then the modified Schrödinger equation takes the 

                                                       (𝐻 −𝑀𝑤)Φ = 𝜖Φ,                                               (4.28) 

where 𝑤 is now the “enthalpy” of the single-particle Schrödinger fluid.  

    Hence, we have a set of fluid dynamical equations completely analogous to those which 

describe a classical fluid. This set consists of the continuity equation (4.15), the Euler 

equation (4.25), and an equation of state (4.28). By derivation, their content is precisely 

that of the original time-dependent Schrodinger equation. Hill and Wheeler [116] assumed 

that the single-practice Schrödinger fluid is irrotational and implicitly incompressible flow. 

The present formulation is specifically not restricted to incompressible flows but allows 

also irrotational but compressible.  

    The description of the density |𝜓|2‘as a classical fluid implies that we are assigning 

labels to each “mass element” |𝜓|2∆𝑥∆𝑦∆𝑧, and considering its motion in time, as 

described by the velocity field 𝒗. However, in quantum mechanics, the quantity 

|𝜓|2∆𝑥∆𝑦∆𝑧 is interpreted as the probability of finding the nucleon in the volume element 

∆𝑥∆𝑦∆𝑧.  

    In addition to the irrotational velocity 𝒗, which is a result from the fluid dynamical 

equation, other velocity fields which satisfy the continuity equation of the Schrödinger 

equation occur. Among these velocity fields are [73] the incompressible velocity field, the 

regular velocity field, the geometric velocity field, and the rigid body velocity field. For 

rotations, the rigid-body velocity field 𝑣𝑟𝑖𝑔 is defined as 

                                                            𝒗𝑟𝑖𝑔 = 𝛀 × 𝒓.                                                   (4.29) 

    It is seen that this velocity field is incompressible, regular, and also of geometric type. 

 

4.5 The Collective Kinetic Energy for the Entire Nucleus  

In the adiabatic approximation, where 
𝜕𝛼

𝜕𝑡
→ 0, that is the angle of rotation 휃 is constant of 

the time, the collective kinetic energy of a nucleon in the nucleus is given by [73]  

                                                  𝑇𝐾 =
1

2
∫𝜌𝒗𝐾 ∙ (𝛀 × 𝒓)𝑑𝑟.                                         (4.30) 

and the collective kinetic energy 𝑇 of the nucleus is given by 

                                                 𝑇 =
1

2
M∫𝜌𝑇𝒗𝑇 ∙ (𝛀 × 𝒓)𝑑𝑟,                                      (4.31) 

where 𝜌𝑇 is the total density distribution of the nucleus and 𝒗𝑇 is the total velocity field,  

                                                         𝒗𝑇 =
∑ 𝜌𝐾𝒗𝐾𝑜𝑐𝑐

∑ 𝜌𝐾𝑜𝑐𝑐
 .                                                   (4.32) 
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    The collective kinetic energy for the entire nucleus, as an integral of a density weighted 

quadratic form in velocities, conforms to the classical structure of a continuum kinetic 

energy, but involves two distinct velocity fields, rather than simply the square of a single 

velocity field. The occurrence of these two distinct velocity fields reflects the two essential 

aspects of the cranking motion: 

(i) The rotation of the potential well, which can (just as can the density’s variation in time 

for pure rotation) be described as the regular velocity field 𝛀 × 𝒓. 

(ii) The response of the individual particle to the motion of the potential, described by 𝒗𝐾.  

    This structure seems eminently natural, and perhaps, sufficiently general to encompass 

a wide variety of the kinetic energy forms.  

 

4.6 Single Particle in the Harmonic Oscillator Potential 

The single particle oscillator wave functions are taken in the form of products of three one-

dimensional oscillator functions of the form [QM]   

                                        𝑢𝑛𝑥𝑢𝑛𝑦𝑢𝑛𝑧 = 𝑢𝑛𝑥(휁)𝑢𝑛𝑦(휂)𝑢𝑛𝑥(𝜉),                                   (4.33) 

where 

                                   𝑢𝑛𝑧(𝜉) =
1

√2𝑛𝑧𝑛𝑧!
(
𝑚𝜔𝑧

𝜋ℏ
)

1

4
𝐻𝑛𝑧(𝜉) exp (−

1

2
𝜉2) .                        (4.34) 

    Similar equations hold for 𝑢𝑥(𝜉) (and 𝑢𝑛𝑦(휂)). In (4.34) 𝐻𝑛𝑧(𝜉) is the Hermite 

polynomial, and the dimensionless variables are defined as 

                                         (휁, 휂, 𝜉) = (
√𝑚𝜔𝑥

ℏ
𝑥,
√𝑚𝜔𝑦

ℏ
𝑦, √

𝑚𝜔𝑧

ℏ
𝑧).                                 (4.35)      

    Here, we restrict the discussion to the axially symmetric geometry for simplicity. Hence, 

𝜔𝑥 = 𝜔𝑦 and the intrinsic energy of the single particle state is given by 

 

                                  𝐸𝑛𝑥𝑛𝑦𝑛𝑧 = ℏ𝜔𝑥(𝑛𝑥 + 𝑛𝑦 + 1) + ℏ𝜔𝑧(𝑛𝑧 + 1).                        (4.36) 

    Using the perturbation theory, we can calculate the cranking correction to the wave 

function [73] explicitly, and the result is 

  

                                                    𝜇𝑘 = Ω∑
|〈𝑗|ℒ|𝑘〉|

𝜖𝑗−𝜖𝑘
𝑗≠𝑘 𝑢𝑗 ,                                             (4.37) 

where 
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𝜇𝑛𝑥𝑛𝑦𝑛𝑧 = 𝜇𝑛𝑥(𝜉)𝜇𝑛𝑦𝑛𝑧(휂, 휁) = −
Ω𝑢𝑛𝑥

2√𝜔𝑦𝜔𝑧

{
 
 
 

 
 
 

𝜎√𝑛𝑦𝑛𝑧𝑢𝑛𝑦−1𝑢𝑛𝑧−1

+
1

𝜎
√𝑛𝑦(𝑛𝑧 + 1)𝑢𝑛𝑦−1𝑢𝑛𝑧+1

+
1

𝜎
√𝑛𝑧(𝑛𝑦 + 1)𝑢𝑛𝑦+1𝑢𝑛𝑧−1

+𝜎√(𝑛𝑦 + 1)(𝑛𝑧 + 1)𝑢𝑛𝑦+1𝑢𝑛𝑧+1}
 
 
 

 
 
 

   (4.38)  

Here 𝜇𝑘 is the first-order time-dependent perturbation correction for rotation about the 𝑧-

axis, the functions with 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 subscripts, with arguments 𝜉, 휂 and 휁, respectively 

and 

                                                        𝜎 =
𝜔𝑦−𝜔𝑧

𝜔𝑦+𝜔𝑧
,                                                            (4.39) 

is a measure of the deformation of the potential. 

    We introduce one single parameter of deformation 𝛿 given by [117] 

                                                       𝜔𝑧
2 = 𝜔0

2 (1 −
4

3
𝛿),                                               (4.40) 

                                                  𝜔𝑥
2 = 𝜔𝑦

2 = 𝜔0
2 (1 +

2

3
𝛿).                                          (4.41) 

    The condition of constant volume of the nucleus leads to 

                                                         𝜔𝑥𝜔𝑦𝜔𝑧 = 𝑐𝑜𝑛𝑠𝑡.                                               (4.42) 

    Keeping this condition in the general case together with (4.40) and (4.41), 𝜔0 must 

depend on 𝛿 in the following way [117] 

                                            𝜔0(𝛿) = 𝜔0
0 {1 −

12

9
𝛿2 −

16

27
𝛿3}

−
1

6
,                                               

where 𝜔0
0 is the value of 𝜔0(𝛿) for 𝛿 = 0. ℏ𝜔0

0 is known as the non-deformed oscillator 

parameter. This parameter can be calculated from the values of the total number of protons 

in the nucleus Z, the number of neutrons N and the mass number A as follows [69] 

( )
2

A

N191.0

A

646.1
1

3
1

A6.380
0






 −
−+

−

=

Z

 . 

The deformation parameter 𝛿 is related to the well-known deformation parameter 𝛽 by  

                                                    𝛿 =
3

2
√

5

4𝜋
𝛽 = 0.95𝛽 .                                             (4.43) 
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The parameter 𝛽 is allowed to vary in the range −0.5 ≤ 𝛽 ≤ 0.5. 

 

4.7 Rigid (Equilibrium) Oscillator Moments of Inertia from Fluid 

Dynamical Viewpoint 

We now examine the cranking moment of inertia in terms of the velocity fields. Bohr and 

Mottelson [118] show that for harmonic oscillator case at the equilibrium deformation, 

where 

                                                 
𝑑

𝑑𝛿
∑ (𝐸𝑛𝑥𝑛𝑦𝑛𝑧)𝑖𝑖=1 = 0,                                              (4.44) 

the cranking moment of inertia is identically equal to the rigid moment of inertia: 

                                            ℑ𝑐𝑟 = ℑ𝑟𝑖𝑔 = ∑ 𝑚〈𝑦𝑖
2 + 𝑧𝑖

2〉.𝑖=1                                       (4.45) 

    In terms of expression (4.31) involving the velocity fields, this result asserts the equality 

of the collective kinetic energy of the Schrödinger fluid and that of rigidly rotating classical 

fluid 

                          
𝑚

2
∫𝜌𝑇𝒗𝑇 ∙ (𝛀 × 𝒓)𝑑𝜏 =

1

2
ℑ𝑟𝑖𝑔Ω

2 =
𝑚

2
∫𝜌𝑇(𝛀 × 𝒓)

2 𝑑𝜏,                 (4.46) 

at the equilibrium deformation. We emphasize that equations (4.45) and (4.46) hold for 

any number of nucleons occupying any set of single particle harmonic oscillator states at 

the deformation defined by equilibrium condition (4.44). In particular, it holds for a one 

particle state. For this case, equation (4.46) becomes 

                                   
𝑚

2
∫𝜌𝐾𝒗𝐾 ∙ (𝛀 × 𝒓)𝑑𝜏 =

𝑚

2
∫𝜌𝐾(𝛀 × 𝒓)

2 𝑑𝜏,                           (4.47) 

at the equilibrium deformation of the single particle state 

|𝑖〉 ≡ |𝑛𝑥𝑛𝑦𝑛𝑧〉. 

    Equation (4.47) is a remarkable identity. The scalar product of 𝒗𝐾 and (𝛀 × 𝒓) which 

occurs on the left side is replaced on the right side, by the absolute square of (𝛀 × 𝒓).  

    It forces one to inquire whether the irrotational field 𝒗𝐾 is equal to (𝛀 × 𝒓). The answer, 

of course, is “no“. For, 𝒗𝐾 posses compressible line vortices. It can, therefore, never be 

equal to velocity field for rigid rotation 𝒗𝑟𝑖𝑔 = 𝛀 × 𝒓, which has no singularity and is 

everywhere incompressible and rotational.  

    Despite this qualitative difference between 𝒗𝐾 and the other velocity in equation (4.47), 

this shows that, as regards their effects under the integral upon the overall kinetic energy 

(or the internal parameter), these two velocity fields are equivalent at the equilibrium 

deformation. 
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4.8 Cranking Moments and Rigid-body Moments of Inertia  

We note that the cranking moment of inertia ℑ𝑐𝑟 and the rigid moment of inertia ℑ𝑟𝑖𝑔 are 

equal only when the harmonic oscillator is at the equilibrium deformation. At other 

deformations, they can, and do, deviate substantially from one another [73].  

    The following-expressions for the cranking moment of inertia. and the rigid moment of 

inertia ℑ𝑟𝑖𝑔 as a function of 𝑞 are given: 

                             ℑ𝑐𝑟 =
𝐸

𝜔0
2 (

1

6+2𝜎
) (

1+𝜎

1−𝜎
)

1

3
[𝜎2(1 + 𝑞) +

1

𝜎
(1 − 𝑞)],                         (4.48) 

                              ℑ𝑟𝑖𝑔 =
𝐸

𝜔0
2 (

1

6+2𝜎
) (

1+𝜎

1−𝜎
)

1

3 [(1 + 𝑞) + 𝜎(1 − 𝑞)],                           (4.49) 

where 𝐸 is the total nuclear ground-state energy 

                               𝐸 = ∑ [ℏ𝜔𝑥(𝑛𝑥 + 𝑛𝑦 + 1) + ℏ𝜔𝑧(𝑛𝑧 + 1)]𝑜𝑐𝑐 ,                           (4.50) 

and 𝑞 is the ratio of the summed single particle quanta in the 𝑦-and 𝑧-directions 

                                                      𝑞 =
∑ (𝑛𝑦+1)𝑜𝑐𝑐

∑ (𝑛𝑧+1)𝑜𝑐𝑐
.                                                        (4.51) 

𝑞 is known as the anisotropy of the configuration. In equations (4.48) and (4.49) the 

deformation of the potential, 𝜎 is defined by [73]  

                                                         𝜎 =
(𝜔𝑦−𝜔𝑧)

(𝜔𝑦−𝜔𝑧)
 . 

 

4.10   Results and Conclusions 

We have constructed the ground states of the five nuclei 20Ne, 24Mg, 28Si, 32S and 36Ar, 

which are all even-even (number of protons Z is even and number of neutrons N is also 

even) deformed nuclei. Accordingly, the single particle states in each nucleus are filled 

with the corresponding wave functions. As a result, ℑ𝑐𝑟 and ℑ𝑟𝑖𝑔 are calculated for each 

nucleus. Finally, the corresponding reciprocal moments 
ℏ2

2ℑ𝑐𝑟𝑎𝑛𝑘
 and 

ℏ2

2ℑ𝑟𝑖𝑔𝑖𝑑
 are calculated. 

    In Tables-4.1, 4.2, 4.3, 4.4 and 4.5 we present the calculated values of the reciprocal 

moments of inertia according to the cranking model and the rigid-body model as functions 

of the deformation parameter 𝛽 for the nuclei 20Ne, 24Mg, 28Si, 32S and 36Ar, respectively. 

The values of the non-deformed oscillator parameter ℏ𝜔0
0 for the five nuclei are also given 

in these tables.  
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Table-4.1 Reciprocal moments of inertia of 20Ne as functions of  𝛽 

(A=20    Z=10   N=10   ℏ𝜔0
0 = 11.881) 

     𝛽 ℏ2

2ℑ𝑐𝑟𝑎𝑛𝑘
 

ℏ2

2ℑ𝑟𝑖𝑔𝑖𝑑
 

 

-0.500 

-0.490 

-0.480 

-0.470 

-0.460 

-0.450 

-0.440 

-0.430 

-0.420 

-0.410 

-0.400 

-0.390 

-0.380 

-0.370 

-0.360 

-0.350 

-0.340 

-0.330 

-0.320 

-0.310 

-0.300 

-0.290 

-0.280 

-0.270 

-0.260 

-0.250 

-0.240 

-0.230 

-0.220 

-0.210 

-0.200     

 

 

590.624000  

578.555000 

566.509800 

554.485800 

542.480800 

530.493500 

518.521700 

506.564000 

494.619600 

482.687500 

470.766700 

458.856800 

446.956900 

435.067000 

423.186600 

411.315400 

399.453400 

387.600400 

375.756400 

363.921300 

352.095100 

340.277800 

328.469500 

316.670000 

304.879600 

293.098100 

281.325300 

269.561500 

257.806200 

246.059400 

234.320600 

 

 

362.826800 

360.987800 

359.202700 

357.469200 

355.785100 

354.148500 

352.557500 

351.010200 

349.505100 

348.040700  

346.615500 

345.228100 

343.877200 

342.561700 

341.280400 

340.032200 

338.816100 

337.631200 

336.476600 

335.351300 

334.254500 

333.185600 

332.143700 

331.128200 

330.138400 

329.173700 

328.233400 

327.317100 

326.424100 

325.554000 

324.706300 
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Table-4.1 (Continued) 

 

-0.190 

-0.180 

-0.170 

-0.160 

-0.150 

-0.140 

-0.130 

-0.120 

-0.110 

-0.100 

-0.090 

-0.080 

-0.070 

-0.060 

-0.050 

-0.040 

-0.030 

-0.020 

-0.010 

0.000 

0.010 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.080 

0.090 

0.100 

0.110 

0.120 

0.130 

0.140 

0.150 

 

 

222.589700 

210.866300 

199.149900 

187.439700 

175.735300 

164.035800 

152.340300 

140.647800 

128.957100 

117.267000 

105.576100 

93.882770 

82.185250 

70.481680 

58.769890 

47.047620 

35.312380 

23.561350 

11.791780 

0.000253 

11.816600 

23.662550 

35.541660 

47.458230 

59.417000 

71.423040 

83.481920 

95.599380 

107.781800 

120.036200 

132.369800 

144.790500 

157.306800 

169.928100 

182.664400 

 

 

323.880400 

323.076000 

322.292700 

321.530000 

320.787700 

320.065100 

319.362200 

318.678400 

318.013700 

317.367600 

316.739800 

316.130000 

315.538200 

314.963900 

314.407000 

313.867300 

313.344500 

312.838600 

312.349200 

311.876300 

311.419600 

310.979100 

310.554600 

310.146000 

309.753200 

309.375900 

309.014400 

308.668300 

308.337600 

308.022200 

307.722200 

307.437400 

307.167800 

306.913400 

306.674100 
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Table-4.1 (Continued) 

0.160 

0.170 

0.180 

0.190 

0.200 

0.210 

0.220 

0.230 

0.240 

0.250 

0.260 

0.270 

0.280 

0.290 

0.300 

0.310 

0.320 

0.330 

0.340 

0.350 

0.360 

0.370 

0.380 

0.390 

0.400 

0.410 

0.420 

0.430 

0.440 

0.450 

0.460 

0.470 

0.480 

0.490 

0.500 

 

 

195.526400 

208.525700 

221.675000 

234.987900 

248.479300 

262.165400 

276.063500 

290.193100 

304.574800 

319.231500 

334.188400 

349.472900 

365.115300 

381.149000 

397.611100 

414.542400 

431.988800 

450.000900 

468.636000 

487.957800 

508.038600 

528.960000 

550.814800 

573.708800 

597.763500 

623.119100 

649.937400 

678.407800 

708.752200 

741.233000 

776.162300 

813.914600 

854.943900 

899.805400 

949.185500 

 

306.450000 

306.241000 

306.047100 

305.868300 

305.704700 

305.556300 

305.423100 

305.305100 

305.202500 

305.115300 

305.043400 

304.987100 

304.946400 

304.921200 

304.911900 

304.918400 

304.940900 

304.979400 

305.034200 

305.105200 

305.192600 

305.296600 

305.417200 

305.554600 

305.708900 

305.880200 

306.068500 

306.274100 

306.497000 

306.737100 

306.994600 

307.269400 

307.561500 

307.870800 

 308.197000 
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Table-4.2 Reciprocal moments of inertia of 24Mg as functions of  𝛽 

(A = 24     Z = 12     N = 12     ℏ𝜔0
0 = 11.547) 

 

𝛽  ℏ2

2ℑ𝑐𝑟𝑎𝑛𝑘
  

ℏ2

2ℑ𝑟𝑖𝑔𝑖𝑑
  

 

-0.500 

-0.490 

-0.480 

-0.470 

-0.460 

-0.450 

-0.440 

-0.430 

-0.420 

-0.410 

-0.400 

-0.390 

-0.380 

-0.370 

-0.360 

-0.350 

-0.340 

-0.330 

-0.320 

-0.310 

-0.300 

-0.290 

-0.280 

-0.270 

-0.260 

-0.250 

-0.240 

-0.230 

-0.220 

-0.210 

-0.200 

 

 

267.196400 

261.279800 

255.405500 

249.571500 

243.775800 

238.016700 

232.292400 

226.601600 

220.942600 

215.314300 

209.715400 

204.144700 

198.601100 

193.083500 

187.591200 

182.122900 

176.677900 

171.255400 

165.854600 

160.474600 

155.114600 

149.774000 

144.452100 

139.148000 

133.861200 

128.591000 

123.336600 

118.097200 

112.872500 

107.661500 

102.463500 

 

251.572900 

250.293900 

249.052600 

247.847600 

246.677200 

245.540200 

244.435200 

243.361100 

242.316400 

241.300400 

240.312000 

239.350100 

238.414000 

237.502700 

236.615600 

235.751700 

234.910500 

234.091200 

233.293300 

232.516200 

231.759000 

231.021600 

230.303300 

229.603600 

228.922100 

228.258400 

227.611900 

226.982400 

226.369500 

225.772700 

225.191800 
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Table-4.2 (Continued) 

 

-0.190 

-0.180 

-0.170 

-0.160 

-0.150 

-0.140 

-0.130 

-0.120 

-0.110 

-0.100 

-0.090 

-0.080 

-0.070 

-0.060 

-0.050 

-0.040 

-0.030 

-0.020 

-0.010 

0.000 

0.010 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.080 

0.090 

0.100 

0.110 

0.120 

0.130 

0.140 

0.150 

 

 

97.277980 

92.104100 

86.941120 

81.788280 

76.644830 

71.509990 

66.382940 

61.262760 

56.148630 

51.039660 

45.934850 

40.833200 

35.733690 

30.635300 

25.536820 

20.437110 

15.334880 

10.228900 

5.117772 

.000111 

5.125653 

10.261120 

15.407900 

20.567820 

25.742720 

30.934540 

36.145430 

41.377550 

46.633270 

51.915050 

57.225560 

62.567580 

67.944070 

73.358280 

78.813510 

 

224.626400 

224.076300 

223.541100 

223.020700 

222.514600 

222.022700 

221.544700 

221.080500 

220.629700 

220.192300 

219.767900 

219.356500 

218.957900 

218.571900 

218.198400 

217.837200 

217.488100 

217.151100 

216.826000 

216.512900 

216.211500 

215.921700 

215.643500 

215.376800 

215.121600 

214.877700 

214.645100 

214.423800 

214.213800 

214.014900 

213.827200 

213.650700 

213.485400 

213.331100 

213.188100 

 

 

 

 

               

              

https://alexjournals.org/AlexJournal/Mathematics/


ALEXANDRIA JOURNAL OF MATHEMATICS Volume 10 Number 1 September 2021 (ISSN 2090-4320) 

 
 

 

AVAILABLE ONLINE AT www.mathematics.alexjournals.org 130  

 

Table-4.2 (Continued) 

 

0.160 

0.170 

0.180 

0.190 

0.200 

0.210 

0.220 

0.230 

0.240 

0.250 

0.260 

0.270 

0.280 

0.290 

0.300 

0.310 

0.320 

0.330 

0.340 

0.350 

0.360 

0.370 

0.380 

0.390 

0.400 

0.410 

0.420 

0.430 

0.440 

0.450 

0.460 

0.470 

0.480 

0.490 

0.500 

 

 

84.313480 

89.861960 

95.463140 

101.121400 

106.841600 

112.628800 

118.488500 

124.426700 

130.449600 

136.564400 

142.778400 

149.099800 

155.537400 

162.101000 

168.801000 

175.649000 

182.657500 

189.840600 

197.213400 

204.793000 

212.598000 

220.649200 

228.970100 

237.586500 

246.527600 

255.826400 

265.519900 

275.650700 

286.266900 

297.424000 

309.185700 

321.626300 

334.832000 

348.904500 

363.963600 

 

 

213.056200 

212.935400 

212.825900 

212.727500 

212.640500 

212.564800 

212.500300 

212.447300 

212.405800 

212.375800 

212.357500 

212.350800 

212.355900 

212.372900 

212.402000 

212.443000 

212.496400 

212.562100 

212.640300 

212.731100 

212.834700 

212.951100 

213.080700 

213.223400 

213.379500 

213.549200 

213.732500 

213.929700 

214.141000 

214.366300 

214.606000 

214.860100 

215.128600 

215.411900 

215.709700 
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Table-4.3 Reciprocal moments of inertia of 28Si as functions of  𝛽 

(A = 28    Z = 14     N = 14     ℏ𝜔0
0 = 11.218) 

 

𝛽 

 

ℏ2

2ℑ𝑐𝑟𝑎𝑛𝑘
  

ℏ2

2ℑ𝑟𝑖𝑔𝑖𝑑
  

 

-0.500 

-0.490 

-0.480 

-0.470 

-0.460 

-0.450 

-0.440 

-0.430 

-0.420 

-0.410 

-0.400 

-0.390 

-0.380 

-0.370 

-0.360 

-0.350 

-0.340 

-0.330 

-0.320 

-0.310 

-0.300 

-0.290 

-0.280 

-0.270 

-0.260 

-0.250 

-0.240 

-0.230 

-0.220 

-0.210 

-0.200 

 

 

541.606400  

531.513200  

521.376400  

511.195100  

500.968800  

490.697500  

480.380900  

470.019600  

459.613800  

449.164700  

438.672700  

428.139100  

417.565000  

406.952100  

396.301500  

385.614600  

374.893400  

364.139500  

353.354300 

342.539800 

331.697800 

320.830000 

309.938100 

299.024100 

288.089500 

277.136100 

266.165500 

255.179200 

244.178700 

233.165700 

222.141200 

 

 

231.846400 

230.638700 

229.465800 

228.326000 

227.218000 

226.140600 

225.092500 

224.072600 

223.079800 

222.113200 

221.171700 

220.254600 

219.360900 

218.490000 

217.641000 

216.813200 

216.006100 

215.218900  

214.451200 

213.702200 

212.971500 

212.258700 

211.563100 

210.884500 

210.222200 

209.576000 

208.945400 

208.330100 

207.729600 

207.143800 

206.572200 
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Table-4.3 (Continued) 

 

-0.190 

-0.180 

-0.170 

-0.160 

-0.150 

-0.140 

-0.130 

-0.120 

-0.110 

-0.100 

-0.090 

-0.080 

-0.070 

-0.060 

-0.050 

-0.040 

-0.030 

-0.020 

-0.010 

0.000 

0.010 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.080 

0.090 

0.100 

0.110 

0.120 

0.130 

0.140 

0.150 

 

211.106300 

200.062600 

189.010500 

177.951200 

166.885300 

155.813400 

144.735500 

133.652400 

122.563600 

111.469000 

100.368400 

89.261000 

78.145960 

67.022240 

55.888310 

44.742810 

33.583620 

22.408460 

11.214980 

0.000246 

11.239140 

22.506650 

33.806350 

45.142690 

56.520660 

67.945700 

79.423650 

90.961090 

102.565200 

114.243700 

126.005100 

137.858700 

149.814800 

161.884200 

174.079100 

 

 

206.014500 

205.470500 

204.939800 

204.422300 

203.917600 

203.425600 

202.945900 

202.478400 

202.022900 

201.579200 

201.147000 

200.726200 

200.316800 

199.918300 

199.530800 

199.154000 

198.788000 

198.432300 

198.087100 

197.752200 

197.427400 

197.112700 

196.807900 

196.513100 

196.228000 

195.952600 

195.686800 

195.430600 

195.183900 

194.946700 

194.718900 

194.500400 

194.291200 

194.091300 

193.900600 
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Table-4.3 (Continued) 

 

0.160 

0.170 

0.180 

0.190 

0.200 

0.210 

0.220 

0.230 

0.240 

0.250 

0.260 

0.270 

0.280 

0.290 

0.300 

0.310 

0.320 

0.330 

0.340 

0.350 

0.360 

0.370 

0.380 

0.390 

0.400 

0.410 

0.420 

0.430 

0.440 

0.450 

0.460 

0.470 

9.480 

0.490 

0.500 

 

186.412700 

198.899400 

211.555000 

224.396600 

237.443300 

250.716000 

264.237200 

278.032100 

292.128900 

306.558000 

321.353800 

336.553800 

352.200700 

368.341700 

385.030100 

402.325200 

420.294800 

439.015700 

458.574900 

479.072600 

500.623600 

523.360800 

547.438600 

573.037800 

600.371300 

629.691400 

661.300100 

695.561100 

732.917200 

773.913100 

819.226800 

869.711700 

926.460300 

990.891200 

1064.885000 

 

193.719200 

193.546900 

193.383800 

193.229900 

193.085100 

192.949500 

192.823100 

192.705700 

192.597500 

192.498500 

192.408700 

192.328100 

192.256700 

192.194500 

192.141600 

192.098100 

192.063800 

192.038900 

192.023400 

192.017300 

192.020700 

192.033600 

192.056000 

192.087900 

192.129500 

192.180500 

192.241100 

192.311300 

192.391100 

192.480300 

192.578900 

192.686900 

192.804100 

192.930300 

193.065300 
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Table-4.4 Reciprocal moments of inertia of 32S as functions of  𝛽 

(A = 32    Z = 16     N = 16     ℏ𝜔0
0 = 10.908) 

 

𝛽 

 

ℏ2

2ℑ𝑐𝑟𝑎𝑛𝑘
  

ℏ2

2ℑ𝑟𝑖𝑔𝑖𝑑
  

 

-0.500 

-0.490 

-0.480 

-0.470 

-0.460 

-0.450 

-0.440 

-0.430 

-0.420 

-0.410 

-0.400 

-0.390 

-0.380 

-0.370 

-0.360 

-0.350 

-0.340 

-0.330 

-0.320 

-0.310 

-0.300 

-0.290 

-0.280 

-0.270 

-0.260 

-0.250 

-0.240 

-0.230 

-0.220 

-0.210 

-0.200 

 

 

548.020300 

538.614000 

529.116500 

519.527600 

509.847100 

500.075600 

490.213300 

480.261500 

470.221200 

460.093800 

449.881400 

439.585700 

429.208600 

418.752900 

408.220500 

397.614400 

386.937000 

376.191400 

365.380300 

354.506700 

343.573400 

332.583700 

321.540300 

310.446500 

299.305000  

288.119000 

276.891300 

265.624600 

254.321800 

242.985500  

231.618100 

 

193.265300 

192.287800 

191.338600 

190.416700 

189.521000 

188.650300 

187.803700 

186.980300 

186.179100 

185.399300 

184.640300 

183.901200 

183.181400 

182.480200 

181.797100 

181.131500 

180.482700 

179.850400 

179.234000 

178.633100 

178.047200 

177.476000 

176.919000 

176.375900 

175.846200 

175.329900 

174.826300 

174.335300 

173.856600 

173.389900 

172.934900 
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Table-4.4 (Continued) 

 

-0.190 

-0.180 

-0.170 

-0.160 

-0.150 

-0.140 

-0.130 

-0.120 

-0.110 

-0.100 

-0.090 

-0.080 

-0.070 

-0.060 

-0.050 

-0.040 

-0.030 

-0.020 

-0.010 

0.000 

0.010 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.080 

0.090 

0.100 

0.110 

0.120 

0.130 

0.140 

0.150 

 

220.222300 

208.799800 

197.353200 

185.884000 

174.394300 

162.885500 

151.358800 

139.815400 

128.255900 

116.681200 

105.091300 

93.486510 

81.866290 

70.230280 

58.577240 

46.906120 

35.215160 

23.502260 

11.764880 

.000261  

11.795180 

23.625170 

35.494220 

47.407260 

59.369950 

71.388450 

83.469570 

95.621090 

107.851400 

120.169700 

132.586300 

145.112600 

157.760600 

170.544300 

183.478300 

 

172.491400 

172.059200 

171.638000 

171.227600 

170.827900 

170.438600 

170.059400 

169.690400 

169.331300 

168.981900 

168.642100 

168.311700 

167.990600 

167.678800 

167.375900 

167.082000 

166.797000 

166.520600 

166.252900 

165.993700 

165.743000 

165.500600 

165.266600 

165.040800 

164.823100 

164.613500 

164.412000 

164.218400 

164.032800 

163.855100 

163.685300 

163.523300 

163.369100 

163.222700 

163.084000 
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Table-4.4 (Continued) 

 

0.160 

0.170 

0.180 

0.190 

0.200 

0.210 

0.220 

0.230 

0.240 

0.250 

0.260 

0.270 

0.280 

0.290 

0.300 

0.310 

0.320 

0.330 

0.340 

0.350 

0.360 

0.370 

0.380 

0.390 

0.400 

0.410 

0.420 

0.430 

0.440 

0.450 

0.460 

0.470 

9.480 

0.490 

0.500 

 

196.578900 

209.864500 

223.354700 

237.071400  

251.038700  

265.283100  

279.834300 

294.725000 

309.991400 

325.674200 

341.818600 

358.475700 

375.702200 

393.563200 

412.131100 

431.489500 

451.733200 

472.971500 

495.330000 

518.954300 

544.014800 

570.711900 

599.281300 

630.004700 

663.220800 

699.339400 

738.862500 

782.411600 

830.765300 

884.913100 

946.131000 

1016.096000 

1097.054000 

1192.087000 

1305.541000 

 

 

162.953100 

162.829900 

162.714400 

162.606700 

162.506600 

162.414300 

162.329600 

162.252700 

162.183600 

162.122300 

162.068600 

162.022800 

161.984800 

161.954700 

161.932400 

161.918000 

161.911600 

161.913200 

161.922800 

161.940500 

161.966200 

162.000000 

162.042000 

162.092200 

162.150600 

162.217200 

162.292000 

162.375100 

162.466500 

162.566000 

162.673700 

162.789500 

162.913300 

163.045000 

163.184400 
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Table-4.5 Reciprocal moments of inertia of 36S as functions of  𝛽 

(A = 36    Z = 18     N = 18     ℏ𝜔0
0 = 10.622) 

 

𝛽 

 

ℏ2

2ℑ𝑐𝑟𝑎𝑛𝑘
  

ℏ2

2ℑ𝑟𝑖𝑔𝑖𝑑
  

 

-0.500 

-0.490 

-0.480 

-0.470 

-0.460 

-0.450 

-0.440 

-0.430 

-0.420 

-0.410 

-0.400 

-0.390 

-0.380 

-0.370 

-0.360 

-0.350 

-0.340 

-0.330 

-0.320 

-0.310 

-0.300 

-0.290 

-0.280 

-0.270 

-0.260 

-0.250 

-0.240 

-0.230 

-0.220 

-0.210 

-0.200 

 

 

544.238000 

535.632800 

526.897800 

518.031900 

509.035600 

499.908800 

490.652600 

481.268200 

471.757000 

462.120700 

452.361800 

442.482500 

432.485300 

422.373500 

412.150300 

401.818600 

391.382200 

380.844700 

370.210100 

359.482000 

348.664400 

337.761400 

326.777300 

315.715900 

304.581400 

293.377900 

282.109600 

270.780300 

259.394000 

247.954300 

236.465100 

 

 

 

164.409900 

163.596600 

162.807400 

162.041100 

161.296800 

160.573600 

159.870700 

159.187200 

158.522500 

157.875800 

157.246600 

156.634200 

156.037900 

155.457400 

154.892200 

154.341500 

153.805100 

153.282600 

152.773600 

152.277500 

151.794100 

151.323100 

150.864000 

150.416700 

149.980700 

149.555800 

149.141900 

148.738500 

148.345500 

147.962700 

147.589700 
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Table-4.5 (Continued) 

-0.190 

-0.180 

-0.170 

-0.160 

-0.150 

-0.140 

-0.130 

-0.120 

-0.110 

-0.100 

-0.090 

-0.080 

-0.070 

-0.060 

-0.050 

-0.040 

-0.030 

-0.020 

-0.010 

0.000 

0.010 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.080 

0.090 

0.100 

0.110 

0.120 

0.130 

0.140 

0.150 

224.929600 

213.351700 

201.734100 

190.079900 

178.392000 

166.672800 

154.924600 

143.149300 

131.348700 

119.524000 

107.676500 

95.806760 

83.915240 

72.001590 

60.065510 

48.106110 

36.121970 

24.111300 

12.071650 

.000271 

12.106490 

24.252580 

36.442800 

48.682530 

60.977860 

73.335590 

85.763710 

98.270660 

110.866100 

123.560800 

136.366500 

149.296300 

162.364700 

175.587500 

188.982400 

147.226400 

146.872700 

146.528300 

146.193000 

145.866800 

145.549300 

145.240500 

144.940200 

144.648300 

144.364600 

144.089100 

143.821600 

143.562000 

143.310100 

143.065900 

142.829300 

142.600300 

142.378600 

142.164300 

141.957300 

141.757400 

141.564700 

141.379000 

141.200300 

141.028600 

140.863900 

140.706000 

140.554800 

140.410600 

140.273000 

140.142200 

140.018100 

139.900700 

139.789900 

139.685900 
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Table-4.5 (Continued) 

 

0.160 

0.170 

0.180 

0.190 

0.200 

0.210 

0.220 

0.230 

0.240 

0.250 

0.260 

0.270 

0.280 

0.290 

0.300 

0.310 

0.320 

0.330 

0.340 

0.350 

0.360 

0.370 

0.380 

0.390 

0.400 

0.410 

0.420 

0.430 

0.440 

0.450 

0.460 

0.470 

9.480 

0.490 

0.500 

 

202.569000 

216.368600 

230.405000 

244.704700 

259.297000 

274.214100 

289.492300 

305.171900 

321.298400 

337.922300 

355.100400 

372.897600 

391.386700 

410.651300 

430.786100 

451.900700 

474.121300 

497.594200 

522.490700 

549.011800 

577.395400 

607.925700 

640.943400 

676.863400 

716.193300 

759.563200 

807.763000 

861.798700 

922.971600 

992.994500 

1074.168000 

1169.661000 

1283.958000 

1423.624000 

1598.674000 

 

139.588400 

139.497600 

139.413400 

139.335900 

139.265000 

139.200800 

139.143200 

139.092200 

139.048000 

139.010500 

138.979600 

138.955600 

138.938200 

138.927700 

138.924000 

138.927200 

138.937300 

138.954300 

138.978300 

139.009400 

139.047500 

139.092600 

139.144900 

139.204300 

139.270900 

139.344700 

139.425800 

139.514100 

139.609700 

139.712400 

139.822400 

139.939600 

140.063900 

140.195100 

140.333200 
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CHAPTER  5 

PROJECT-3 

 

Perturbation Treatment for the Vibrations of Membranes 

Subjected to A Restorative Force 

5.1 Introduction 

Most of the physically important partial differential equations are of second order and can 

be classified into three types: elliptic, parabolic, and hyperbolic. Elliptic partial differential 

equations involve second order derivatives in each of the independent variables, each 

derivative having the same sign when all terms in the equation are grouped on one side. 

Roughly speaking, parabolic partial differential equations involve only a first-order 

derivative in one variable but have second order derivatives in the remaining variables. 

Hyperbolic partial differential equations involve second-order derivatives of opposite sign, 

such as the wave equation describing the vibrations of a stretched string. Hyperbolic partial 

differential equations are very essential in engineering and theoretical physics problems. 

One of the famous problems of their applicability in theoretical physics is the solution of 

the motion of a relativistic quantum mechanical particle in an electromagnetic field. The 

problems of vibrating rectangular or circular membrane are also very interesting especially 

when the membrane is subjectd to a restorative force. 

    The vibrating membrane problem can be used as a rather appropriate example to 

demonstrate the power of computer algebra systems like Axiom, Maple, Mathematica, 

Derive, etc. [119]. Different methods have been applied for the investigation of vibrating 

membranes. The differential quadrature method was applied for frequency analysis of 

rectangular and circular membranes [46,47]. Accordingly, some important studies 

concerning analysis of membranes have been carried out [40,41]. Furthermore, free 

vibration analysis of plates and shells has been also investigated [61,62]. 

    Once the boundary and initial conditions are given, the simplest method for solving the 

differential equation governing the problem of a vibrating rectangular or circular 

membrane is given, as usual [114], by separating the variables. In the presence of a 

restorative force, that is proportional to the velocity, the perturbation expansions for 

eigenvalues and eigenfunctions are also of particular interest. Based upon the known 

solutions of the problem in the absence of the restorative force one can then derive the 

solutions of the problem in the presence of the external force in the form of a power series 

of those solutions [120]. 

    In the present project, we have solved the differential equation, which represents the 

motion of a stretched elastic rectangular or circular membrane which is subjected to a 

restorative force proportional to the velocity by using two methods. The first is the usual 

method of separation of variables and the second is the perturbation method. The roles of 

the restoring force and the initial displacement are discussed. In the first part of this chapter 
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we investigate the circular membrane while in the second part we investigate the 

rectangular membrane. Accordingly, the displacement of the membrane at any given point 
(𝑥, 𝑦) or (𝑟, 휃) and instant of time t is given and the numerical solutions are then given by 

using the program Mathematica.  

     

5.2 The Circular Membrane 

5.2-1 Formulation of the Problem 

The formulations of the problem in both Cartesian and the polar coordinates are very 

similar and we see that the presentation of one of which is sufficient. So, we present the 

case of the vibrating circular membrane, and we will give the final results in each case. The 

vibrations of a circular membrane when the membrane is subjected to a restorative force 

proportional to the velocity at any instant of time t is governed by the two-dimensional 

wave equation 

                
𝜕2𝑢

𝜕𝑡2
+ 𝐾

𝜕𝑢

𝜕𝑡
= 𝑐2 (

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟2
𝜕2𝑢

𝜕𝜃2
) ; 𝑢 = 𝑢(𝑟, 휃, 𝑡), 𝐾 = constant.        (5.1)  

subjected two the boundary conditions  

                                                                 𝑢(𝑎, 휃, 𝑡) = 0,                                                (5.2)   

and the initial conditions 

                                                                𝑢(𝑟, 휃, 0) = 𝑓(𝑟, 휃),                                       (5.3) 

                                                                  
𝜕𝑢

𝜕𝑡
|
𝑡=0

= 𝑔(𝑟, 휃).                                          (5.4) 

The initial displacement 𝒇(𝒓, 𝜽) and initial velocity 𝒈(𝒓, 𝜽) of the membrane are assumed 

to be continuous functions.      

5.2-2 The Method of Separation of Variables 

Let us find solutions of (5.1) subject to the boundary and initial conditions given by (5.2), 

(5.3) and (5.4) in the form 

                               𝑢 = 𝑢(𝑟, 휃, 𝑡) = 𝑇(𝑡)𝑅(𝑟)𝛩(휃) . 

    Hence, the partial differential equation (5.1) separates to three second-order ordinary 

differential equations in the form   

                                                     
𝑑2𝑇

𝑑𝑡2
+ 𝑘

𝑑𝑇

𝑑𝑡
= −𝑐2𝜆2𝑇                                                (5.5)    

                                         
𝑑2𝛩

𝑑𝜃2
= −𝑚2𝛩,                                                             (5.6) 

                                         
𝑑2𝑅

𝑑𝑟2
+
1

𝑟

𝑑𝑅

𝑑𝑟
+ (𝜆2 −

𝑚2

𝑟2
)𝑅 = 𝑂.                                             (5.7) 
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In equations (5.5), (5.6) and (5.7) m and 𝜆 are arbitrary constants to be determined. The 

solutions of these equations, which are finite in t and continuous in our domain of values 

of 𝑟 and 휃 are simply given by  

                                   𝑇(𝑡) = ℯ
−𝑘𝑡

2
 {𝐴1𝑐𝑜𝑠(𝑐𝛽𝑡) + 𝐵1𝑠𝑖𝑛(𝑐𝛽𝑡)},                                  (5.8) 

                             𝛩(휃) = 𝐴2𝑐𝑜𝑠(𝑚휃) + 𝐵2𝑠𝑖𝑛(𝑚휃),                                     (5.9) 

                                                      𝑅(𝑟) = 𝐽𝑚(𝜆𝑟) ,                                                     (5.10)                      

Here, 𝑚 = 0, 1, 2, …,  𝛽 =  √ 𝜆2 −
𝐾2

4𝑐2
  and 𝐽𝑚(𝜆𝑟) are the Bessel functions. The boundary 

condition (5.2) implies that 

                                                     𝑅(𝑎) = 𝐽𝑚(𝜆𝑎) = 0,                                              (5.11)                                

               

Assuming that 𝑗𝑚,1, 𝑗𝑚,2, 𝑗𝑚,3, … , 𝑗𝑚,𝑛, …, are positive roots of  𝐽𝑚(𝑟), the solutions of (5.1) 

are then given by 

𝑢 = ℯ
−𝑘𝑡

2
 𝐽𝑚 (

𝑗𝑚,𝑛

𝑎
𝑟) {𝐴𝑚,𝑛𝑐𝑜𝑠(𝑚휃) + 𝐵𝑚,𝑛𝑠𝑖𝑛(𝑚휃)}{𝑐𝑜𝑠(𝑐𝛽𝑚,𝑛𝑡) + 𝐷𝑚,𝑛𝑠𝑖𝑛(𝑐𝛽𝑚,𝑛𝑡)},  (5.12)                                                                                                                                                           

where 

                                                   𝛽𝑚,𝑛 = √
𝑗𝑚,𝑛
2

𝑎2
−

𝐾2

4𝑐2
 .  

    If the function 𝑔(𝑟, 휃)  is taken to be zero, i.e. the initial velocity is zero, we obtain 

𝐷𝑚,𝑛 =
𝐾

2𝑐𝛽𝑚,𝑛
 , and the final solution in this case is then given by 

   𝑢 = ∑ ∑ ℯ
−𝑘𝑡

2
 {𝑐𝑜𝑠(𝑐𝛽𝑚,𝑛𝑡) +

𝐾

2𝑐𝛽𝑚,𝑛
𝑠𝑖𝑛(𝑐𝛽𝑚,𝑛𝑡)} 𝐽𝑚

∞
𝑛=1

∞
𝑚=0 (

𝑗𝑚,𝑛

𝑎
𝑟) {𝐴𝑚,𝑛𝑐𝑜𝑠(𝑚휃) +

                                     + 𝐵𝑚,𝑛𝑠𝑖𝑛(𝑚휃)}                                                                          (5.13) 

5.2-3 The Perturbation Method of Solution 

To apply the perturbation method [120,121] to equation (5.1) we try first to find solutions 

of the form 

                                                            𝑢 = 𝜐ℯ
−𝑘𝑡

2
 
                                                         (5.14) 

where 𝜐 is also a function of  𝑟 , 휃 and 𝑡 . 

    Equation (5.1), then, becomes 

                                             
𝜕2𝜐

𝜕𝑡2
−
𝐾2

4
𝜐 = 𝑐2 (

𝜕2𝜐

𝜕𝑟2
+
1

𝑟

𝜕𝜐

𝜕𝑟
+

1

𝑟2
𝜕2𝜐

𝜕𝜃2
),                             (5.15)    
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with the boundary condition 

                                                             𝜐(𝑎, 휃, 𝑡) = 0,                                               (5.16) 

and the initial conditions 

                                                            𝜐(𝑟, 휃, 0) = 𝑓(𝑟, 휃),                                         (5.17) 

                                           𝜐𝑡=0 = 𝑔(𝑟, 휃) +
𝐾

2
𝑓(𝑟, 휃) = ℎ(𝑟, 휃),                              (5.18)  

    The order of the approximation in the perturbation method is very important, so that we 

rewrite equation (5.15) in the form 

                                         𝑐2 (
𝜕2𝜐

𝜕𝑟2
+
1

𝑟

𝜕𝜐

𝜕𝑟
+

1

𝑟2
𝜕2𝜐

𝜕𝜃2
) = 𝜐𝑡𝑡 − 𝛼

𝐾2

4
𝜐,                              (5.19)  

where 𝛼 is a parameter introduced to know the order of the approximation and takes the 

value 1 in the final result. Accordingly, the zeroth order of the approximation is governed 

by the equation representing the case where there is no external restorative force, which is 

obtained by putting  𝛼 = 0 in (5.19), i.e. 

                                              𝑐2 (
𝜕2𝜐(0)

𝜕𝑟2
+
1

𝑟

𝜕𝜐(0)

𝜕𝑟
+

1

𝑟2
𝜕2𝜐(0)

𝜕𝜃2
) =  𝜐𝑡𝑡

(0)
,                          (5.20)   

where 𝜐(0)  is the corresponding solution in this case, which can be proved to be given by 

       𝜐(0)(𝑟, 휃, 𝑡) = ∑ ∑ 𝐽𝑚
∞
𝑛=1

∞
𝑚=𝑜 (

𝑗𝑚,𝑛

𝑎
𝑟) {𝐴𝑚,𝑛𝑐𝑜𝑠(𝑚휃) + 𝐵𝑚,𝑛𝑠𝑖𝑛(𝑚휃)} 

                                                              × {𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡) + 𝐷𝑚,𝑛𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡)}.             (5.21)     

  

    The boundary condition (5.16) is then satisfied and the initial conditions are the same as 

given by (5.17) and (5.18), with  𝑘 = 0. 

    We have now to determine by how much the solutions of the vibrations of the circular 

membrane, given by equation (5.21), under the boundary and initial conditions stated 

above, have been changed on account of the presence of the disturbing factor 𝐾
𝜕𝑢

𝜕𝑡
 , since 

it is assumed to be small compared to the other terms. The change is known as a 

perturbation. 

    The second step is now to use the solution 𝜐(0)(𝑟, 휃, 𝑡), equation (5.21), to derive 

solutions of equation (5.19), satisfying the boundary and initial conditions stated above in 

the following manner. Assume that the solutions of equations (5.19), 𝜐(𝑟, 휃, 𝑡), are 

expanded in series in powers of 𝛼, such that  

                                               𝜐 = 𝜐(0) + 𝛼𝜐(1) + 𝛼2𝜐(2) +⋯                                    (5.22)   

For any order of the approximation, we have the system of inhomogeneous wave equations 
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                𝑐2 (
𝜕2𝜐(𝑗)

𝜕𝑟2
+
1

𝑟

𝜕𝜐(𝑗)

𝜕𝑟
+

1

𝑟2
𝜕2𝜐(𝑗)

𝜕𝜃2
) =  𝜐𝑡𝑡

(𝑗)
−
𝐾2

4
𝜐(𝑗−1) ,       𝑗 = 1, 2, 3, …. ,       (5.23)   

with the initial conditions 

                                𝜐(𝑗)(𝑟, 휃, 0) = 0  ,    𝜐𝑡=0
(𝑗)

= 0 ,  𝑗 = 1, 2, 3, … ..  .                        (5.24)   

    The solutions of equations (5.23) are given by 

 

  𝜐(𝑗)(𝑟, 휃, 𝑡) = ∑ ∑ 𝒲𝑚,𝑛
(𝑗) (𝑡)𝐽𝑚 (

𝑗𝑚,𝑛

𝑎
𝑟) {𝐴𝑚,𝑛𝑐𝑜𝑠(𝑚휃) + 𝐵𝑚,𝑛𝑠𝑖𝑛(𝑚휃)}

∞
𝑛=1

∞
𝑚=0 ,    (5.25) 

  𝑗 = 0, 1, 2, …. ,   

where  

                                          𝒲𝑚,𝑛
(0) (𝑡) = 𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡) + 𝐷𝑚,𝑛𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡),                    (5.26) 

and   𝒲𝑚,𝑛
(𝑗) (𝑡) , 𝑗 = 1, 2, 3, …, are to be determined. From (5.23) and (5.25) we get 

                 
𝑑2𝒲𝑚,𝑛

(𝑗) (𝑡)

𝑑𝑡2
+ (𝑐𝑗𝑚,𝑛)

2
 𝒲𝑚,𝑛

(𝑗) (𝑡) =
𝐾2

4
 𝒲𝑚,𝑛

(𝑗−1)(𝑡),  𝑗 = 1,2,3,……                (5.27) 

    The solutions of (5.27) can be written in the form 

              𝒲𝑚,𝑛
(𝑗) (𝑡) =

𝐾2

4𝑐𝑗𝑚,𝑛
∫ 𝒲𝑚,𝑛

(𝑗−1)( 𝜏)𝑠𝑖𝑛{𝑐𝑗𝑚,𝑛(𝑡 − 𝜏)}𝑑𝜏
𝑡

0
 , = 1, 2, 3, …. .           (5.28)   

    Hence, the solutions of (5.1) are finally given by 

 

         𝑢(𝑟, 휃, 𝑡) = ∑ ∑ 𝑢𝑚,𝑛(𝑟, 휃, 𝑡)
∞
𝑛=1

∞
𝑚=0  

 = ℯ
−𝐾𝑡

2 ∑ 𝛼𝑗∞
𝑗=0 ∑ ∑ 𝒲𝑚,𝑛

(𝑗) (𝑡)𝐽𝑚 (
𝑗𝑚,𝑛

𝑎
𝑟) {𝐴𝑚,𝑛 cos(𝑚휃) +

∞
𝑛=1

∞
𝑚=0

                                     +𝐵𝑚,𝑛𝑠𝑖𝑛(𝑚휃)}.                                                                          (5.29) 

 

    From (5.27) and (5.28), we have 

     𝒲𝑚,𝑛
(1) (𝑡) =

𝐾2

8𝑐𝑗𝑚,𝑛
[𝐸𝑚,𝑛𝑡 𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡) + 𝐿𝑚,𝑛 (

𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡)

𝑐𝑗𝑚,𝑛
− 𝑡 𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡))],       (5.30)  

and 
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𝒲𝑚,𝑛
(2) (𝑡) =

𝐾4

128(𝑐𝑗𝑚,𝑛)
2 [𝑀𝑚,𝑛 {

𝑡 𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡)

𝑐𝑗𝑚,𝑛
− 𝑡2𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡)} +

𝑁𝑚,𝑛 {
3

(𝑐𝑗𝑚,𝑛)
2 𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡) − 

3𝑡

𝑐𝑗𝑚,𝑛
𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡) − 𝑡

2𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡) +

3

(𝑐𝑗𝑚,𝑛)
2 {𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡)}

3
−
6𝑠𝑖𝑛2(𝑐𝑗𝑚,𝑛𝑡)𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡)

𝑐𝑗𝑚,𝑛
}].                   

                                                                                                                                      (5.31)      

    Accordingly,  𝜐(1)(𝑟, 휃, 𝑡) and  𝜐(2)(𝑟, 휃, 𝑡) are calculated. From which the functions 𝜐 

and, hence, 𝑢 are calculated. We have applied the perturbation method to the second order 

of the approximation, which is sufficiently enough since the convergence of the solutions 

for our choice of parameters is good. Hence, our solutions are finally given by 

𝑢(𝑟, 휃, 𝑡) = 𝑒
−𝐾𝑡

2 ∑ ∑ 𝐽𝑚 (
𝑗𝑚,𝑛𝑟

𝑎
) [𝐴𝑚,𝑛𝑐𝑜𝑠(𝑚휃) + 𝐵𝑚,𝑛𝑠𝑖𝑛(𝑚휃)]𝒲𝑚,𝑛(𝑡)

∞
𝑛=1

∞
𝑚=0 ,   (5.32)  

 where 

𝒲𝑚,𝑛(𝑡) = {𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡) + 𝐷𝑚,𝑛𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡)} +
𝐾2

8𝑐𝑗𝑚,𝑛
{𝐸𝑚,𝑛𝑡 𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡) +

𝐿𝑚,𝑛 (
𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡)

𝑐𝑗𝑚,𝑛
− 𝑡 𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡))} +

𝐾4

128(𝑐𝑗𝑚,𝑛)
2 [𝑀𝑚,𝑛 {

𝑡 𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡)

𝑐𝑗𝑚,𝑛
− 𝑡2𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡)} +

𝑁𝑚,𝑛 {
3

(𝑐𝑗𝑚,𝑛)
2 𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡) −

3𝑡

𝑐𝑗𝑚,𝑛
𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡) − 𝑡

2𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡) +

3

(𝑐𝑗𝑚,𝑛)
2 {𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡)}

3
−
6𝑠𝑖𝑛2(𝑐𝑗𝑚,𝑛𝑡)𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡)

𝑐𝑗𝑚,𝑛
}]                                                       (5.33)   

  

    The initial condition (5.3) now gives 

                     ∑ ∑ 𝐽𝑚
∞
𝑛=1

∞
𝑚=0 (

𝑗𝑚,𝑛𝑟

𝑎
) {𝐴𝑚,𝑛𝑐𝑜𝑠(𝑚휃) + 𝐵𝑚,𝑛𝑠𝑖𝑛(𝑚휃)} = 𝑓(𝑟, 휃) ,     (5.34)    

and the initial condition (5.4) gives 

    ∑ ∑ 𝐽𝑚
∞
𝑛=1

∞
𝑚=0 (

𝑗𝑚,𝑛𝑟

𝑎
) {𝐴𝑚,𝑛𝑐𝑜𝑠(𝑚휃) + 𝐵𝑚,𝑛𝑠𝑖𝑛(𝑚휃)} (

−𝐾

2
+ 𝑐𝜆𝑚,𝑛𝐷𝑚,𝑛) = 𝑔(𝑟, 휃),   (5.35) 

5.2-4 Determination of the Coefficients 

In the treatment of the present problem we considered the following physical assumptions: 

    1. The mass of the membrane per unit area is constant ("homogeneous membrane"). The 

membrane is perfectly flexible and offers no resistance to bending. 

    2. The membrane is stretched and then fixed along its entire boundary in the plane. 

    3. The tension per unit length, 𝑇, caused by stretching the membrane is the same at all 

points and in all directions and does not change during the motion. 
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    4. The deflection 𝑢(𝑟, 휃, 𝑡) of the membrane during the motion is small compared to the 

size of the membrane, and all angles of inclination are small. 

    Although these assumptions cannot be realized exactly, they hold relatively accurately 

for small transverse vibrations of a thin elastic membrane, so that we shall obtain a good 

model, for instance, of a drumhead. In the numerical calculations we take 𝑎 = 1 ft, the 

density, 𝜌 = 2 slugs/ft², as for light rubber, the constant tension 𝑇 = 8 lb/ft, so that 𝑐2 =
 𝑇 𝜌⁄ = 4(ft/sec)². Moreover, the initial displacement is taken to be 

                                          𝑓(𝑟, 휃) = ∑ 2−𝑚𝐽𝑚(𝑗𝑚,1𝑟)𝑐𝑜𝑠(𝑚휃)
∞
𝑚=0 ,                          (5.36)   

which is a continuous function of 𝑟 and θ in the intervals  0 ≤ 𝑟 ≤ 1 and 0 ≤ 휃 ≤ 2𝜋.  

    Also, as before, we assume that the initial velocity is zero, so that 𝑔(𝑟, 휃) = 0. Hence,   

                                                              𝐷𝑚,𝑛 =
𝐾

2𝑐𝑗𝑚,𝑛
                                                  (5.37)   

    The initial displacement condition then gives 

∑ ∑ 𝐽𝑚
∞
𝑛=1

∞
𝑚=0 (𝑗𝑚,𝑛𝑟){𝐴𝑚,𝑛𝑐𝑜𝑠(𝑚휃) + 𝐵𝑚,𝑛𝑠𝑖𝑛(𝑚휃)} = ∑ 2−𝑚𝐽𝑚(𝑗𝑚,1𝑟)𝑐𝑜𝑠(𝑚휃)

∞
𝑚=0 .  (5.38)  

    Comparing the coefficients of 𝑐𝑜𝑠(𝑚휃) and 𝑠𝑖𝑛(𝑚휃) on both sides of (5.38) we 

conclude that all the coefficients are zero except: 

                                                     𝐴𝑚,1 = 2
−𝑚 , 𝑚 = 𝑜, 1, 2, 3, ……….               (5.39)        

Accordingly,  (5.32) takes the form 

                            𝑢(𝑟, 휃, 𝑡) = 𝑒
−𝐾𝑡

2 ∑ 𝐽𝑚 (𝑗𝑚,1𝑟)2
−𝑚∞

𝑚=0 𝑐𝑜𝑠(𝑚휃)𝒲𝑚,1(𝑡)               (5.40)   

where 𝒲𝑚,1(𝑡) are given by (5.33) and (5.37). 

    It is to be noticed that the boundary and initial conditions for our model do not give 

information about the coefficients 𝐸𝑚,1, 𝐿𝑚,1, 𝑀𝑚,1 and 𝑁𝑚,1. We can arbitrarily take  

𝐿𝑚,1 = 0  and  𝑁𝑚,1 = 0. Also, choosing  𝐸𝑚,1 = 1 and  𝑀𝑚,1 = 1 we get   

𝑊𝑚,1(𝑡) = 𝑐𝑜𝑠(𝑐𝑗𝑚,1𝑡) +
𝐾

2𝑐𝑗𝑚,1
𝑠𝑖𝑛(𝑐𝑗𝑚,1𝑡) +

𝐾2

8𝑐𝑗𝑚,1
{𝑡 𝑠𝑖𝑛(𝑐𝑗𝑚,1𝑡)} + 

                                     +
𝐾4

128(𝑐𝑗𝑚,1)
2 [
𝑡 𝑠𝑖𝑛(𝑐𝑗𝑚,𝑛𝑡)

𝑐𝑗𝑚,𝑛
− 𝑡2𝑐𝑜𝑠(𝑐𝑗𝑚,𝑛𝑡)]                            (5.41)                                                                                                                                                                                                       

5.2-5 Results and Conclusions for the Circular Membrane 

In order to investigate the role of the restorative force, given in this thesis by the term 𝐾
𝜕𝑢

𝜕𝑡
 , 

we draw the maximum value of the function 𝑢 as function of the time 𝑡 for   different values 

of the coefficient 𝐾. In Fig. (1) we present the variation of the maximum value of 𝑢 with 

respect to the time 𝑡 when there is no external force, 𝐾 = 0. Fig. (2) shows the variations 

of maximum 𝑢 with respect to 𝑡 for 𝐾 = 0.1, 0.2, 0.3, 0.4 and 0.5. It is seen from Fig.(2) 
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that the amplitude of the oscillation and the time during which the phenomena is seen, 

decrease as 𝐾 increases, as expected. The process is well presented at 𝐾 = 0.3. 

    In Fig. (3) we present the vibrations of the circular membrane at 𝑡 = 0, 𝐾 = 0.3, initial 

displacement. In Figs. (4-21 "a") we present the vibrations of the circular membrane, by 

using the method of separation of variables, at 𝑡 = 0.25, 0.5, 1, 1.5, 2, 3, . . , 16, 27, 28, 

respectively, 𝐾 = 0.3. In Figs. (4-21 "b") we present the vibrations of the circular 

membrane, by using the perturbation method, at = 0.25, 0.5, 1, 1.5, 2, 3, … , 16, 27, 28, 

respectively,  𝐾 = 0.3.             

    It is seen from Figs. (4-21 "a, b") that the two methods of solutions give the same results 

(same vibrations), a result which shows that the perturbation calculations up to the second 

order of the approximation give accurate solution to the original problem.  

 

             

  Fig. (1) Maximum displacement, for different values of 𝑟, 휃, as function of time t, K = 0.0  

 

                                     

  

Fig. (2) Maximum displacement, for different values of 𝑟, 휃, as function of time t, K = 0.1, 

0.2, 0.3, 0.4 and 0.5. 
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Fig. (3) Initial displacement. 

 

Sec. a- Method of separation of variables  b- Second-order perturbation method  
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 Figs. (4-21 "a") Vibrations of the circular membrane, by using the method of separation 

of variables, at  𝑡 = 0.25, 0.5, 1, 1.5, 2, 3, … . . . , 16, 27, 28, respectively, 𝐾 = 0.3.  

Figs. (4-21 "b") Vibrations of the circular membrane, by using the perturbation method, at 

𝑡 = 0.25, 0.5, 1, 1.5, 2, 3, …… , 16, 27, 28, respectively, 𝐾 = 0.3.  

    Since the radius of the membrane a = 1 ft, the values of the frequency of oscillation, in 

our model, are given by 

                                                                𝑓𝑚,1 =
𝜆𝑚,1𝑐

2𝜋
 HZ.                                           (5.42) 

The values of these frequencies are given in Table-1.  

Table-1 Frequency values for c = 2 ft/sec. 

 Frequency (HZ) 

𝑓01 0.765 

𝑓11 1.219 

𝑓21 1.634 

𝑓31 2.030 

𝑓41 2.414 

𝑓51 2.791 
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𝑓61 3.161 

𝑓71 3.527 

𝑓81 3.890 

       𝑓91 4.250 

 

    In practical applications, the frequencies given by (5.42) produce vibrations which are 

outside the range of hearing. In circumstances like what we have studied, it is desirable 

from the physical point of view to take the value of the velocity as 𝑐 = 800 ft/sec. In such 

case, the corresponding values of the frequency are in the range 306.052 ≤ 𝑓𝑚1 ≤
1699.523 𝐻𝑍,𝑚 = 0,1, … , 9.  For the considered modes, these frequencies produce 

vibrations which can be heard. At the same time, the shape of the resulting figures are very 

similar to those obtained in Figures (4-21 “a” and “b”) but with different amplitudes.   

 

5.3 The Rectangular Membrane 

5.3-1 The Differential Equation 

The differential equation which governs the motion of the vibrating rectangular membrane 

is given by [8] 

                                            
𝜕2𝑢0

𝜕𝑡2
= 𝑐2 {

𝜕2𝑢0

𝜕𝑥2
+
𝜕2𝑢0

𝜕𝑦2
},                                                   (5.43)              

 
where c is a constant, which is given in terms of the tension per unit lengths and the density 

𝜌 by the relation 

                                              𝑐 = √
𝑇

𝜌
, ft/sec.                                                               (5.44)         

The constant 𝑐 has the dimension of velocity, as expected. The solutions of equation (5.43) 

are well known when the boundary and initial conditions are stated [8]. 

    When the membrane is subjected to a restorative force that is proportional to the velocity 

the new differential equation is now given by 

 

                                          
𝜕2𝑢

𝜕𝑡2
+ 𝑘

𝜕𝑢

𝜕𝑡
= 𝑐2 {

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
},                                              (5.45) 

                                       
where 𝑘 is the proportionality constant.   
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5.3-2 The Boundary Conditions 

We take 𝑢 to be zero on the boundary of the membrane, as for all applications, so that   

                                       𝑢 = 0,     0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑦 ≤ 𝑏,                                    (5.46)   

for all 𝑡 ≥ 0.  

5.3-3 The Initial Conditions 

The initial displacement is taken, as in practical applications, as follows 

                                               𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),                                                      (5.47)   

where 𝑓(𝑥, 𝑦) is assumed to be a continuous function. 

    The initial velocity is 

                                                 
𝜕𝑢

𝜕𝑡
|
𝑡=0

= 𝑔(𝑥, 𝑦),                                                         (5.48)   

where 𝑔(𝑥, 𝑦) is also a continuous function.    

 

5.3-4 The Method of Separation of Variables 

By separating the variables, one can easily obtain the following solutions for equation 

(5.43) under the stated above boundary and initial conditions: 

𝑢0(𝑥, 𝑦, 𝑡) = ∑ ∑ [
{𝐴𝑚,𝑛𝑐𝑜𝑠(𝜆𝑚,𝑛𝑡) + 𝐵𝑚,𝑛𝑠𝑖𝑛(𝜆𝑚,𝑛𝑡)}

× 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)

]∞
𝑛=1

∞
𝑚=1  ,                            (5.49)        

                                         

 

where 

                          𝐴𝑚,𝑛 =
4

𝑎𝑏
∫ ∫ 𝑓(𝑥, 𝑦)𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0
,                          (5.50)               

           

                        𝐵𝑚,𝑛 =
4

𝑎𝑏𝜆𝑚,𝑛
∫ ∫ 𝑔(𝑥, 𝑦)𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0
,                      (5.51)        

                   

 

And 

               𝜆𝑚,𝑛 = 𝑐𝜋√
𝑚2

𝑎2
+
𝑛2

𝑏2
 , 𝑚 = 1, 2, …   𝑎𝑛𝑑 𝑛 = 1, 2, …  .                                  (5.52)          

             

     

    Furthermore, by separating the variables one obtains the following solutions for equation 

(5.45) 

𝑢(𝑥, 𝑦, 𝑡) = 𝑒−𝑘𝑡/2∑ ∑ {Am,ncos (μ
m,n
t) + Dm,nsin (μ

m,n
t)} sin (

mπx

a
) sin (

nπy

b
)∞

𝑛=1
∞
𝑚=1 , (5.53)   

 

 

https://alexjournals.org/AlexJournal/Mathematics/


ALEXANDRIA JOURNAL OF MATHEMATICS Volume 10 Number 1 September 2021 (ISSN 2090-4320) 

 
 

 

AVAILABLE ONLINE AT www.mathematics.alexjournals.org 155  

 

where 𝐴𝑚,𝑛 is given by (5.50) and  

 

     𝐷𝑚,𝑛 =
4

𝑎𝑏𝜇𝑚,𝑛
∫ ∫ {𝑔(𝑥, 𝑦) +

𝑐𝜋

2
𝑓(𝑥, 𝑦)}

𝑏

0

𝑎

0
𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 𝑑𝑥𝑑𝑦.                (5.54)       

           

 

In equations (5.53) and (5.54) the values 𝜇𝑚,𝑛 are given by 

                                      𝜇𝑚,𝑛 = 𝑐𝜋√
𝑚2

𝑎2
+
𝑛2

𝑏2
−

𝑘2

4𝑐2𝜋2
 ,                                                 (5.55)                                              

where 𝑚 = 1, 2,…   𝑎𝑛𝑑  𝑛 = 1, 2, …   .   

The values 𝜇𝑚,𝑛 are called eigenvalues of the rectangular membrane and the functions 

 

 𝑢𝑚,𝑛(𝑥, 𝑦, 𝑡) = 𝑒
−𝑘𝑡/2 {Am,ncos (μ

m,n
t) + Dm,nsin (μ

m,n
t)} sin (

mπx

a
) sin (

nπy

b
),    (5.56)       

are called eigenfunctions of the rectangular membrane. 

 

5.3-5 The Perturbation Method of Solution 

We have now to determine by how much the solutions of equation (5.43), under the 

boundary and initial conditions stated above, have been changed on account of the presence 

of the disturbing factor 𝑘
𝜕𝑢

𝜕𝑡
,  since it is assumed to be small compared to the other terms. 

The change is known as a perturbation. 

    To apply the perturbation method [10] to equation (5.45) we try first to find solutions of 

the form 

                                                    𝑢 = 𝑣𝑒
−𝑘𝑡



Equation (5.45), then, becomes  

                                                𝑐2(𝑣𝑥𝑥 + 𝑣𝑦𝑦) = 𝑣𝑡𝑡 −
𝑘2

4
𝑣                                         (5.58)           

with the initial conditions 

                                            𝑣(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦), 

𝑣𝑡|𝑡=0 = 𝑔(𝑥, 𝑦) +
𝑘

2
𝑓(𝑥, 𝑦) = ℎ(𝑥, 𝑦) 

                       

  

    To apply the perturbation method to equation (5.58) we rewrite it in the form 
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                                          𝑐2(𝑣𝑥𝑥 + 𝑣𝑦𝑦) = 𝑣𝑡𝑡 − 𝛼
𝑘2

4
𝑣,                                           (5.59)            

where 𝛼 is a parameter introduced to know the order of the approximation and takes the 

value 1 in the final result. Accordingly, the equation representing the case where there is 

no external restorative force is obtained by putting  𝛼 = 0  in (5.59)  

                                                𝑐2(𝑣𝑥𝑥
(0) + 𝑣𝑦𝑦

(0)) = 𝑣𝑡𝑡
(0),                                                (5.60)              

where 𝑣(0) is the corresponding solution in this case. 

    The second step now is to use the solution 𝑣(0)(𝑥, 𝑦, 𝑡) of equation (5.60) to derive 

solutions of equation (5.59), satisfying the boundary and initial conditions stated above in 

the following manner. Assume that the solutions of equations (5.59), 𝑣(𝑥, 𝑦, 𝑡), are 

expanded in series in powers of 𝛼, such that 

              

     

                                          𝑣 = 𝑣(0) + 𝛼𝑣(1) + 𝛼2𝑣(2) +⋯  .                                      (5.61)         

Substituting from (5.61) into (5.59) and equating the coefficients of the different powers 

of 𝛼 in both sides we get 

 

                                     𝑐2(𝑣𝑥𝑥
(0) + 𝑣𝑦𝑦

(0)) = 𝑣𝑡𝑡
(0)

,                                               

                   𝑐2(𝑣𝑥𝑥
(𝑗)
+ 𝑣𝑦𝑦

(𝑗)
) = 𝑣𝑡𝑡

(𝑗)
−
𝑘2

4
𝑣(𝑗−1) ,        𝑗 = 1, 2, 3, …, .                          (5.62)         

Thus, in the presence of the perturbation we have for the zero’s order of the approximation 

the same equation (5.60), as expected, with the boundary and initial conditions given by 

                                        𝑣(0)(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),                                                        (5.63)            

                                         𝑣(0)𝑡|𝑡=0 = ℎ(𝑥, 𝑦).                                                             (5.64)              

For any order of the approximation, we have the system of inhomogeneous wave equations 

given by (5.62) with the initial conditions                                                                                          

                                        𝑣(𝑗)(𝑥, 𝑦, 0) = 0,                                                                  (5.65)            

                                          𝑣(𝑗)𝑡|𝑡=0 = 0;                                   j = 1, 2, 3, ... .            (5.66)             

                                                                                                 

The solutions of equations (5.60) and (5.62) with the given boundary and initial conditions 

are given by 

      𝑣(𝑗)(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑤𝑚,𝑛
(𝑗)∞

𝑛=1 (𝑡) sin (
𝜋𝑚𝑥

𝑎
) sin (

𝜋𝑛𝑦

𝑏
)∞

𝑚=1   ,     j = 0, 1, 2,… ,        (5.67)      

where           
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                                𝑤𝑚,𝑛
(0) (𝑡) = 𝐴𝑚,𝑛 cos(𝜆𝑚,𝑛𝑡) + 𝐸𝑚,𝑛 sin(𝜆𝑚,𝑛𝑡).                         (5.68)           

 

In equation (5.68) 𝐴𝑚,𝑛 is given as before by (5.50) and  

                   𝐸𝑚,𝑛 =
4

𝑎𝑏𝑐𝜆𝑚,𝑛
∫ ∫ ℎ(𝑥, 𝑦) sin (

𝜋𝑚𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑛𝑦

𝑏
) 𝑑𝑥𝑑𝑦,

𝑎

𝑥=0

𝑏

𝑦=𝑜
                   (5.69)         

                                        𝜆𝑚,𝑛 = 𝑐𝜋√
𝑚2

𝑎2
+
𝑛2

𝑏2
 .                                                            (5.70)          

From (5.62) and (5.67) we get 

            
𝑑2𝑤𝑚,𝑛

(𝑗)
(𝑡)

𝑑𝑡2
+ (𝜆𝑚,𝑛)

2
𝑤𝑚,𝑛
(𝑗) (𝑡) =

𝐾2

4
𝑤𝑚,𝑛
(𝑗−1)

(𝑡) ,     𝑗 = 1,2,3,… .                        (5.71)           

The solutions of (5.71) can be written in the form: 

 

    𝑤𝑚,𝑛
(𝑗) (𝑡) =

𝐾2

4𝜆𝑚,𝑛
∫ 𝑤𝑚,𝑛

(𝑗−1)
(𝜏) sin{𝜆𝑚,𝑛(𝑡 − 𝜏)}𝑑𝜏

𝑡

0
 ,       𝑗 = 1, 2, 3, …  .                  (5.72)        

Hence, the solutions of (5.45) are finally given by 

             𝑢(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑢𝑚,𝑛(𝑥, 𝑦, 𝑡)
∞
𝑛=1

∞
𝑚=1 =

∑ ∑ ∑ 𝑒−
𝑘𝑡

2𝑤𝑚,𝑛
(𝑗)
(𝑡)𝛼𝑗 sin (

𝜋𝑚𝑥

𝑎
) sin (

𝜋𝑛𝑦

𝑏
) .∞

𝑗=0
∞
𝑛=1

∞
𝑚=1                                                 (5.73)        

 

From (5.68) and (5.72), we have 

    𝑤𝑚,𝑛
(1) (𝑡) =

𝑘2

8𝜆𝑚,𝑛
[𝐴𝑚,𝑛𝑡 sin(𝜆𝑚,𝑛𝑡) + 𝐸𝑚,𝑛 (

sin(𝜆𝑚𝑛𝑡)

𝜆𝑚,𝑛
− 𝑡 cos(𝜆𝑚,𝑛𝑡))],               (5.74)                 

and 

128(𝜆𝑚,𝑛)
2

𝑘4
× 𝑤𝑚,𝑛

(2) (𝑡) = 𝐴𝑚,𝑛 {
𝑡 sin(𝜆𝑚,𝑛𝑡)

𝜆𝑚,𝑛
− 𝑡2 cos(𝜆𝑚,𝑛𝑡)} 

 

        +𝐸𝑚,𝑛

{
 
 

 
 

3

(𝜆𝑚,𝑛)
2 sin(𝜆𝑚,𝑛𝑡) −

3𝑡

𝜆𝑚,𝑛
𝑐𝑜𝑠(𝜆𝑚,𝑛𝑡) − 𝑡

2𝑠𝑖𝑛(𝜆𝑚,𝑛𝑡)

+
3

(𝜆𝑚,𝑛)
2 {𝑠𝑖𝑛(𝜆𝑚,𝑛𝑡)}

3
−
6𝑠𝑖𝑛2(𝜆𝑚,𝑛𝑡)𝑐𝑜𝑠(𝜆𝑚,𝑛𝑡)

𝜆𝑚,𝑛

}
 
 

 
 

.                       (5.75)                                                          

Accordingly, 𝑣(1)(𝑥, 𝑦, 𝑡), 𝑣(2)(𝑥, 𝑦, 𝑡), and so on are calculated. From which the functions 

𝑣  and, hence, 𝑢 are calculated.                                                                                   
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5.3-6 Results and Conclusions 

In the numerical computations we have considered a rectangular membrane of sides 𝑎 =
4ft and 𝑏 = 2ft, the constant tension is 12.5 lb/ft, the density is 2.5 slugs/ft2, as for light 

rubber. Moreover, the constants 𝑘 and 𝑐 are given by    

                     𝑘 = 𝑐𝜋/10   and 𝑐2 =
16

5𝜋2
 ft2 /sec2.  

1. Nodal Lines of the Rectangular Membrane 

It is very interesting to notice that, depending on 𝑎 and 𝑏 several functions 𝑢𝑚,𝑛, (5.29) or 

(5.73), may correspond to the same eigenvalue. Physically this means that there may exist 

vibrations which have the same frequency but entirely different nodal lines (curves of 

points on the membrane that do not move). In our model the eigenvalues are given by 

(5.55). For 𝑎 = 4  and  𝑏 = 2 we get 

    
20𝜇𝑚,𝑛

𝜋𝑐
= √𝑁 = √25𝑚2 + 100𝑛2 − 1 ,    𝑚 = 1, 2, 3, … and 𝑛 = 1, 2, 3, … .          (5.76)          

    Accordingly, different functions 𝑢𝑚,𝑛 may correspond to the same value of 𝜇𝑚,𝑛. For 

example, we have N = 1999, for m = 4 and n = 4, and also for m = 8 and n = 2. Hence,    

                                                    𝜇4,4 = 𝜇8,2 =
𝑐𝜋

20
√1999        

But for 𝑚 = 4 and 𝑛 = 4, the corresponding function is 

𝑢4,4 = 𝑒
−𝑘𝑡/2 {𝐴4,4𝑐𝑜𝑠 (

cπ

20
√1999t) + 𝐷4,4𝑠𝑖𝑛 (

cπ

20
√1999t)} 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(2𝜋𝑦).     (5.77)       

And for m = 8 and n = 2, the corresponding function is 

𝑢8,2 = 𝑒
−𝑘𝑡/2 {𝐴8,2𝑐𝑜𝑠 (

cπ

20
√1999t) + 𝐷8,2𝑠𝑖𝑛 (

cπ

20
√1999t)} 𝑠𝑖𝑛(2𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦).     (5.78)     

These two functions are certainly different and have the nodal lines 𝑥 = 1, 𝑥 = 2, 𝑥 =

3, and 𝑦 =
1

2
, 𝑦 = 1, 𝑦 =

3

2
 in the first case and 𝑥 =

1

2
, 𝑥 = 1, 𝑥 =

3

2
, 𝑥 = 2, 𝑥 =

5

2
, 𝑥 =

3, 𝑥 =
7

2
  and 𝑦 = 1, in the second case. 

    Furthermore, we have calculated several values of 𝑚 and 𝑛 ≤ 100, for which the 

corresponding eigenvalues are the same and belong to different eigenfunctions. In Table-1 

we present only one case from each set of values with the same length (≥ 3). The 

corresponding nodal lines for them can be easily obtained as discussed above.  
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Table-1 Values of m, n and N which belong to nodal lines 

𝑚 𝑛 𝑁 Length 

2 7 4999 3 

10 5 4999 3 

14 1 4999 3 

2 8 6499 4 

8 7 6499 4 

14 4 6499 4 

16 1 6499 4 

10 35 125999 5 

34 31 125999 5 

50 25 125999 5 

62 17 125999 5 

70 5 125999 5 

2 18 32599 6 

12 17 32599 6 

20 15 32599 6 

30 10 32599 6 

34 6 32599 6 

36 1 32599 6 

16 51 266599 7 

38 48 266599 7 

54 44 266599 7 

72 37 266599 7 

74 36 266599 7 

https://alexjournals.org/AlexJournal/Mathematics/


ALEXANDRIA JOURNAL OF MATHEMATICS Volume 10 Number 1 September 2021 (ISSN 2090-4320) 

 
 

 

AVAILABLE ONLINE AT www.mathematics.alexjournals.org 160  

 

88 27 266599 7 

96 19 266599 7 

8 33 110599 8 

18 32 110599 8 

24 31 110599 8 

46 24 110599 8 

48 23 110599 8 

62 12 110599 8 

64 9 110599 8 

66 4 110599  8 

 

2. Displacement of the Rectangular Membrane            

    For the initial displacement we have choose several functions which satisfy the boundary 

conditions, such as   

                          𝑓(𝑥, 𝑦) = 𝑥𝑦(𝑎2 − 𝑥2)(𝑏2 − 𝑦2),                                                     (5.79)              

           𝑓(𝑥, 𝑦) = 𝑑(𝑎𝑥 − 𝑥2)(𝑏𝑦 − 𝑦2), 𝑑 = 𝑐𝑜𝑛𝑠𝑡,                                                  (5.80)            

which are positive continuous function of 𝑥 and 𝑦 in the intervals 𝑥 ∈ [0, 𝑎] and 𝑦 ∈ [0, 𝑏]. 
For the sake of illustration, we consider the function given by (5.79). Similarly, for the 

initial velocity we have considered several functions which produce good results such as  

                                                               𝑔(𝑥, 𝑦) = 0                                                    (5.81)             

                                                          𝑔(𝑥, 𝑦) = 𝑥 + 𝑦,                                                (5.82)           

                                                          𝑔(𝑥, 𝑦) = 𝑥 − 𝑦                                                 (5.83)                                  

    We have applied the perturbation method to the second-order of the approximation, 

which is sufficiently enough since the convergence of the solutions for our choice of 

parameters and functions is good. It is of interest to notice that the obtained displacements 

by using the second-order of the perturbation agree very well with the corresponding 

displacements obtained by using the method of separation of variables, a result which 

shows that the perturbation method is a powerful approximate method for solving the wave 

equation. Also, the role of the initial velocity is to adjust the resulting vibrations form being 

destroyed, besides it makes the time of damping of the oscillation larger. For the sake of 
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illustration we consider the function given by (5.82) and present the vibrations resulting 

from using the second-order perturbation method. 

    In Figures 1-30 we present the successive displacements, in ft, for 𝑡 = 0, 1, 2, … , 29, 

respectively. It is seen from the figures that the displacement of the membrane starts to be 

negative after 6 seconds. After 13 seconds, the displacement starts to be positive again but 

with too small values. After 27 seconds the membrane approximately stopped, so that the 

considered damping force acts for only 27 seconds.   

     

   Fig.1 Displacement for t = 0                        Fig.2 Displacement for t = 1 

 

        

Fig.3 Displacement for t = 2                           Fig.4 Displacement for t = 3  
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Fig.5 Displacement for t = 4                        Fig.6 Displacement for t = 5 

   

Fig.7 Displacement for t = 6                        Fig.8 Displacement for t = 7 

    

Fig.9 Displacement for t = 8                        Fig.10 Displacement for t = 9 
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Fig.11 Displacement for t = 10                        Fig.12 Displacement for t = 11 

 

 

   

Fig.13 Displacement for t = 12                        Fig.14 Displacement for t = 13 

 

    

Fig.15 Displacement for t = 14                        Fig.16 Displacement for t = 15 
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Fig.17 Displacement for t = 16                       Fig.18 Displacement for t = 17 

 

 

   

Fig.19 Displacement for t = 18                        Fig.20 Displacement for t = 19 

  

Fig.21 Displacement for t = 20                        Fig.22 Displacement for t = 21 
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Fig.23 Displacement for t = 22                        Fig.24 Displacement for t = 23 

 

  

Fig.25 Displacement for t = 24                        Fig.26 Displacement for t = 25 

 

  

Fig.27 Displacement for t = 26                        Fig.28 Displacement for t = 27 
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Fig.29 Displacement for t = 28                        Fig.30 Displacement for t = 29 
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