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Abstract 
This paper investigates thermal radiation and chemical reaction effects on unsteady MHD couette flow of fourth-grade 

fluid in horizontal parallel plates channel. The coupled governing equations are transformed into a dimensionless form 

using dimensionless parameters. The transformed equations are solved by implementing He-Laplace scheme 

explicitly. The impact of thermal radiation, chemical reaction, third and fourth-grade parameters along with diversified 

parameters are exhibited graphically on different flow fields. The skin friction, Nusselt number and Sherwood number 

are calculated, tabulated and discussed. An interesting fact is that velocity and temperature fields rise due to the 

increment of thermal radiation parameter. For upsurging data of chemical reaction, velocity and concentration fields 

diminish. Furthermore, the velocity field decline due to the increment of magnetic parameter. 

 

 Keywords: Thermal radiation, Chemical reaction, MHD, Fourth-grade fluid, He – Laplace 

 

Nomenclature 

𝐵0 External magnetic field. 

𝑇 Temperature of the fluid 

𝐶 Species concentration 

𝑞𝑟 Radiative heat flux 

𝑢 Fluid velocity 

𝐶𝑝 Specific heat capacity 

𝐶𝑓 Skin friction 

𝑁𝑢  Nussel number 

𝑆ℎ  Sherwood number 

𝐻𝑎  Hartmann number 

𝑃𝑟  Prandtl number 

𝐺𝑟  Grashof number due to heat transfer 

𝐺𝑐 Grashof number due to mass transfer 

𝐾𝑟 Chemical reaction parameter 

𝑆𝑐 Schmidt number 

𝑇𝑤  Temperature at the surface 

𝑇∞  Ambient temperature as 𝑦 → ∞   

𝐶𝑤  Concentration at the surface 

𝐶∞  Concentration as 𝑦 → ∞ 

𝑥, 𝑦  Cartesian coordinates 
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Greek Symbols 

𝜇 Coefficient of shear viscosity 

𝛼𝑖, 𝛽𝑖, 𝛾𝑖 Material constants 

𝛽  Thermal expansion coefficient  

𝛽𝑐  Concentration expansion coefficient 

𝛿  Thermal radiation parameter 

𝜎  Stefan – Boltzmann constant 

𝜌  Density of the fluid 

𝜈  Kinematic viscosity 

 

 

1. Introduction 

Thermal radiation is the process by which energy in the form of electromagnetic radiation, is 

emitted by a heated surface in all directions and travels directly to its point of absorption at the 

speed of light. It ranges in wavelength from the longest infrared rays through the visible – light 

spectrum to the ultraviolet rays. The intensity and distribution of radiant energy within this range 

is governed by the temperature of the emitting surface; this is in agreement to Stefan – Boltzmann 

law which states that “the total radiant heat emitted by a surface is proportional to the fourth power 

of its absolute temperature”. And the rate at which a body radiates (or absorbs) thermal radiation 

depends upon the nature of the surface as well. Objects that are good emitter are also good 

absorbers (Kirchoff’s radiation law). 

    Chemical reaction is a process that involves rearrangement of the molecular or ionic structure 

of a substance, as distinct from a change in physical form or nuclear reaction. There are two types 

of such reactions namely homogeneous reaction which occurs uniformly throughout a given phase 

of a flow and heterogeneous reaction which takes place in a particular region or within the 

boundary of a phase Umavathi [1]. The study of heat transfer with chemical reaction is of most 

realistic significance to engineers and scientists because of its universal incidence in many 

branches of science and engineering. This phenomenon plays a significant role in chemical 

industry, power and cooling industry for dying, evaporation, energy transfer in cooling tower and 

flow in s desert cooler, etc. Satya et.al [2] 

    Magneto hydrodynamics (MHD) is the study of the magnetic properties and behaviour of 

electrically conducting fluids. Example of such magneto fluids include plasma, liquid metals, salt 

water and electrolytes. The fundamental concept of MHD is that magnetic fields can induce 

currents in a moving conductive fluid, which in turn polarizes the fluid and reciprocally changes 

the magnetic field itself. And, couette flow is the flow of a viscous fluid in the space between two 

surfaces, one of which is moving tangentially relative to the other. The configuration often takes 

the form of two parallel plates. 

    The fourth-grade fluid flow model is an exceptional model which has opened new subway of 

fluid mechanics. This sort of model is being used to explain the flow attitude of non-Newtonian 

fluids, which are considered vital and applicable in many industrial producing processes such in 

the drilling of oil and gas wells, polymer extrusion from dye, glass fibre, paper production and 

draining of plastics films etc. 

https://alexjournals.org/AlexJournal/Mathematics/


ALEXANDRIA JOURNAL OF MATHEMATICS Volume 11 Number 1 June 2022 (ISSN 2090-4320) 

 

AVAILABLE ONLINE AT www.alexjournals.org 3  

 

    A vast scientific analysis of non-Newtonian fluids problems has been done by many researchers. 

This has gained great importance in different fields due to their huge range of engineering and 

commercial applications. The study of the behavior of the motion of non-Newtonian fluids is very 

much more complicated and difficult as compared to that for Newtonian fluids, because of the 

nonlinear relationship between the stress and the rate of strains. The governing equations that 

describe the flow of Newtonian fluid is the Navier-Stokes equations, while for the flow of the non-

Newtonian fluids there is no single governing equation which describes all of their properties and 

thus it is difficult to describe these fluids as Newtonian fluids. Therefore, many empirical and 

semi-empirical non-Newtonian models or constitutive equations have been proposed Islam et.al 

[3], where was considered the steady flow of a non-Newtonian fluid with slippage between the 

plate and the fluid. The constitutive equations of the fluids were modelled for fourth-grade non-

Newtonian fluid with partial slip. They employed homotopy perturbation and optimal homotopy 

asymptotic methods to solve the non-linear differential equation. 

    The fourth-grade fluid has large number of complex parameters. But, Hayat et.al [4] 

experimented this by the effect of uniform magnetic field combined with steady and unsteady 

flows over porous plates. They used differential equation of order six for a numerical solution with 

a total three boundary conditions related with momentum and finite difference. Lie point 

symmetries were applied by them to reduce the number and order of distinct variable of partial 

differential equations. 

    Hayat et.al [5] examined the unsteady flow of a hydrodynamic fluid past a porous plate. The 

constitutive equations of the fluids were modelled by therefore a fourth-grade fluid. The study 

gave rise to a boundary value problem consisting of a fifth-order differential equation but there 

were only two boundary conditions. The solution was obtained by implementation of Lie group 

method. In another study, Hayat et al. [6] used Laplace transform method to determine the 

analytical solution of couette flows of a second grate fluid. Stokes and couette flows due to 

oscillating wall were discussed by Khaled and Vafai [7].  Singh [8] studied the periodic solution 

of oscillatory couette flow of through porous medium in rotating system. Guria [9] discussed 

couette flow problem for rotating and oscillatory flow. 

Idowu et al. [10] considered the unsteady Couette flow with transpiration of a viscous fluid in a 

rotating system. An exact solution of the governing equations has been obtained by using Laplace 

Transform Technique. 

    Couette flow of an unsteady third grade fluid with variable magnetic field was investigated by 

Hayat and Kara [11], were they considered the fluid to be in an annular region between two coaxial 

cylinders. The axial couette flow problem of an electrically conducting fluid in an annulus was 

examined by Zaman et.al [12].  

    Unsteady MHD couette flow between two infinite parallel porous plates in an inclined magnetic 

field with heat transfer was studied by Joseph et al. [13]. The lower plate was considered porous. 

The governing equations of the flow field were solved by variable separable technique and the 

expression for the velocity, temperature, skin frictions and Nusselt numbers were obtained. In 

another investigation, Zaman et.al [14] analyzed the Couette flow problem for an unsteady 

magnetohydrodynamic (MHD) fourth-grade fluid in the presence of pressure gradient and Hall 

currents. The arising non-linear problem was solved by the homotopy analysis method (HAM). 
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Taha et.al [15] carried out an analysis to study the time – dependent flow of an incompressible 

electrically conducting fourth grade fluid over an infinite porous plate. The flow was caused by 

the motion of the porous plate in its own plane with an impulsive velocity 𝑉(𝑡). The governing 

non – linear problem was solved by invoking the Lie group theoretical approach and numerical 

technique. While, Taza et.al [16] studied the unsteady thin film flow of a fourth-grade fluid over a 

moving and oscillating vertical belt. They employed a domain decomposition method (ADM) and 

optimal homotopy asymptotic method (OHAM) to find the solution of the non- linear differential 

equations that governed the flow. 

    Much later, Arifuzzaman et.al [17] analyzed heat and mass transfer characteristics of naturally 

corrective hydro-magnetic flows of fourth grade radiative fluid resulting from vertical porous 

plate. They considered non-linear order chemical reaction and heat generation with thermal 

diffusion. The complete fundamental equations are transforming into dimensionless equations by 

implementing finite difference scheme explicitly. 

    Motivated by the above literatures, this paper presents an investigation into the thermal radiation 

and chemical effects on unsteady MHD couette flow of fourth-grade fluid in horizontal parallel 

plates channel. 

2. Formulation of the Problem 

We consider the unsteady flow of an electrically conducting incompressible fourth grade fluid 

between two horizontal parallel plates channel as shown in figure 1 below. The fluid is 

subjected to a uniform transverse magnetic field 𝐵0. We assume the bottom plate is fixed 

(stationary) and the top plates is moving with constant velocity, 𝑢. 

 

 
Figure 1: Physical Configuration of the Plane Couette Flow 

 

The state of this fluid is determined by the history of the deformation gradient without a preferred 

reference configuration. Its constitutive equation can be written as 

                                   𝑇(𝑥, 𝑡) = −𝑃𝐼 + 𝑓𝑠=0
∞ (𝐹𝑡

𝑡(𝑠))                                                                    (1) 

where 𝑃𝐼 is the undetermined part of the stress – tensor, 𝐹 is the deformation gradient and 𝑓 is the 

functional. 
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Coleman and Noll [18] prescribed different sort of incompressible fluid category  𝑛 as viscous 

fluid agreeing on Hayat et.al [4]. Incompressible fluid of differential type of grade 𝑛 is the simple 

fluid obeying the constitutive equation 

                                                      
1

n

j

j

T PI S
=

= − +                                                                                   (2) 

obtained by asymptotic expansion of the functional in equation (1.1) through a retardation 

parameter 𝛼. For 𝑛 = 4 as Hayat et.al ([4], [5]) and Arifuzzamn et.al [17], the first four (4) tensors 

𝑆𝑗 are given by  

                                                        𝑆1 = 𝜇𝐴1              (3) 

                                                    𝑆2 = 𝛼1𝐴2 + 𝛼2𝐴1
2              (4) 

                                𝑆3 = 𝛽1𝐴3 + 𝛽2(𝐴1𝐴2 + 𝐴2𝐴1) + 𝛽3(𝑡𝑟𝐴1
2)𝐴1                      (5) 

𝑆4 = 𝛾1𝐴4 + 𝛾2(𝐴3𝐴1 + 𝐴1𝐴3) + 𝛾3𝐴2
2 + 𝛾4(𝐴2𝐴1

2 + 𝐴1
2𝐴2) + 𝛾5(𝑡𝑟𝐴2)𝐴2 + 𝛾6(𝑡𝑟𝐴2)𝐴1

2 +
[𝛾7𝑡𝑟𝐴3 + 𝛾8𝑡𝑟(𝐴2𝐴1)]𝐴1                                       (6) 

Where, 𝜇 is the coefficient of shear viscosity, 𝛼𝑖(𝑖 = 1,2), 𝛽𝑖(𝑖 = 1,2,3) and 𝛾𝑖(𝑖 = 1, … ,8) are 

material constants. The 𝐴𝑛 are the Rivlin – Ericksen tensors defined by the recursion relation 

                                          𝐴𝑛 =
𝑑

𝑑𝑡
𝐴𝑛−1 + 𝐴𝑛−1𝐿 + 𝐿

𝑇𝐴𝑛−1 ,   𝑛>1                       (7) 

                                                  𝐴1 = 𝐿 + 𝐿
𝑇               (8) 

where, 𝐿 = ∇𝑉, 
𝑑

𝑑𝑡
 is the material time derivative and 𝑉is the velocity. We note that when 𝛾𝑖 = 0, 

the fourth-grade model reduces to the third-grade model. When 𝛽𝑖 = 0, the third-grade model 

reduces to second grade model. When 𝛼𝑖 = 0, 𝛽𝑖 = 0 and 𝛾𝑖 = 0 then the model reduces to 

classical Navier – Stoke fluid. 

    The thermally radiative and chemically reactive flow is heading 𝑥 – direction along infinite 

porous plate with heat generation. Here, 𝑈0 is the uniform velocity, 𝑇∞ and 𝐶∞ are the fluid 

temperature and concentration. 

Under the above consideration, the equations that describe the physical circumstances are; 

 

𝜕𝑢

𝜕𝑡
=ν

𝜕2𝑢

𝜕𝑦2
+
𝛼1𝜈

𝜌

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+
𝛽1𝜈

2

𝜌

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+
6(𝛽2+𝛽3)

𝜌
(
𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+
𝛾1𝜈

3

𝜌

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+

2ν(3𝛾2+𝛾3+𝛾4+𝛾5+𝛾7+𝛾8)

𝜌𝐶𝑝
[2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] −

𝜎𝐵0
2

𝜌𝐶𝑝
𝑢 + 𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞) −

𝜈

𝑘
𝑢                                          (9) 
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𝜕𝑇

𝜕𝑡
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2
−

1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦
                       (10)  

                                           
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑦2
− 𝐾𝑐(𝐶 − 𝐶∞)           (11) 

From equation (10), 𝑞𝑟 is the radiative heat flux defined as 

                                             
𝜕𝑞𝑟

𝜕𝑦
= 4𝛼2(𝑇𝑤 − 𝑇)                                 (12) 

The initial and boundary conditions are 

         

𝑢(𝑦, 𝑡) = 𝑒−𝑦ℎ, 𝑇(𝑦, 𝑡) = 𝑒−𝑦ℎ, 𝐶(𝑦, 𝑡) = 𝑒−𝑦ℎ  𝑎𝑡 𝑡 = 0 𝑓𝑜𝑟  0 ≤ 𝑦 ≤ ℎ

𝑢(𝑦, 𝑡) = 𝑈, 𝑇(𝑦, 𝑡) = 𝑇𝑤, 𝐶(𝑦, 𝑡) = 𝐶𝑤 𝑎𝑡 𝑦 = ℎ 𝑓𝑜𝑟 𝑡 ≥ 0

𝑢(𝑦, 𝑡) → ∞, 𝑇(𝑦, 𝑡) → ∞, 𝐶(𝑦, 𝑡) → ∞ 𝑎𝑠 𝑦 → ∞ 𝑓𝑜𝑟 𝑡 > 0

}                   (13) 

where 𝑢 is the fluid velocity, 𝑇 is the temperature and 𝐶 is the species concentration equation, 𝑇𝑤 

is the temperature at the surface, 𝐶𝑤 is the concentration at the surface, 𝑇∞ is the ambient 

temperature, 𝑞𝑟 is the radiative heat flux, 𝜌 is the density of the fluid, 𝐶𝑝 is the heat capacity, 𝐵0 

is the external magnetic field. 

    In order to transform equations (9) – (13), we use the following dimensionless parameters 

𝑢 =
𝑢∗

𝑈0
,  𝑝∗ =

𝑝

𝜇ℎ2
, 𝑡 =

𝜈𝑡∗

ℎ2
, 𝐺𝑟 =

𝑔𝛽(𝑇𝑤
∗−𝑇∞

∗ )ℎ2

𝜈2
, 𝐺𝑐 =

𝑔𝛽𝑇(𝐶𝑤
∗ −𝐶∞

∗ )ℎ2

𝜈2
, 𝐻𝑎2 =

𝜎𝐵0
2ℎ2

𝜌𝜈
, 𝐷𝑎 =

𝐾

ℎ2
, 𝑆𝑐 =

𝜈

𝐷
 , 𝑦 =

𝑦∗

ℎ
, 𝑥 =

𝑥∗

ℎ
𝜃 =

𝑇−𝑇0

𝑇𝑤
∗−𝑇∞

∗ , 𝐶 =
𝐶∗−𝐶0

∗

𝐶𝑤
∗ −𝐶∞

∗ , 𝛿 =
4𝛼2ℎ2

𝜌𝑐𝑝𝜈
                      (14) 

Substituting equation (14) into equations (9) – (13) and by dropping the asterisks, we have the 

following: 

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑦2
+ 𝛼1

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽1

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝑙1 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾1

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝑙2 [2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] −

𝑙3𝑢 + 𝐺𝑟𝜃 + 𝐺𝑐𝐶                           (15) 

                                                      
𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝑇

𝜕𝑦2
+ 𝛿𝜃           (16) 

                                                    
𝜕𝐶

𝜕𝑡
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦2
− 𝐾𝑟𝐶            (17) 

And the initial and boundary conditions become 

                        

𝑢(𝑦, 𝑡) = 𝑒−𝑦, 𝜃(𝑦, 𝑡) = 𝑒−𝑦, 𝐶(𝑦, 𝑡) = 𝑒−𝑦 𝑎𝑡 𝑡 = 0 𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 1

𝑢(𝑦, 𝑡) = 1, 𝜃(𝑦, 𝑡) = 1, 𝐶(𝑦, 𝑡) = 1 𝑎𝑡 𝑦 = 1 𝑓𝑜𝑟 𝑡 ≥ 0

𝑢(𝑦, 𝑡) → ∞, 𝜃(𝑦, 𝑡) → ∞, 𝐶(𝑦, 𝑡) → ∞  𝑎𝑠 𝑦 → ∞ 𝑓𝑜𝑟 𝑡 > 0

}       (18) 
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where, 𝑙1 = 6(𝛽2 + 𝛽3), 𝑙2 = 2(3𝛾2 + 𝛾4 + 𝛾5 + 𝛾7 + 𝛾8), 𝑙3 = 𝐻𝑎2 +
1

𝐷𝑎
                 (18a) 

3. Method of Solution/Solution of the Problem 

In this section we employed the He – Laplace scheme to solve equations (15) to (17) subjects to 

the initial and boundary conditions (18). 

Since equation (15) is a coupled non – linear partial differential equation, we have to solve 

equations (16) and (17) first. 

Now applying Laplace transform on equation (17) we have, 

 𝐿 {
𝜕𝐶

𝜕𝑡
} =

1

𝑆𝑐
𝐿 {

𝜕2𝐶

𝜕𝑦2
} − 𝐿{𝐾𝑟𝐶}            (19) 

Applying the initial condition and dividing through by 𝑠 and rearranging we get; 

𝐿{𝐶(𝑦, 𝑡)} =
𝑒−𝑦

𝑠
−
1

𝑠
{
1

𝑆𝑐
𝐿 {

𝜕2𝐶

𝜕𝑦2
} − 𝐿{𝐾𝑟𝐶}}           (20) 

Taking the inverse Laplace transform of both sides of equation (20), results in 

𝐶(𝑦, 𝑡) = 𝑒−𝑦 + 𝐿−1 [
1

𝑠
{
1

𝑆𝑐
𝐿 {

𝜕2𝐶

𝜕𝑦2
} − 𝐿{𝐾𝑟𝐶}}]          (21) 

Applying the Homotopy perturbation technique, equation (21) yields 

      
2

1

2
0

1 1
( , )n y

n r

n c

C
P C y t e P L L L K C

s S y


− −

=

      
= + −     

       
      (22)                    

Comparing the coefficients of the like powers of ′𝑃′ in equation (22) the following 

approximations were obtained; 

            𝑃0: 𝐶0(𝑦, 𝑡) = 𝑒−𝑦                                                                      (23) 

𝑃1: 𝐶1(𝑦, 𝑡) = 𝐿
−1 [

1

𝑠
{
1

𝑆𝑐
𝐿 {

𝜕2𝐶0

𝜕𝑦2
} − 𝐿{𝐾𝑟𝐶0}}]  = 𝐿−1 {

1

𝑆𝑐
(
𝑒−𝑦

𝑠2
) − 𝐾𝑟 (

𝑒−𝑦

𝑠2
)}  

       =
𝑒−𝑦

𝑆𝑐
𝑡 − 𝐾𝑟𝑒

−𝑦𝑡            (24) 

𝑃2: 𝐶2(𝑦, 𝑡) = 𝐿
−1 [

1

𝑠
{
1

𝑆𝑐
𝐿 {
𝜕2𝐶1
𝜕𝑦2

} − 𝐿{𝐾𝑟𝐶1}}] 

= 𝐿−1 [
1

𝑠
{
1

𝑆𝑐
𝐿 {

𝑒−𝑦𝑡

𝑆𝑐
− 𝐾𝑟𝑒

−𝑦𝑡} − 𝐿 {𝐾𝑟 (
𝑒−𝑦𝑡

𝑆𝑐
−

𝐾𝑟𝑒
−𝑦𝑡)}}]  
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=
𝑒−𝑦𝑡2

2!𝑆𝑐
2 −

𝐾𝑟𝑒
−𝑦𝑡2

𝑆𝑐
+
𝐾𝑟
2𝑒−𝑦𝑡2

2!
          (25) 

In viewing equations (23), (24) and (25), the solution to equation (17) is  

𝐶(𝑦, 𝑡) = 𝐶0(𝑦, 𝑡) + 𝐶1(𝑦, 𝑡) + 𝐶2(𝑦, 𝑡) + ⋯          (26) 

𝐶(𝑦, 𝑡) = 𝑒−𝑦 +
𝑒−𝑦

𝑆𝑐
𝑡 − 𝐾𝑟𝑒

−𝑦𝑡 +
𝑒−𝑦𝑡2

2!𝑆𝑐
2 −

𝐾𝑟𝑒
−𝑦𝑡2

𝑆𝑐
+
𝐾𝑟
2𝑒−𝑦𝑡2

2!
        (27) 

Next, we consider equation (16): 

 
𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝑇

𝜕𝑦2
+ 𝛿𝜃 

 Now applying Laplace transform on equation (16) gives; 

   𝐿 {
𝜕𝜃

𝜕𝑡
} =

1

𝑃𝑟
𝐿 {

𝜕2𝜃

𝜕𝑦2
} − 𝐿{𝛿𝜃}            (28) 

Applying the initial condition and dividing through by 𝑠 and rearranging we obtain; 

𝐿{𝜃(𝑦, 𝑡)} =
𝑒−𝑦

𝑠
−
1

𝑠
{
1

𝑃𝑟
𝐿 {

𝜕2𝜃

𝜕𝑦2
} − 𝐿{𝛿𝜃}}      (29) 

Taking the inverse Laplace transform of both sides of equation (29) gives, 

𝜃(𝑦, 𝑡) = 𝑒−𝑦 + 𝐿−1 [
1

𝑠
{
1

𝑃𝑟
𝐿 {

𝜕2𝜃

𝜕𝑦2
} − 𝐿{𝛿𝐶}}]     (30) 

Applying the Homotopy perturbation technique equation (30) yields, 

  
2

1

2
0

1 1
( , )n y

n

n r

P y t e P L L L
s P y


 


− −

=

      
= + +     

       
  (31) 

Comparing the coefficients of the like powers of ′𝑃′ in equation (31), the following approximations 

are obtained; 

𝑃0: 𝜃0(𝑦, 𝑡) = 𝑒
−𝑦       (32) 

𝑃1: 𝜃1(𝑦, 𝑡) = 𝐿
−1 [

1

𝑠
{
1

𝑃𝑟
𝐿 {

𝜕2𝜃0

𝜕𝑦2
} + 𝐿{𝛿𝜃0}}]  = 𝐿−1 {

1

𝑃𝑟
(
𝑒−𝑦

𝑠2
) + 𝛿 (

𝑒−𝑦

𝑠2
)}  

       =
𝑒−𝑦

𝑃𝑟
𝑡 + 𝛿𝑒−𝑦𝑡        (33) 

𝑃2: 𝜃2(𝑦, 𝑡) = 𝐿
−1 [

1

𝑠
{
1

𝑃𝑟
𝐿 {
𝜕2𝜃1
𝜕𝑦2

} + 𝐿{𝛿𝜃1}}] 

= 𝐿−1 [
1

𝑠
{
1

𝑃𝑟
𝐿 {

𝑒−𝑦𝑡

𝑃𝑟
+ 𝛿𝑒−𝑦𝑡} + 𝐿 {𝛿 (

𝑒−𝑦𝑡

𝑃𝑟
− 𝐾𝑟𝑒

−𝑦𝑡)}}]  
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=
𝑒−𝑦𝑡2

2!𝑃𝑟
2 −

𝛿𝑒−𝑦𝑡2

𝑃𝑟
+
𝛿𝑒−𝑦𝑡2

2!
     (34) 

Therefore, in viewing equations (32), (33) and (34), the solution to equation (16) is  

𝜃(𝑦, 𝑡) = 𝜃0(𝑦, 𝑡) + 𝜃1(𝑦, 𝑡) + 𝜃2(𝑦, 𝑡) + ⋯    (35)  

𝜃(𝑦, 𝑡) = 𝑒−𝑦 +
𝑒−𝑦

𝑃𝑟
𝑡 − 𝛿𝑒−𝑦𝑡 +

𝑒−𝑦𝑡2

2!𝑃𝑟
2 −

𝛿𝑒−𝑦𝑡2

𝑃𝑟
+
𝛿2𝑒−𝑦𝑡2

2!
+⋯   (36) 

Finally, we now solve equation (15): 

 
𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑦2
+ 𝛼1

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽1

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝑙1 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾1

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝑙2 [2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] −

𝑙3𝑢 + 𝐺𝑟𝜃 + 𝐺𝑐𝐶  

Applying the Laplace transform on both sides of equation (15) gives; 

𝐿 {
𝜕𝑢

𝜕𝑡
} = 𝐿 {

𝜕2𝑢

𝜕𝑦2
+ 𝛼1

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽1

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝑙1 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾1

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝑙2 [2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
]−

𝑙3𝑢+ 𝐺𝑟𝜃 + 𝐺𝑐𝐶}                             (37) 

But, 

                                                𝐿 {
𝜕𝑢

𝜕𝑡
} = 𝑠𝐿{𝑢(𝑦, 𝑡)} − 𝑢(𝑦, 0)                       (38) 

Hence, 

𝐿{𝑢(𝑦, 𝑡)} =
𝑢(𝑦,0)

𝑠
+
1

𝑠
 𝐿 {

𝜕2𝑢

𝜕𝑦2
+ 𝛼1

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽1

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝑙1 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾1

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝑙2 [2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+

(
𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙3𝑢 +

𝐺𝑟

𝑠
(𝑒−𝑦 +

𝑒−𝑦

𝑃𝑟
𝑡 − 𝛿𝑒−𝑦𝑡 +

𝑒−𝑦𝑡2

2!𝑃𝑟
2 −

𝛿𝑒−𝑦𝑡2

𝑃𝑟
+
𝛿2𝑒−𝑦𝑡2

2!
) +

𝐺𝑐

𝑠
(𝑒−𝑦 +

𝑒−𝑦

𝑆𝑐
𝑡 −

𝐾𝑟𝑒
−𝑦𝑡 +

𝑒−𝑦𝑡2

2!𝑆𝑐
2 −

𝐾𝑟𝑒
−𝑦𝑡2

𝑆𝑐
+
𝐾𝑟
2𝑒−𝑦𝑡2

2!
)}                           (39) 

Taking the inverse Laplace transform of both sides of equation (39), we have; 

𝐿−1{𝐿{𝑢(𝑦, 𝑡)}} = 𝐿−1 {
𝑢(𝑦,0)

𝑠
+
1

𝑠
 𝐿 {

𝜕2𝑢

𝜕𝑦2
+ 𝛼1

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽1

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝑙1 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾1

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+

𝑙2 [2
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙3𝑢 +

𝐺𝑟

𝑠
(𝑒−𝑦 +

𝑒−𝑦

𝑃𝑟
𝑡 − 𝛿𝑒−𝑦𝑡 +

𝑒−𝑦𝑡2

2!𝑃𝑟
2 −

𝛿𝑒−𝑦𝑡2

𝑃𝑟
+
𝛿2𝑒−𝑦𝑡2

2!
) +

𝐺𝑐

𝑠
(𝑒−𝑦 +

𝑒−𝑦

𝑆𝑐
𝑡 − 𝐾𝑟𝑒

−𝑦𝑡 +
𝑒−𝑦𝑡2

2!𝑆𝑐
2 −

𝐾𝑟𝑒
−𝑦𝑡2

𝑆𝑐
+
𝐾𝑟
2𝑒−𝑦𝑡2

2!
)}}                        (40) 

Or, 

𝑢(𝑦, 𝑡) = 𝑒−𝑦 + 𝑙4𝑒
−𝑦𝑡 + 𝐺𝑐𝑒

−𝑦𝑡 +
𝐺𝑟𝑒

−𝑦𝑡2

2!𝑆𝑐
−
𝐺𝑟𝛿𝑒

−𝑦𝑡2

2!
+
𝐺𝑟𝑒

−𝑦𝑡3

3!𝑃𝑟
2 −

2𝐺𝑟𝛿𝑒
−𝑦𝑡3

3!
+
2𝐺𝑐𝛿

2𝑒−𝑦𝑡3

3!
+ 𝐺𝐶𝑒

−𝑦𝑡 +

𝐺𝑐𝑒
−𝑦𝑡2

2!𝑆𝑐
−
𝐺𝑐𝐾𝑟𝑒

−𝑦𝑡2

2!
+
𝐺𝑐𝑒

−𝑦𝑡3

3!𝑆𝑐
2 −

2𝐺𝑐𝐾𝑟𝑒
−𝑦𝑡3

3!
+
2𝐺𝑐𝐾𝑟

2𝑒−𝑦𝑡3

3!
+ 𝐿−1 {

1

𝑠
 𝐿 {

𝜕2𝑢

𝜕𝑦2
+ 𝛼1

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽1

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+

𝑙1 (
𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾1

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝑙2 [2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙3𝑢}}                       (41) 
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Applying the Homotopy perturbation method to equation (41), gives, 

0

( , )n

n

n

P u y t


=

= 𝑒−𝑦 + 𝑙4𝑒
−𝑦𝑡 + 𝐺𝑐𝑒

−𝑦𝑡 +
𝐺𝑟𝑒

−𝑦𝑡2

2!𝑆𝑐
−
𝐺𝑟𝛿𝑒

−𝑦𝑡2

2!
+
𝐺𝑟𝑒

−𝑦𝑡3

3!𝑃𝑟
2 −

2𝐺𝑟𝛿𝑒
−𝑦𝑡3

3!
+
2𝐺𝑐𝛿

2𝑒−𝑦𝑡3

3!
+

𝐺𝐶𝑒
−𝑦𝑡 +

𝐺𝑐𝑒
−𝑦𝑡2

2!𝑆𝑐
−
𝐺𝑐𝐾𝑟𝑒

−𝑦𝑡2

2!
+
𝐺𝑐𝑒

−𝑦𝑡3

3!𝑆𝑐
2 −

2𝐺𝑐𝐾𝑟𝑒
−𝑦𝑡3

3!
+
2𝐺𝑐𝐾𝑟

2𝑒−𝑦𝑡3

3!
+ 𝑃(𝐿−1 {

1

𝑠
 𝐿 {

𝜕2𝑢

𝜕𝑦2
+ 𝛼1

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+

𝛽1
𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝑙1𝐻𝑎(𝑢𝑛) + 𝛾1

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝑙2 [2𝐻𝑏(𝑢𝑛) + 𝐻𝑐(𝑢𝑛)

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙3𝑢}})        (42) 

Where, 𝐻𝑎(𝑢𝑛), 𝐻𝑏(𝑢𝑛) and 𝐻𝑐(𝑢𝑛) are the He’s polynomials for (
𝜕𝑢

𝜕𝑦
)
2
,
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
 and (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
 

respectively. 

The He’s polynomials for (
𝜕𝑢

𝜕𝑦
)
2
are; 

                                           

{
 
 

 
 

𝐻0(𝑢) = (𝑢0
′ )2

𝐻1(𝑢) = 2𝑢0
′ 𝑢1

′

𝐻2(𝑢) = 2𝑢0
′ 𝑢2

′ + (𝑢1
′ )2

𝐻3(𝑢) = 2𝑢1
′𝑢2

′

⋮

                        (43) 

The He’s polynomials for 
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
 are; 

                               

{
 
 

 
 

𝐻0(𝑢) = 𝑢0
′′′𝑢′0𝑡

′

𝐻1(𝑢) = 𝑢0
′′′𝑢′1𝑡

′ + 𝑢1
′′′𝑢′1𝑡

′

𝐻2(𝑢) = 𝑢0
′′′𝑢′2𝑡

′
+ 𝑢1

′′′𝑢′1𝑡
′
+ 𝑢2

′′′𝑢′0𝑡
′

𝐻3(𝑢) = 𝑢1
′′′𝑢2𝑡

′′ + 𝑢2
′′′𝑢1𝑡

′′

⋮

            (44) 

While, the He’s polynomials for (
𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
 are; 

                                   

{
 
 

 
 

𝐻0(𝑢) = (𝑢0
′ )2(𝑢0

′′𝑢0𝑡
′ )

𝐻1(𝑢) = (𝑢0
′ )2(𝑢0

′′𝑢1𝑡
′ ) + (𝑢0

′ )2(𝑢1
′′𝑢0𝑡

′ ) + 2𝑢0
′ 𝑢1

′ (𝑢0
′′𝑢0𝑡

′ )

𝐻2(𝑢) = (𝑢0
′ )2(𝑢0

′′𝑢2𝑡
′ ) + (𝑢0

′ )2(𝑢1
′′𝑢1𝑡

′ ) + (𝑢0
′ )2(𝑢2

′′𝑢0𝑡
′ )

+2𝑢0
′ 𝑢1

′ (𝑢0
′′𝑢1𝑡

′ ) + 2𝑢0
′ 𝑢1

′ (𝑢1
′′𝑢0𝑡

′ ) + 2𝑢0
′ 𝑢2

′ (𝑢0
′′𝑢0𝑡

′ )
⋮

                               (45)  

                          

 

Now, comparing the like powers of "𝑃" in equation (42) and equating their coefficients gives 

𝑃0; 𝑢0(𝑦, 𝑡) = 𝑒
−𝑦 + 𝑙4𝑒

−𝑦𝑡 + 𝐺𝑐𝑒
−𝑦𝑡 +

𝐺𝑟𝑒
−𝑦𝑡2

2!𝑆𝑐
−
𝐺𝑟𝛿𝑒

−𝑦𝑡2

2!
+
𝐺𝑟𝑒

−𝑦𝑡3

3!𝑃𝑟
2 −

2𝐺𝑟𝛿𝑒
−𝑦𝑡3

3!
+
2𝐺𝑐𝛿

2𝑒−𝑦𝑡3

3!
+

𝐺𝐶𝑒
−𝑦𝑡 +

𝐺𝑐𝑒
−𝑦𝑡2

2!𝑆𝑐
−
𝐺𝑐𝐾𝑟𝑒

−𝑦𝑡2

2!
+
𝐺𝑐𝑒

−𝑦𝑡3

3!𝑆𝑐
2 −

2𝐺𝑐𝐾𝑟𝑒
−𝑦𝑡3

3!
+
2𝐺𝑐𝐾𝑟

2𝑒−𝑦𝑡3

3!
                       (46) 
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𝑃1; 𝑢1(𝑦, 𝑡) = 𝐿
−1 {

1

𝑠
 𝐿 {

𝜕2𝑢

𝜕𝑦2
+ 𝛼1

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽1

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝑙1(𝑢0

′ )2 + 𝛾1
𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝑙2[2𝑢0

′′′𝑢′0𝑡
′ +

(𝑢0
′ )2(𝑢0

′′𝑢0𝑡
′ )] − 𝑙3𝑢}}                            (47)  

And,   

𝑢1(𝑦, 𝑡) = (𝑒
−𝑦 + 𝛼1𝐺𝑐𝑒

−𝑦𝑡 + 𝛼1𝐺𝑟𝑒
−𝑦𝑡 − 𝛽1𝐺𝑐𝐾𝑟𝑒

−𝑦 + 𝛽1𝐺𝑟𝛿𝑒
−𝑦 − 2𝛾1𝐺𝑐𝐾𝑟𝑒

−𝑦 +

𝛾1𝐺𝑐𝐾𝑟
2𝑒−𝑦 + 𝛾1𝐺𝑟𝛿

2𝑒−𝑦 + 2𝛾1𝛿𝐺𝑟𝑒
−𝑦 + 𝐿3𝑒

−𝑦 +
𝛽1𝐺𝑟𝑒

−𝑦

𝑃𝑟
+
𝛾1𝐺𝑐𝑒

−𝑦

𝑆𝑐
+
𝛾1𝐺𝑟𝑒

−𝑦

𝑃𝑟
2 + 𝐿1𝑒

−2𝑦) 𝑡 + 

(𝐺𝑐𝑒
−𝑦 + 𝐺𝑟𝑒

−𝑦 + 𝛼1𝐺𝑟𝑒
−𝑦−𝛼1𝐺𝑐𝐾𝑟𝑒

−𝑦 − 2𝛽1𝐺𝑐𝐾𝑟𝑒
−𝑦 + 𝛽1𝐺𝑐𝐾𝑟

2𝑒−𝑦 + 2𝛽1𝛿𝐺𝑟𝑒
−𝑦 +

𝛽1𝛿
2𝐺𝑟𝑒

−𝑦 +
𝛼1𝐺𝑐𝑒

−𝑦

𝑆𝑐
−+

𝛼1𝐺𝑟𝑒
−𝑦

𝑃𝑟
+
𝛽1𝐺𝑐𝑒

−𝑦

𝑆𝑐
2 +

𝛽1𝐺𝑟𝑒
−𝑦

𝑃𝑟
2 +𝐿3𝐿4 + 𝐿3𝐺𝑐𝑒

−𝑦 + 𝐿3𝐺𝑟𝑒
−𝑦 +

2𝐿1𝐺𝑐𝑒
−2𝑦 + 2𝐿1𝐺𝑟𝑒

−2𝑦)
𝑡2

2!
 + (𝐺𝑟𝛿𝑒

−𝑦 − 𝐺𝑐𝐾𝑟𝑒
−𝑦 − 2𝛼1𝐺𝑐𝐾𝑟𝑒

−𝑦 + 𝛼1𝐺𝑐𝐾𝑟
2𝑒−𝑦 +

𝛼1𝛿
2𝐺𝑟𝑒

−𝑦 + 𝛼1𝐺𝑟𝛿𝑒
−𝑦 +

𝐺𝑐𝑒
−𝑦

𝑆𝑐
+
𝐺𝑟𝑒

−𝑦

𝑃𝑟
+
𝛼1𝐺𝑐𝑒

−𝑦

𝑆𝑐
2 +

𝛼1𝐺𝑟𝑒
−𝑦

𝑃𝑟
2 − 2𝐿1𝐺𝑐𝐾𝑟𝑒

−2𝑦 + 2𝐿1𝐺𝑟𝛿𝑒
−2𝑦 +

2𝐿1𝐺𝑐
2𝑒−2𝑦 + 4𝐿1𝐺𝑟𝐺𝑐𝑒

−2𝑦 + 2𝐿1𝐺𝑟
2 +

2𝐿1𝐺𝑐𝑒
−2𝑦

𝑆𝑐
+
2𝐿1𝐺𝑟𝑒

−2𝑦

𝑃𝑟
+ 𝐿3𝑒

−𝑦 − 𝐿3𝐺𝑐𝐾𝑟𝑒
−𝑦 +

𝐿3𝐺𝑟𝛿𝑒
−𝑦 +

𝐿3𝐺𝑟𝑒
−𝑦

𝑃𝑟
)
𝑡3

3!
 + (2𝐺𝑐𝐾𝑟𝑒

−𝑦 + 𝐺𝑟𝛿
2𝑒−𝑦 + 𝐺𝑟𝐾𝑟𝑒

−𝑦 + 2𝛿𝐺𝑟𝑒
−𝑦 +

𝐺𝑐𝑒
−𝑦

𝑆𝑐
+
𝐺𝑟𝑒

−𝑦

𝑃𝑟
2 −

2𝐿1𝐺𝑐𝐾𝑟𝑒
−2𝑦 + 2𝐿1𝐺𝑐𝐾𝑟

2𝑒−2𝑦 − 2𝐿1𝐺𝑟𝛿
2𝑒−2𝑦 + 4𝐿1𝐺𝑟𝛿𝑒

−2𝑦 − 6𝐿1𝐺𝑐
2𝐾𝑟𝑒

−2𝑦 +

6𝐿1𝐺𝑟𝐺𝑐𝑒
−2𝑦 + 6𝐿1𝐺𝑟𝐺𝑐𝛿𝑒

−2𝑦 − 6𝐿1𝐺𝑟𝐺𝑐𝐾𝑟𝑒
−2𝑦 + 6𝐿1𝐺𝑟

2𝛿𝑒−2𝑦 +
2𝐿1𝐺𝑐𝑒

−2𝑦

𝑆𝑐
2 +

2𝐿1𝐺𝑟𝑒
−2𝑦

𝑃𝑟
2 +

4𝐿1𝐺𝑐
2𝑒−2𝑦

𝑆𝑐
+
6𝐿1𝐺𝑐𝐺𝑟𝑒

−2𝑦

𝑆𝑐
+ 𝐿3𝐺𝑐𝐾𝑟

2𝑒−𝑦 − 𝐿3𝐺𝑐𝐾𝑟𝑒
−𝑦 + 2𝐿3𝐺𝑟𝛿𝑒

−𝑦 + 𝐿3𝐺𝑟𝛿
2𝑒−𝑦 +

𝐿3𝐺𝑐𝑒
−𝑦

𝑆𝑐
2 +

2𝐿3𝐺𝑟𝑒
−𝑦

𝑃𝑟
2 )

𝑡4

4!
 + (8𝐿1𝐺𝑐

2𝑒−2𝑦 − 16𝐿1𝐺𝑐
2𝐾𝑟𝑒

−2𝑦 + 14𝐿1𝐺𝑐
2𝐾𝑟

2𝑒−2𝑦 − 8𝐿1𝐺𝑐𝐺𝑟𝛿𝑒
−2𝑦 +

16𝐿1𝐺𝑐𝐺𝑟𝛿𝑒
−2𝑦 − 12𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒

−2𝑦 − 16𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝑒
−2𝑦 + 8𝐿1𝐺𝑐𝐺𝑟𝐾𝑟

2𝑒−2𝑦 +

14𝐿1𝐺𝑟
2𝑒−2𝑦 − 2𝐿1𝐺𝑟

2𝛿2𝑒−2𝑦 + 16𝐿1𝐺𝑟
2𝛿𝑒−2𝑦 +

8𝐿1𝐺𝑐𝐺𝑟𝑒
−2𝑦

𝑃𝑟
2 +

6𝐿1𝐺𝑐
2𝑒−2𝑦

𝑆𝑐
2 −

12𝐿1𝐺𝑐
2𝐾𝑟𝑒

−2𝑦

𝑆𝑐
+

12𝐿1𝐺𝑐𝐺𝑟𝑒
−2𝑦

𝑃𝑟𝑆𝑐
+
12𝐿1𝐺𝑐𝐺𝑟𝛿𝑒

−2𝑦

𝑆𝑐
−
12𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝑒

−2𝑦

𝑃𝑟
+
8𝐿1𝐺𝑐𝐺𝑟𝑒

−2𝑦

𝑆𝑐
2 +

12𝐿1𝐺𝑟
2𝛿𝑒−2𝑦

𝑃𝑟
)
𝑡5

5!
 +  

(20𝐿1𝐺𝑐
2𝐾𝑟

2𝑒−2𝑦 + 20𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝛿
2𝑒−2𝑦 − 20𝐿1𝐺𝑐

2𝐾𝑟
3𝑒−2𝑦 − 80𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒

−2𝑦 +

20𝐿1𝐺𝑐𝐺𝑟𝐾𝑟
2𝛿𝑒−2𝑦 − 20𝐿1𝐺𝑟

2𝛿3𝑒−2𝑦 + 40𝐿1𝐺𝑟
2𝛿2𝑒−2𝑦 +

20𝐿1𝐺𝑐
2𝑒−2𝑦

𝑆𝑐
3 −

40𝐿1𝐺𝑐
2𝐾𝑟𝑒

−2𝑦

𝑆𝑐
+

20𝐿1𝐺𝑐𝐺𝑟𝑒
−2𝑦

𝑆𝑐𝑃𝑟
2 −

20𝐿1𝐺𝑐𝐺𝑟𝛿
2𝑒−2𝑦

𝑆𝑐
+
40𝐿1𝐺𝑐𝐺𝑟𝛿𝑒

−2𝑦

𝑆𝑐
−
20𝐿1𝐺𝑐

2𝐾𝑟𝑒
−2𝑦

𝑆𝑐
2 −

20𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝑒
−2𝑦

𝑃𝑟
2 +

20𝐿1𝐺𝑐𝐺𝑟𝑒
−2𝑦

𝑃𝑟𝑆𝑐
2 +

20𝐿1𝐺𝑐𝐺𝑟𝛿𝑒
−2𝑦

𝑆𝑐
2 −

40𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝑒
−2𝑦

𝑃𝑟
+
20𝐿1𝐺𝑐𝐺𝑟𝐾𝑟

2𝑒−2𝑦

𝑃𝑟
+
20𝐿1𝐺𝑟

2𝑒−2𝑦

𝑃𝑟
3 −

20𝐿1𝐺𝑟
2𝛿2𝑒−2𝑦

𝑃𝑟
+
40𝐿1𝐺𝑟

2𝛿𝑒−2𝑦

𝑃𝑟
+

20𝐿1𝐺𝑟
2𝛿𝑒−2𝑦

𝑃𝑟
2 )

𝑡6

6!
 + (80𝐿1𝐺𝑐

2𝐾𝑟
2𝑒−2𝑦 − 80𝐿1𝐺𝑐

2𝐾𝑟
3𝑒−2𝑦 + 80𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝛿

2𝑒−2𝑦 −

160𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒
−2𝑦 + 20𝐿1𝐺𝑐

2𝐾𝑟
4𝑒−2𝑦 − 40𝐿1𝐺𝑐𝐺𝑟𝐾𝑟

2𝛿2𝑒−2𝑦 + 80𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒
−2𝑦 +

20𝐿1𝐺𝑟
2𝛿4𝑒−2𝑦 − 80𝐿1𝐺𝑟

2𝛿3𝑒−2𝑦 + 80𝐿1𝐺𝑟
2𝛿2𝑒−2𝑦 +

20𝐿1𝐺𝑐
2𝑒−2𝑦

𝑆𝑐
4 −

80𝐿1𝐺𝑐
2𝐾𝑟𝑒

−2𝑦

𝑆𝑐
2 +

40𝐿1𝐺𝑐
2𝐾𝑟

2𝑒−2𝑦

𝑆𝑐
2 +

40𝐿1𝐺𝑐𝐺𝑟𝑒
−2𝑦

𝑃𝑟
2𝑆𝑐
2 −

40𝐿1𝐺𝑐𝐺𝑟𝛿
2𝑒−2𝑦

𝑆𝑐
2 −

80𝐿1𝐺𝑐𝐺𝑟𝛿𝑒
−2𝑦

𝑆𝑐
2 −

80𝐿1𝐺𝑐𝐺𝑟𝐾𝑟𝑒
−2𝑦

𝑃𝑟
2 +

40𝐿1𝐺𝑐𝐺𝑟𝐾𝑟
2𝑒−2𝑦

𝑃𝑟
2 +
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20𝐿1𝐺𝑟
2𝑒−2𝑦

𝑃𝑟
4 −

20𝐿1𝐺𝑟
2𝛿2𝑒−2𝑦

𝑃𝑟
2 +

80𝐿1𝐺𝑟
2𝛿𝑒−2𝑦

𝑃𝑟
2 )

𝑡7

7!
 + (2𝐿2𝐺𝑐𝑒

−2𝑦 + 2𝐿2𝐺𝑟𝑒
−2𝑦)𝑡 + (2𝐿2𝐺𝑟𝛿𝑒

−2𝑦 −

2𝐿2𝐺𝑐𝐾𝑟𝑒
−2𝑦 + 2𝐿2𝐺𝑐

2𝑒−2𝑦 + 42𝐿2𝐺𝑐𝐺𝑟𝑒
−2𝑦 + 2𝐿2𝐺𝑟

2𝑒−2𝑦 +
2𝐿2𝐺𝑐𝑒

−2𝑦

𝑆𝑐
+
2𝐿2𝐺𝑟𝑒

−2𝑦

𝑃𝑟
)
𝑡2

2!
 +  

(𝐿2𝐺𝑐𝐾𝑟
2𝑒−2𝑦 − 2𝐿2𝐺𝑐𝐾𝑟

2𝑒−2𝑦 +
𝐿2𝐺𝑐𝑒

−2𝑦

𝑆𝑐
2 +

𝐿2𝐺𝑟𝑒
−2𝑦

𝑃𝑟
2 + 𝐿2𝐺𝑟𝛿

2𝑒−2𝑦 + 𝐿2𝐺𝑟𝛿𝑒
−2𝑦 +

2𝐿2𝐺𝑐
2𝑒−2𝑦

𝑆𝑐
+ 2𝐿2𝐺𝑐𝐾𝑟𝑒

−2𝑦 +
3𝐿2𝐺𝑐𝐺𝑟𝑒

−2𝑦

𝑃𝑟
+3𝐿2𝐺𝑐𝐺𝑟𝑒

−2𝑦 + 𝐿2𝐺𝑐
2𝑒−2𝑦 − 𝐿2𝐺𝑐

2𝐾𝑟𝑒
−2𝑦 −

3𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝑒
−2𝑦 +

2𝐿2𝐺𝑐𝐺𝑟𝑒
−2𝑦

𝑆𝑐
+ 2𝐿2𝐺𝑟

2𝑒−2𝑦 + 3𝐿2𝐺𝑐𝐺𝑟𝛿𝑒
−2𝑦 + 3𝐿2𝐺𝑟

2𝛿𝑒−2𝑦 +
𝐿2𝐺𝑟

2𝑒−2𝑦

𝑃𝑟
)
𝑡3

3!
 +  

(
𝐿2𝐺𝑐

2𝑒−2𝑦

𝑆𝑐
2 − 2𝐿2𝐺𝑐

2𝐾𝑟𝑒
−2𝑦 − 𝐿2𝐺𝑟

2𝐾𝑟
2𝑒−2𝑦 +

4𝐿2𝐺𝑟𝐺𝑐𝑒
−2𝑦

3𝑃𝑟
2 + 3𝐿2𝐺𝑐𝐺𝑟𝛿𝑒

−2𝑦 + 𝐿2𝐺𝑐𝐺𝑟𝛿
2𝑒−2𝑦 +

𝐿2𝐺𝑐
2𝑒−2𝑦

𝑆𝑐
− 𝐿2𝐺𝑐

2𝐾𝑟𝑒
−2𝑦 +

𝐿2𝐺𝑟𝐺𝑐𝑒
−2𝑦

𝑃𝑟
−
𝐿2𝐺𝑐

2𝐾𝑟𝑒
−2𝑦

𝑆𝑐
+ 𝐿2𝐺𝑐𝐾𝑟

2𝑒−2𝑦 −
𝐿2𝐺𝑟𝐺𝑐𝐾𝑟𝑒

−2𝑦

𝑃𝑟
−

𝐿2𝐺𝑟𝐺𝑐𝐾𝑟𝛿𝑒
−2𝑦 +

4𝐿2𝐺𝑐
2𝑒−2𝑦

3𝑆𝑐
2 +

𝐿2𝐺𝑐𝐺𝑟𝑒
−2𝑦

3𝑆𝑐
2 −

4𝐿2𝐺𝑐
2𝐾𝑟𝑒

−2𝑦

6
−
4𝐿2𝐺𝑟𝐺𝑐𝐾𝑟𝑒

−2𝑦

6
+
2𝐿2𝐺𝑐

2𝐾𝑟
2𝑒−2𝑦

6
+

2𝐿2𝐺𝑟𝐺𝑐𝐾𝑟
2𝑒−2𝑦

6
− 2𝐿2𝐺𝑟𝐺𝑐𝐾𝑟𝑒

−2𝑦 + 𝐿2𝐺𝑟𝐺𝑐𝐾𝑟
2𝑒−2𝑦 +

𝐿2𝐺𝑟
2𝑒−2𝑦

𝑃𝑟
2 + 2𝐿2𝐺𝑟

2𝛿2𝑒−2𝑦 + 𝐿2𝐺𝑟
2𝛿𝑒−2𝑦 +

𝐿2𝐺𝑟𝐺𝑐𝑒
−2𝑦

𝑃𝑟𝑆𝑐
−
𝐿2𝐺𝑟𝐺𝑐𝐾𝑟𝑒

−2𝑦

𝑃𝑟
+
4𝐿2𝐺𝑟

2𝑒−2𝑦

3𝑃𝑟
2 +

2𝐿2𝐺𝑟
2𝛿𝑒−2𝑦

𝑃𝑟
+
𝐿2𝐺𝑟𝐺𝑐𝛿𝑒

−2𝑦

𝑆𝑐
− 𝐿2𝐺𝑟𝐺𝑐𝐾𝑟𝛿𝑒

−2𝑦 +

𝐿2𝐺𝑟𝐺𝑐𝛿
2𝑒−2𝑦

3
+
𝐿2𝐺𝑟

2𝛿2𝑒−2𝑦

3
+
4𝐿2𝐺𝑟𝐺𝑐𝛿𝑒

−2𝑦

6
+
4𝐿2𝐺𝑟

2𝛿𝑒−2𝑦

6
)
6𝑡4

4!
 + (

𝐿2𝐺𝑐
2𝑒−2𝑦

2𝑆𝑐
2 − 𝐿2𝐺𝑐

2𝐾𝑟𝑒
−2𝑦 +

𝐿2𝐺𝑐
2𝐾𝑟

2𝑒−2𝑦

2
+
𝐿2𝐺𝑟𝐺𝑐𝑒

−2𝑦

2𝑃𝑟
2 +

𝐿2𝐺𝑟𝐺𝑐𝛿
2𝑒−2𝑦

2
+ 𝐿2𝐺𝑐𝐺𝑟𝛿𝑒

−2𝑦 −
𝐿2𝐺𝑐

2𝐾𝑟𝑒
−2𝑦

2𝑆𝑐
2 + 𝐿2𝐺𝑐

2𝐾𝑟
2𝑒−2𝑦 +

𝐿2𝐺𝑐
2𝐾𝑟

3𝑒−2𝑦

2
−
𝐿2𝐺𝑟𝐺𝑐𝐾𝑟𝑒

−2𝑦

2𝑃𝑟
2 −

𝐿2𝐺𝑟𝐺𝑐𝐾𝑟𝛿
2𝑒−2𝑦

2
− 𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒

−2𝑦 +
𝐿2𝐺𝑐

2𝑒−2𝑦

3𝑆𝑐
3 −

𝐿2𝐺𝑐
2𝐾𝑟𝑒

−2𝑦

3𝑆𝑐
2 +

5𝐿2𝐺𝑟𝐺𝑐𝑒
−2𝑦

6𝑃𝑟𝑆𝑐
2 +

𝐿2𝐺𝑟𝐺𝑐𝛿𝑒
−2𝑦

3𝑆𝑐
2 −

2𝐿2𝐺𝑐
2𝐾𝑟𝑒

−2𝑦

3𝑆𝑐
+
2𝐿2𝐺𝑐

2𝐾𝑟
2𝑒−2𝑦

3
−
2𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝑒

−2𝑦

3
−
2𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒

−2𝑦

3
+

𝐿2𝐺𝑐
2𝐾𝑟𝑒

−2𝑦

3𝑆𝑐
−
𝐿2𝐺𝑐

2𝐾𝑟
3𝑒−2𝑦

3
+
𝐿2𝐺𝑐𝐺𝑟𝐾𝑟

2𝛿𝑒−2𝑦

3
−
𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝑒

−2𝑦

𝑃𝑟
+
𝐿2𝐺𝑐𝐺𝑟𝐾𝑟

2𝑒−2𝑦

2𝑃𝑟
+
𝐿2𝐺𝑟

2𝑒−2𝑦

2𝑃𝑟
3 +

5𝐿2𝐺𝑟
2𝛿2𝑒−2𝑦

6𝑃𝑟
+
4𝐿2𝐺𝑟

2𝛿𝑒−2𝑦

3𝑃𝑟
+
2𝐿2𝐺𝑐𝐺𝑟𝛿𝑒

−2𝑦

2𝑆𝑐
2 − 𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒

−2𝑦 +
𝐿2𝐺𝑐𝐺𝑟𝐾𝑟

2𝛿𝑒−2𝑦

2
+
𝐿2𝐺𝑟

2𝛿𝑒−2𝑦

2𝑃𝑟
2 −

𝐿2𝐺𝑟
2𝛿3𝑒−2𝑦

2
− 𝐿2𝐺𝑟

2𝛿2𝑒−2𝑦 +
𝐿2𝐺𝑟𝐺𝑐𝑒

−2𝑦

3𝑃𝑟
2𝑆𝑐

−
𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝑒

−2𝑦

3𝑃𝑟
2 +

𝐿2𝐺𝑟
2𝑒−2𝑦

3𝑃𝑟
3 +

𝐿2𝐺𝑟𝐺𝑐𝛿
2𝑒−2𝑦

3𝑆𝑐
−

𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝛿
2𝑒−2𝑦

3
+
𝐿2𝐺𝑟

2𝛿3𝑒−2𝑦

3
+
2𝐿2𝐺𝑐𝐺𝑟𝛿𝑒

−2𝑦

3𝑆𝑐
−
2𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒

−2𝑦

3
+
2𝐿2𝐺𝑟

2𝛿2𝑒−2𝑦

3𝑃𝑟
+
2𝐿2𝐺𝑟

2𝛿2𝑒−2𝑦

3𝑃𝑟
)
24𝑡5

5!
 + 

(
𝐿2𝐺𝑐

2𝑒−2𝑦

6𝑆𝑐
4 −

𝐿2𝐺𝑐
2𝐾𝑟𝑒

−2𝑦

3𝑆𝑐
2 +

𝐿2𝐺𝑐
2𝐾𝑟

2𝑒−2𝑦

6𝑆𝑐
2 +

𝐿2𝐺𝑟𝐺𝑐𝑒
−2𝑦

3𝑃𝑟
2𝑆𝑐
2 +

𝐿2𝐺𝑟𝐺𝑐𝛿
2𝑒−2𝑦

3𝑆𝑐
2 +

𝐿2𝐺𝑐𝐺𝑟𝛿𝑒
−2𝑦

3𝑆𝑐
2 −

𝐿2𝐺𝑐
2𝐾𝑟𝑒

−2𝑦

3𝑆𝑐
2 −

𝐿2𝐺𝑐
2𝐾𝑟

2𝑒−2𝑦

3𝑆𝑐
2 −

2𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝑒
−2𝑦

3𝑃𝑟
2 −

2𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝛿
2𝑒−2𝑦

3
−
2𝐿2𝐺𝑐𝐺𝑟𝛿𝑒

−2𝑦

3
+
𝐿2𝐺𝑐

2𝐾𝑟
2𝑒−2𝑦

6𝑆𝑐
2 −

𝐿2𝐺𝑐
2𝐾𝑟

3𝑒−2𝑦

3
+

𝐿2𝐺𝑐
2𝐾𝑟

4𝑒−2𝑦

6
+
𝐿2𝐺𝑐𝐺𝑟𝐾𝑟

2𝛿2𝑒−2𝑦

3
+
𝐿2𝐺𝑐𝐺𝑟𝐾𝑟

2𝑒−2𝑦

3𝑃𝑟
2 +

2𝐿2𝐺𝑐𝐺𝑟𝐾𝑟
2𝛿𝑒−2𝑦

3
+
𝐿2𝐺𝑟

2𝑒−2𝑦

6𝑃𝑟
4 +

𝐿2𝐺𝑟
2𝛿2𝑒−2𝑦

3𝑃𝑟
2 +

2𝐿2𝐺𝑟
2𝛿𝑒−2𝑦

3𝑃𝑟
2 +

𝐿2𝐺𝑟
2𝛿4𝑒−2𝑦

6
+
2𝐿2𝐺𝑟

2𝛿3𝑒−2𝑦

3
+
2𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒

−2𝑦

3
+
2𝐿2𝐺𝑐𝐺𝑟𝐾𝑟𝛿𝑒

−2𝑦

3
+
2𝐿2𝐺𝑟

2𝛿2𝑒−2𝑦

3
)
120𝑡6

6!
 + ⋯ 

                                      (48) 

The skin friction 𝐶𝑓, the Nusselt number 𝑁𝑢 and Sherwood numbers 𝑆ℎ are given as 

                  𝐶𝑓 =
𝜕𝑢

𝜕𝑦
|
𝑦=0

, 𝑁𝑢 =
𝜕𝜃

𝜕𝑦
|
𝑦=0

, 𝑆ℎ =
𝜕𝐶

𝜕𝑦
|
𝑦=0

                      (49) 
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4. Results and Discussion 

Theoretical work on Couette flow of fourth-grade fluid has been investigated. The study has been 

analyzed on thermally radiative and chemically reactive convective fourth-grade fluid in a 

horizontal parallel plates channel. The impact of thermal radiation, chemical reaction, third – grade 

and fourth – grade parameters along with diversified physical parameters are depicted graphically 

on different flow fields using MATLAB. The default values for the pertinent parameters are taken 

as 𝛼 = 0.3, 𝛽1 = 1, 𝛽2 = 1, 𝛽3 = 1, 𝛾1 = 0.3, 𝛾2 = 0.3, 𝛾4 = 0.3, 𝛾5 = 0.3, 𝛾7 = 0.3, 𝛾8 =
0.3, 𝑆𝑐 = 1, 𝐺𝑟 = 5, 𝐺𝑐 = 5, 𝑃𝑟 = 0.71, 𝐻𝑎 = 1, 𝐷𝑎 = 1,𝐾𝑟 = 1, 𝑡 = 0.5. In addition, for 

advanced visualization of fluid, streamlines and isotherms are also exhibited. The interaction of 

electrically conducting fluids with magnetic fields, through electromagnetic forces called Lorentz 

forces. Strong magnetic parameter 𝐻𝑎 creates retarding force namely Lorentz force which 

diminishes fluid velocity. 

    To validate the present work; when 𝐺𝑟 = 0 and 𝐺𝑐 = 0, then our results would be in agreement 

with Zaman et al. [14]. The impression of system parameters on skin friction 𝐶𝑓, Nusselt number 

𝑁𝑢 and Sherwood number 𝑆ℎ are also investigated and presented in tables. 

Figures 2 and 3 depict the velocity and temperature fields for increment of thermal radiation 

parameter 𝛿 (1 ≤ 𝛿 ≥ 4). Thermal radiation is known as electromagnetic radiation or the 

conversion of thermal energy which generates the thermal motion of particles in matter. Thermal 

radiation could be attributed due to thermal excitation. Both velocity and temperature fields are 

affected significantly with increase in thermal radiation parameter (𝛿). Thermal radiation for a 

medium which contains it inevitably has pressure and density gradients, and the treatment requires 

the use of hydrodynamics. 

Figure 2: Effect of 𝛿 on 𝑢(𝑦, 𝑡) 
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Figure 3: Effect of 𝛿 on 𝜃(𝑦, 𝑡) 

 

The effect of chemical reaction parameter (𝐾𝑟) on velocity and concentration profiles are depicted 

in figures 4 and 5 respectively. Due to the rise of chemical reaction (𝐾𝑟) from 1 ≤ 𝐾𝑟 ≥ 4, the 

velocity field decreases, and the concentration field also decreases. Physically, chemical reaction 

occurs with more disturbance which develops the molecular motion and upsurges the heat transport 

phenomena, as a result retards the velocity of the flow. 

 

 
Figure 4: Effect of 𝐾𝑟 on 𝑢(𝑦, 𝑡) 
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 Figure 5: 

Effect of 𝐾𝑟 on 𝐶(𝑦, 𝑡) 
 

 

Figures 6 and 7 depict the effect of Grashof number due to heat transfer (𝐺𝑟) and Grashof number 

due to mass transfer (𝐺𝑐) on velocity field respectively for the increment (1 ≤ 𝐺𝑟 ≥ 4; 1 ≤ 𝐺𝑐 ≥
4). It is observed that the velocity field increases significantly. To this effect, at higher Grashof 

numbers, the flow at the boundary is turbulent, while at lower Grashof numbers, the flow at the 

boundary is laminar. 

 
Figure 6: Effect of 𝐺𝑟 on 𝑢(𝑦, 𝑡) 
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Figure 7: Effect of 𝐺𝑐 on 𝑢(𝑦, 𝑡) 

 

Figure 8 illustrates the drag force effect on fluid flow. The velocity profile decreases with the 

increment of Hartmann number (1 ≤ 𝐻𝑎 ≥ 4). The role of Hartmann number which is the 

magnetic parameter is to suppress turbulence. Physically, when magnetic field is applied to any 

fluid, the apparent viscosity of the fluid increases to the point of becoming viscous elastic solid. It 

is of great interest that yield stress of the fluid can be controlled very accurately through variation 

of the magnetic field intensity. The result is that the ability of the fluid to transmit force can be 

controlled with help of electromagnet which give rise to many possible control – based 

applications, including MHD power generation, electromagnetic casting of metals, MHD 

propulsion etc.  

 

 
 

Figure 8: Effect of 𝐻𝑎 on 𝑢(𝑦, 𝑡) 
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Figures 9 and 10 display the velocity and concentration profiles respectively for the increment of 

Schmidt number (1 ≤ 𝑆𝑐 ≥ 4). Both the velocity and concentration profiles decrease with 

increase of Schmidt number (𝑆𝑐). Physically, Schmidt number (𝑆𝑐) helps to develop fluid 

concentration and concentration buoyancy force. Furthermore, it can also be used to improve the 

visualization of fluid fields. 

 
Figure 9: Effect of 𝑆𝑐 on 𝑢(𝑦, 𝑡) 

 

 
Figure 10: Effect of 𝑆𝑐 on 𝐶(𝑦, 𝑡) 

Figures 11 and 12 show the impression of Prandtl number (𝑃𝑟) on velocity and temperatures 

profiles respectively. The parameter (𝑃𝑟) is the proportion of kinematic viscosity and thermal 

diffusivity which changes physically with temperature. For example, water 𝑃𝑟 = 7.0 (at 200𝐶) and 

Ammonia 𝑃𝑟 = 1.38 decline more rapidly than air 𝑃𝑟 = 0.71. However, increase in 𝑃𝑟 depict the 

domination of thermal and momentum diffusivity respectively. Prandtl number is used to 
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determine whether heat transport occurs with either conduction or convection process. Since, 

Prandtl number is inversely proportional to thermal diffusivity so that increasing 𝑃𝑟 led to the 

decrease in velocity and temperature profiles.  

 

 
Figure 11: Effect of 𝑃𝑟 on 𝑢(𝑦, 𝑡) 

 

 
Figure 12: Effect of 𝑃𝑟 on 𝜃(𝑦, 𝑡) 

 

The impression of third – grade and fourth – grade parameters on velocity profiles are respectively 

illustrated in figure figures 13 and 14. It is observed that the velocity profile increases with increase 

in both third – grade and fourth – grade parameters. 
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Figure 13: Effect of 𝛽1 on 𝑢(𝑦, 𝑡) 

 
Figure 14: Effect of 𝛾1 on 𝑢(𝑦, 𝑡) 

 

Figures 15, 16 and 17 depict the effect of time 𝑡 on velocity profile. This is to show the unsteady 

state of the flow fields. It is observed that both the velocity and temperature fields increases with 

increment of time (0.25 ≤ 𝑡 ≥ 1.0). While, the concentration field decreases with increase in 

time.  
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Figure 15: Effect of 𝑡 on 𝑢(𝑦, 𝑡) 

 

 
Figure 16: Effect of 𝑡 on 𝜃(𝑦, 𝑡) 
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Figure 17: Effect of 𝑡 on 𝐶(𝑦, 𝑡) 

 

Table 1 shows the computational values of skin friction (𝐶𝑓) for flow parameters. It can be seen 

that 𝐶𝑓 plunge with rising data of 𝐻𝑎 because the magnetic field tends to decelerate the fluid flows 

and hence the surface declines. Increase in 𝛿, 𝐾𝑟 , 𝐺𝑐 and 𝐺𝑟 increase the field of 𝐶𝑓. While, increase 

in 𝑆𝑐 and 𝑃𝑟 decrease the skin friction (𝐶𝑓). Table 2 illustrates the computational values of Nusselt 

number (𝑁𝑢) with the variation of 𝛿 and 𝑃𝑟. It is deduced that the Nusselt number increases with 

increase in 𝛿 and decreases with increase in 𝑃𝑟. The computational values of Sherwood number 𝑆ℎ 

with varaiation of 𝐾𝑟 and 𝑆𝑐 are shown in table 3. It is seen that 𝑆ℎ increase with increase in 𝐾𝑟 

and decreases with increase in 𝑆𝑐.  

Table 1: Computational values of Skin friction (𝐶𝑓) for variation of flow parameters 

 

𝛿 𝐶𝑓 𝐾𝑟  𝐶𝑓 𝐻𝑎 𝐶𝑓 𝑆𝑐 𝐶𝑓 𝑃𝑟  𝐶𝑓 𝐺𝑐 𝐶𝑓 𝐺𝑟  𝐶𝑓 
 

              

1 1.4465 1 1.3952 1 1.5136 1 1.5136 0.11 2.3415 1 1.0537 1 1.0569 

2 1.5279 2 1.4575 2 1.5134 2 1.4812 0.31 1.6584 2 1.1687 2 1.1710 

3 1.6189 3 1.5293 3 1.5132 3 1.4710 0.51 1.5542 3 1.2836 3 1.2852 

4 1.7195 4 1.6107 4 1.5130 4 1.4659 0.71 1.5136 4 1.3986 4 1.3994 
 

 

Table 2: Computational values of Nusselt number (𝑁𝑢) for variation of flow parameters 

 

𝛿 𝑁𝑢 𝑃𝑟  𝑁𝑢 
 

    

1 0.6561 0.11 2.2454 

2 0.8149 0.31 0.8351 

3 0.9967 0.51 0.6346 

4 1.2016 0.71 0.5586 
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Table 3: Computational values of Sherwood number (𝑆ℎ) for variation of flow parameters 

 

𝐾𝑟  𝑆ℎ 𝑆𝑐 𝑆ℎ 
 

    

1 0.5518 1 0.5518 

2 0.6553 2 0.5087 

3 0.7817 3 0.4956 

4 0.9312 4 0.4893 
 

 

5. Conclusion 

Thermal radiation and chemical reaction effects on unsteady magnetohydrodynamic (MHD) 

couette flow of fourth-grade fluid in a horizontal parallel plates channel has been investigated. The 

solution for fourth-grade fluid in a horizontal parallel plates channel eith thermal radiation, 

chemical reaction along with diversified physical parameters has been analysed. The key findings 

are given below; 

• Velocity and temperature fields rise due to the increment of thermal radiation parameter. 

• For upsurging data of chemical reaction, velocity and concentration fields diminish. 

• Velocity profile goes up when third and fourth-grade parameters get to raise. 

• Velocity and skin friction fields decline due to the increment of magnetic parameter. 

• Increasing Prandtl number tend to diminish the velocity and temperature profiles. 

• Strong values of Schmidt number decrease the boundary layer of the Sherwood number 

field. 

• Increase in Grashof numbers accelerate the velocity field. 

• Nusselt number distribution rise due to the enhancement in thermal radiation 

• Strong values of thermal radiation parameter, chemical reaction parameter and Grashof 

numbers increase the skin friction while higher values of Schmidt and Prandtl numbers 

diminish the skin friction. 

• As time increases, the velocity and temperature fields increase, while the concentric field 

decreases. 

 

References 

[1] Umavathi J.C., Liu I.C. and Meera S., Unsteady Flow and Heat Transfer of Porous Media 

Sandwiched between Viscous Fluids. Applied Mathematics and Mechanics, 31 (12) (2010) 1497 

– 1516. DOI: 10.1007/s1048-1379-6 

[2] Satya P.V., Venkateswarlu B. and Devika B., Chemical Reaction and Heat Source Effect on 

MHD Oscillatory Flow in an Irregular Channel. Ain Shams Engineering Journal, (2015) 1 – 10. 

DOI: 10.1016/j.asej.2015.07.012 

[3] Islam S., Bano Z., Siddique I. and Siddiqui A.M., The Optimal Solutions for the Flow of a 

Fourth-Grade Fluid with Partial Slip, Computer and Mathematics with Application, 6 (2011) 1507 

– 1516. DOI: 10.1016/j.camwa.2011.01.04 

https://alexjournals.org/AlexJournal/Mathematics/


ALEXANDRIA JOURNAL OF MATHEMATICS Volume 11 Number 1 June 2022 (ISSN 2090-4320) 

 

AVAILABLE ONLINE AT www.alexjournals.org 23  

 

[4] Hayat T., Wang Y. and Hutter K., Flow of a Fourth-Grade Fluid, Math. Models Methods Appl. 

Sci. 12 (2002) 797 – 811. https://doi.org/10.1142/s0218202502001908 

[5] Hayat T., Kara A.H., and Momoniat E., The Unsteady Flow of a Fourth-Grade Fluid Past a 

Porous Plate, Mathematical and Computer Modeling, 41 (2005) 1347 – 1353. 

https://doi.org/10.16/jmcm.2004.01.010 

[6] Hayat T., Khan M., Ayub M. and Siddiqui A.M., The Unsteady Couette Flow of a Second 

Grade Fluid in a Layer of Porous Medium. Archives of Mechanics, 57 (2005) 405 – 416. 

[7] Khaled A.R.A and Vafai K., The effect of the Slip Condition on Stokes and Couette Flows due 

to an Oscillating Wall: Exact Solution, International Journal of Non – Linear Mechanics, 39 (2004) 

795 – 809. https://doi.org/10.1016/s0020-7462(03)00043-X 

[8] Singh K.D., Gloria M.G. and Raj H., A Periodic Solution of Oscillatory Couette Flow through 

Porous Medium in Rotating System, Indian Journal of Pure and Applied Mathematics, 36 (2005) 

151 – 159. 

[9] Guria M., Jana R.N. and Ghosh S.K., Unstaedy Couette Flow in a Rotating System, 

International Journal of Non – Linear Mechanics, 41 (2006) 838 – 843. DOI: 

10.1016/j.ijnonlinmec.2006.04.010 

[10] Idowu A.S., Joseph K.M., Are E.B. and Daniel K.S., Unsteady Couette Flow in a Rotating 

System with Transpiration, Global Journal of Science Frontier Research Mathematics and 

Decision Sciences, 13 (5) (2013) 14 – 26. 

[11] Hayat T. and Kara A.H., Couette Flow of a Third Grade Fluid with Variable Magnetic Field, 

Mathematical and Computer Modelling, 43 (2006) 132 – 137. 

https://doi.org/10.16/j.mcm.2004.12.009 

[12] Zaman H., Shah M.A. and Ibrahim M., Unsteady Incompressible Couette Flow Problem for 

the Eyring – Powell Model with Porous Walls, American Journal of Computational Mathematics, 

3 (2013) 313 – 325. DOI: 10.4236/ajcm.2013.34041 

[13] Joseph K.M., Daniel S. and Joseph G.M., Unsteady MHD Couette Flow between Two Infinite 

Parallel Plates in an Inclined Magnetic Field with Heat Transfer, International Journal of 

Mathematics and Statistics Invention, 2 (3) (2014) 103 – 110. 

[14] Zaman H., Abbas T., Sohail A. and Ali A., Couette Flow Problem for an Unsteady MHD 

Fourth-Grade Fluid with Hall Currents, Journal of Applied Mathematics and Physics, 2 (2014) 1 

– 10. DOI: 10.4236/jamp.2014.24001 

[15] Taha A., Magan A.B. and Mahomed F.M., Invariant Solutions for the Unsteady 

Magnetohydrodynamics (MHD) Flow of a Fourth-Grade Fluid Induced due to the Impulsive 

Motion of a Flat Porous Plate, Brazil Journal of Physics, 45 (2015) 120 – 131. DOI: 

10.1007/s13538-014-0292-9 

[16] Taza G., Fazle G., Islam S., Shah R.A., Khan I., Nasir S. and Sharidan, Unsteady Thin Film 

Flow of a Fourth-Grade Fluid over a Vertical Moving and Oscillating Belt, Propulsion and Power 

Research, 5 (3) (2016) 223 -235. https://doi.org/10.1016/j.jppr.2016.07.002 

[17] Arifuzzaman S.M., Shakhaoth Khan Md., Al-Mamum A., Reza- E-Rabbi S.K., Biswas P. and 

Karim I., Hydrodynamic Stability and Heat and Mass Transfer Flow Analysis of MHD Radiative 

https://alexjournals.org/AlexJournal/Mathematics/


ALEXANDRIA JOURNAL OF MATHEMATICS Volume 11 Number 1 June 2022 (ISSN 2090-4320) 

 

AVAILABLE ONLINE AT www.alexjournals.org 24  

 

Fourth-Grade Fluid Through Porous Plate with Chemical Reaction. Journal of King Saud 

University, 31 (4) (2019) 1388 – 1398. https://doi.org/10.1016/j.jksus.2018.12.009 

[18] Cole B.D. and Noll W., An Approximation Theorem for Functionals with Applications in 

Continuum Mechanics. Arch. Ration. Mech. Anal., 6 (1960) 355 – 370. 

https://doi.org/10.1007/BF00276168 

 

https://alexjournals.org/AlexJournal/Mathematics/

