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Abstract         

The main objective of this paper is to investigate the fractional modified Bessel functions (FMBFs) via a recently 
proposed local fractional derivative, known as 𝑀𝑀-truncated derivative. The generating function is obtained. The power 
series expansion is defined and used to derive and prove some important recurrence relations. The 𝑀𝑀-truncated 
fractional modified Bessel differential equation is proposed, and one of its fractional power series solutions about its 
regular singular point 𝑥𝑥 = 0 is found. Finally, the orthogonality relation of such functions is established and proved 
analytically in view of the M-truncated integral. To the best of our knowledge, this paper is the first to study FMBFs 
and derive their standard properties within the context of local fractional calculus. 

 

1. Introduction 

Fractional calculus owes its origin to the question raised by L’Hospital in 1695 of whether the 
derivative to an integer order n could be extended and still be valid when n is not an integer. At 
the beginning, this field of research has been only presented purely, and until very recently, 
researchers have realized the powerful applicability of this field in modeling many physical 
phenomena much better than using the ordinary usual calculus due to several properties in 
fractional calculus that can provide a good explanation of physical behavior of certain phenomena 
[1]. For example, fractional derivatives provide a better description of the model of a nonlinear 
oscillation of an earthquake [2], and modelling fluid dynamics with fractional derivatives can 
eliminate the deficiency caused by the occurrence of a continuous flow of traffic [3,4]. Therefore, 
fractional calculus becomes a more convenient tool for the description of mathematical models in 
different aspects of physical and dynamical systems [5-8]. Fractional order derivatives in the sense 
of Riemann-Liouville and Caputo [9] were the main tools to achieve the fourth-mentioned results, 
and defined as follows 

Definition 1.1 The Riemann-Liouville derivative of fractional order 𝛼𝛼 of function 𝑓𝑓(𝑡𝑡) is given as 
 

𝒟𝒟𝑡𝑡0
𝛼𝛼

𝑅𝑅𝑅𝑅
 𝑓𝑓(𝑡𝑡) = 1

Γ(𝑛𝑛−𝛼𝛼)
𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 ∫ (𝑡𝑡 − 𝜏𝜏)𝑛𝑛−𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
𝑡𝑡0

,                             (1) 
where 𝑛𝑛 − 1 ≤ 𝛼𝛼 < 𝑛𝑛 ∈ 𝑧𝑧+. 

Definition 1.2 The Caputo derivative of fractional order 𝛼𝛼 of function 𝑓𝑓(𝑡𝑡) is defined as 
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𝒟𝒟𝑡𝑡0
𝛼𝛼

𝐶𝐶
 𝑓𝑓(𝑡𝑡) = 1

Γ(𝑛𝑛−𝛼𝛼)∫ (𝑡𝑡 − 𝜏𝜏)𝑛𝑛−𝛼𝛼−1𝑓𝑓(𝑚𝑚)(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
𝑡𝑡0

,                               (2) 

where 𝑛𝑛 − 1 ≤ 𝛼𝛼 < 𝑛𝑛 ∈ 𝑧𝑧+. 

    However, since the Riemann–Liouville and Caputo fractional derivative formulas are integral 
in form, they do not satisfy some classical features such as the chain rule, the product, and quotient 
of two functions. To overcome this problem, in 2014 Khalil et al. [10] proposed a local definition 
of fractional derivative known as a "conformable derivative," depending on the basic limit 
definition of derivative and defined as follows: 

Definition 1.3 For the initial real value 𝑎𝑎, the conformable fractional derivative 𝒟𝒟𝑎𝑎
𝛼𝛼𝑓𝑓(𝑥𝑥) of a real 

function 𝑓𝑓 ∶ [𝑎𝑎,∞) → 𝑅𝑅, 𝛼𝛼 ∈ (0,1] is defined by the following relation: 

𝒟𝒟𝑎𝑎
𝛼𝛼𝑓𝑓(𝑥𝑥) = lim

ℎ→0

𝑓𝑓�𝑥𝑥+ℎ(𝑥𝑥−𝑎𝑎)1−𝛼𝛼�−𝑓𝑓(𝑥𝑥)
ℎ

, for all 𝑥𝑥 > 𝑎𝑎.                          (3) 

The usability of the conformable derivative notion has wide areas of interest in both theoretical 
and practical aspects [11,12]. Maxwell’s equations have been considered in the conformable 
fractional setting to describe electromagnetic fields of media in [13]. The conformable differential 
equation has been used for the description of the sub-diffusion process in [14]. Also, some 
applications in quantum mechanics have been treated in the context of conformable fractional 
derivatives [15]. Furthermore, in 2014, Katugampola [16] has also proposed an alternative 
fractional derivative with classical properties, which refers to the Leibniz and Newton calculus 
and is like the conformable fractional derivative. In 2018, Sousa and Oliveira [17] introduced a 
truncated M-fractional derivative type that unifies the existing local fractional derivatives 
mentioned above and which also satisfies the classical properties of integer-order calculus. 

    Special functions [18] play a critical role in mathematical physics, fractional calculus, the theory 
of differential equations, quantum mechanics, approximation theory, and many other branches of 
science. They have a long history that can be traced back to the past three centuries, when the 
problems of terrestrial and celestial mechanics, the boundary value problems of electromagnetism, 
and the eigenvalue problems of quantum mechanics were solved. At some level in quantum 
mechanics and electromagnetism, spherical harmonics arise in problems with spherical symmetry 
[19], where they play the role of cosines and sines in the Fourier expanding of functions. The 
German astronomer F. W. Bessel (1784–1846) is credited with deriving the differential equation 
bearing his name and carrying out the first systematic study of the general properties of its solutions 
(now called Bessel functions) in his famous 1824 memoir. Nonetheless, Bessel functions were first 
discovered in 1732 by D. Bernoulli (1700–1782), who provided a series solution (representing a 
Bessel function) for the oscillatory displacements of a heavy hanging chain. Bessel functions arise 
naturally when modeling problems with spherical and cylindrical symmetry. Because of their close 
association with cylindrical domains, they are called cylinder functions and belong to the family 
of cylinder functions, as are Hankel functions, Kelvin's functions, and Lommel functions, among 
others. Bessel functions can be obtained by separating the wave equation [20] 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑐𝑐2∇2𝑢𝑢,                                                                (4)                                                                   
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 in spherical coordinates, they arise in the study of free vibrations of a circular membrane and in 
finding the temperature distribution in a circular cylinder, among numerous other areas of 
theoretical physics. There are a host of related functions also belonging to the general family of 
cylinder functions, the most notable of which are the modified Bessel functions, which are most 
clearly distinguished by their non-oscillatory behavior. For this reason, they often appear in 
applications that are different in nature from those for the standard Bessel functions. For more on 
Bessel and modified Bessel functions, we refer the reader to the excellent book by Luke [21]. 

    A resurgence of interest has occurred in the study of Bessel functions in the framework of 
fractional calculus theory [22, 23]. The study of a Bessel function of half-integer order led to the 
discovery of another interesting class of orthogonal polynomials called the Bessel polynomials. 
Many authors have used these polynomials. For example, Yüzbaşi et al. [24] solved linear integral, 
differential, and integro-differential equations, while Parand et al. [25] applied Bessel functions to 
solve nonlinear Lane-Emden equations. In [26], fractional optimal control problems were solved 
using the Bessel collocation method. 

 

2. Preliminaries 

In the following, we are going to mention some essential definitions and results about the 𝑀𝑀-
truncated derivative. 

Definition 2.1 suppose 𝑓𝑓 ∶ [𝑙𝑙,∞) → 𝑅𝑅 and 𝑥𝑥 > 0. Also 0 < 𝛼𝛼 < 1 and 𝛽𝛽 > 0,  the 𝑀𝑀-truncated 
derivative [17] of 𝑔𝑔 of order 𝛼𝛼 is denoted by 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 , and defined by 

𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 𝑓𝑓(𝑥𝑥) = lim

𝜖𝜖→0

𝑓𝑓�𝑡𝑡 𝑖𝑖𝐸𝐸𝛽𝛽(𝜖𝜖𝑥𝑥−𝛼𝛼)�−𝑓𝑓(𝑥𝑥)

𝜖𝜖
,                                                 (5)                     

∀ 𝑥𝑥 > 0 and  𝑖𝑖𝐸𝐸𝛽𝛽(. ), 𝛽𝛽 > 0 is a truncated Mittag-Leffler function of one parameter defined as 

                                                        𝑖𝑖𝐸𝐸𝛽𝛽(𝑧𝑧) = ∑ 𝑧𝑧𝑘𝑘

Γ(𝛽𝛽𝛽𝛽+1)
𝑖𝑖
𝛽𝛽=0 .                                                   (6) 

Note that, if 𝑓𝑓 is 𝛼𝛼-differentiable in some open interval (0,𝑎𝑎), 𝑎𝑎 > 0, and lim
𝑥𝑥→0+

� 𝔇𝔇𝑖𝑖𝑀𝑀 𝛼𝛼,𝛽𝛽
 
 𝑓𝑓(𝑥𝑥)� 

exist, then we have 

                                                    𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 𝑓𝑓(0) = lim

𝑡𝑡→0+
� 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀

 
 𝑓𝑓(𝑥𝑥)�.                                                (7) 

Theorem 2.1 [17] suppose 0 < 𝛼𝛼 ≤ 1, 𝛽𝛽 > 0, 𝑙𝑙,𝑚𝑚 ∈ 𝑅𝑅 and 𝑔𝑔, ℎ are 𝛼𝛼-differentiable at 𝑥𝑥 > 0. 
Then, the M-truncated derivative meets the following properties 

                          𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 (𝑙𝑙𝑔𝑔 + 𝑚𝑚ℎ)(𝑥𝑥) = 𝑙𝑙 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝑔𝑔(𝑥𝑥) + 𝑚𝑚 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 ℎ(𝑥𝑥);                                          (8) 

                             𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 (𝑔𝑔 ∗ ℎ) = 𝑔𝑔(𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 ℎ(𝑥𝑥) + ℎ(𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝑔𝑔(𝑥𝑥);                                           (9) 

                               𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑔𝑔

ℎ
� (𝑥𝑥) = ℎ(𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 ℎ(𝑥𝑥)

ℎ(𝑥𝑥)2
;                                                      (10) 
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                                𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 (𝑘𝑘) = 0, where 𝑘𝑘 is a constant.                                                                     (11) 

 

If 𝑓𝑓 is differentiable, then  

                                                     𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑓𝑓(𝑥𝑥)� = 𝑥𝑥1−𝛼𝛼

Γ[𝛽𝛽+1]
𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

.                                                        (12) 

The 𝑀𝑀-truncated derivative for 𝑓𝑓 in Riemann-Liouville form [27] is defined as follows  

Definition 2.2 suppose 𝑓𝑓 is continuous and 𝑀𝑀-differentiable on (𝑙𝑙,𝑚𝑚) with order 𝛼𝛼, 𝛽𝛽. Then, we 
have 

                                       𝔇𝔇𝑡𝑡
𝛼𝛼,𝛽𝛽,𝛾𝛾

0      
𝑀𝑀−𝑅𝑅𝑅𝑅 �𝑓𝑓(𝑡𝑡)� =  1

Γ(𝑛𝑛−𝛾𝛾)
𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 ∫ 𝑓𝑓(𝜏𝜏)

(𝑡𝑡−𝜏𝜏)𝛾𝛾−𝑛𝑛+1
𝑑𝑑𝜏𝜏𝑡𝑡

0 ,                              (13) 

𝑛𝑛 − 1 < 𝛼𝛼, 𝛾𝛾 ≤ 𝑛𝑛, 𝛽𝛽 > 0, 

where 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑓𝑓(𝑡𝑡)� = 𝑡𝑡1−𝛼𝛼

Γ[𝛽𝛽+1]
𝑑𝑑𝑓𝑓(𝑡𝑡)
𝑑𝑑𝑡𝑡

, and  𝑖𝑖𝐸𝐸𝛽𝛽(. ), 𝛽𝛽 > 0 is truncated Mittag-Leffler function of one 

parameter. 

 

Definition 2.3 [17] Let 𝑎𝑎 ≥ 0 and 𝑥𝑥 ≥ 𝑎𝑎. Also, let 𝑓𝑓 be a function defined in (𝑎𝑎, 𝑥𝑥] and 0 < 𝛼𝛼 <
1. Then, the 𝑀𝑀-fractional integral of order 𝛼𝛼 of a function 𝑓𝑓 is defined by  

                                                     𝑀𝑀𝑇𝑇𝑎𝑎𝛼𝛼,𝛽𝛽
 
 𝑓𝑓(𝑥𝑥) = Γ(𝛽𝛽 + 1)∫ 𝑓𝑓(𝑡𝑡)

𝑡𝑡1−𝛼𝛼
𝑑𝑑𝑡𝑡𝑥𝑥

𝑎𝑎 ,                                          (14) 

With 𝛽𝛽 > 0. 

Theorem 2.2 [17] Let 𝑎𝑎 ≥ 0 and 0 < 𝛼𝛼 < 1. Also, let 𝑓𝑓 be a continuous function such that exist 
 𝑀𝑀𝑇𝑇𝛼𝛼𝛼𝛼,𝛽𝛽𝑓𝑓. Then 

                                                    𝔇𝔇𝑖𝑖𝑀𝑀 𝛼𝛼,𝛽𝛽 � 𝑀𝑀𝑇𝑇𝑎𝑎𝛼𝛼,𝛽𝛽𝑓𝑓(𝑥𝑥)� = 𝑓𝑓(𝑥𝑥),                                                     (15) 

with 𝑥𝑥 ≥ 𝑎𝑎 and  𝛽𝛽 > 0. 

 

3. Fractional modified Bessel functions 

3.1 Generating function and recurrence relations  

Definition 3.1.1 The power series expansion of the fractional Bessel and modified Bessel functions 
of the first kind are defined, respectively, by 

                                                    𝐽𝐽𝑝𝑝𝛼𝛼(𝑥𝑥) = ∑ (−1)𝑘𝑘

𝛽𝛽!Γ(𝛽𝛽+𝑝𝑝+1)
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
𝑝𝑝+2𝛽𝛽

∞
𝛽𝛽=0 ,                                             (16) 

                                                          𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥) = ∑ 𝑖𝑖2(𝛼𝛼+1)𝑘𝑘

𝛽𝛽!Γ(𝛽𝛽+𝑝𝑝+1)
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
𝑝𝑝+2𝛽𝛽

,∞
𝛽𝛽=0                                              (17) 
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with 𝑝𝑝 is a real number, and 0 < 𝛼𝛼 < 1. 

 

Lemma 3.1.1 The fractional Bessel and modified Bessel functions of the first kind are related by  

                                                                 𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥) = 𝑖𝑖−𝛼𝛼𝑝𝑝𝐽𝐽𝑝𝑝𝛼𝛼(𝑖𝑖𝑥𝑥),                                                        (18) 

with 𝑝𝑝 is a real number, and 0 < 𝛼𝛼 < 1. 

Proof. Consider the right-hand sight of Eq. (3),  

𝑖𝑖−𝛼𝛼𝑝𝑝𝐽𝐽𝑝𝑝𝛼𝛼(𝑖𝑖𝑥𝑥) =  𝑖𝑖−𝛼𝛼𝑝𝑝 ∑ (−1)𝑘𝑘𝑖𝑖(𝑝𝑝+2𝑘𝑘)𝛼𝛼

𝛽𝛽!Γ(𝛽𝛽+𝑝𝑝+1)
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
𝑝𝑝+2𝛽𝛽

∞
𝛽𝛽=0 = ∑ 𝑖𝑖2(𝛼𝛼+1)𝑘𝑘

𝛽𝛽!Γ(𝛽𝛽+𝑝𝑝+1)
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
𝑝𝑝+2𝛽𝛽

∞
𝛽𝛽=0 = 𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥). ∎  

 

Theorem 3.1.1 Let 𝑛𝑛 be an integer. Then the generating function of the fractional modified Bessel 
functions of the first kind is 

                          𝐺𝐺𝛼𝛼(𝑥𝑥, 𝑡𝑡) = ∑ 𝑖𝑖2𝑛𝑛(𝛼𝛼+1)∞
𝑛𝑛=−∞ 𝐼𝐼𝑛𝑛𝛼𝛼(𝑥𝑥)𝑡𝑡𝑛𝑛 = 𝑒𝑒

𝑖𝑖2𝑛𝑛(𝛼𝛼+1)𝑥𝑥𝛼𝛼

2𝛼𝛼 �𝑡𝑡− 1
𝑖𝑖2𝛼𝛼𝑡𝑡

�.                                  (19) 

Proof. First, we will find the generating function of the fractional Bessel functions (FBFs), then 
we will derive the generating function of the FMBFs from it by means of  Lemma 3.1.1 as follows: 

𝑒𝑒
𝑥𝑥𝛼𝛼

2𝛼𝛼�𝑡𝑡−
1
𝑡𝑡� =  𝑒𝑒

𝑥𝑥𝛼𝛼𝑡𝑡
2𝛼𝛼 𝑒𝑒

𝑥𝑥𝛼𝛼

2𝛼𝛼𝑡𝑡 = ∑ 𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝛼𝛼

(2𝛼𝛼)𝛼𝛼𝑗𝑗!
∞
𝑗𝑗=0 ∑ (−1)𝑘𝑘𝑥𝑥𝛼𝛼𝑘𝑘

(2𝛼𝛼)𝑘𝑘𝑡𝑡𝑘𝑘𝛽𝛽!
∞
𝛽𝛽=0 = ∑ �∑ (−1)𝑘𝑘

𝛽𝛽!𝑗𝑗!
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
𝑗𝑗+𝛽𝛽

∞
𝛽𝛽=0 � 𝑡𝑡𝑗𝑗−𝛽𝛽∞

𝑗𝑗=0 .  

Our goal is to obtain a single series in powers of t. Thus, we make the change of index 𝑛𝑛 = 𝑗𝑗 − 𝑘𝑘, 
consequently 

𝑒𝑒
𝑥𝑥𝛼𝛼

2𝛼𝛼�𝑡𝑡−
1
𝑡𝑡� = ∑ �∑ (−1)𝑘𝑘

𝛽𝛽!(𝑛𝑛+𝛽𝛽)!
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
𝑛𝑛+2𝛽𝛽

∞
𝛽𝛽=0 � 𝑡𝑡𝑛𝑛∞

𝑗𝑗=0 = ∑ 𝐽𝐽𝑝𝑝𝛼𝛼(𝑥𝑥)𝑡𝑡𝑛𝑛∞
𝑛𝑛=−∞ . 

Replacing 𝑥𝑥 by 𝑖𝑖𝑥𝑥 and 𝑡𝑡 by −𝑖𝑖𝛼𝛼𝑡𝑡 in the equation above and using Eq. (18), we get 

𝐺𝐺𝛼𝛼(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒
𝑖𝑖2𝑛𝑛(𝛼𝛼+1)𝑥𝑥𝛼𝛼

2𝛼𝛼 �𝑡𝑡− 1
𝑖𝑖2𝛼𝛼𝑡𝑡

� = ∑ 𝑖𝑖2𝑛𝑛(𝛼𝛼+1)𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥)𝑡𝑡𝑛𝑛∞
𝑛𝑛=−∞ . ∎ 

 

Theorem 3.1.2 The FMBFs 𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥) satisfy the following recurrence relations: 

                                       𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼𝑝𝑝𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥)� = 1

Γ(𝛽𝛽+1)
𝑥𝑥𝛼𝛼𝑝𝑝𝐼𝐼𝑝𝑝−1𝛼𝛼 (𝑥𝑥);                                                (20) 

                                            𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥−𝛼𝛼𝑝𝑝𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥)� = 𝑖𝑖2(𝛼𝛼+1)

Γ(𝛽𝛽+1)
𝑥𝑥−𝛼𝛼𝑝𝑝𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝑥𝑥);                                            (21) 

                                            𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥)� = 1

Γ(𝛽𝛽+1)
�𝐼𝐼𝑝𝑝−1𝛼𝛼 (𝑥𝑥) − 𝛼𝛼𝑝𝑝

𝑥𝑥𝛼𝛼
𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥)�                                        (22) 
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                                            𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥)� = 1

𝛤𝛤(𝛽𝛽+1)
�𝛼𝛼𝑝𝑝
𝑥𝑥𝛼𝛼
𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥) + 𝑖𝑖2𝛼𝛼+1𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝑥𝑥)�;                            (23) 

                                            𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥)� =  1

2Γ(𝛽𝛽+1) �𝐼𝐼𝑝𝑝−1
𝛼𝛼 (𝑥𝑥) + 𝑖𝑖2(𝛼𝛼+1)𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝑥𝑥)�;                        (24) 

                                             2𝛼𝛼𝑝𝑝
𝑥𝑥𝛼𝛼

𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥) =  𝐼𝐼𝑝𝑝−1𝛼𝛼 (𝑥𝑥) − 𝑖𝑖2(𝛼𝛼+1)𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝑥𝑥).                                                   (25) 

Proof 

𝔇𝔇𝛼𝛼,𝜂𝜂
𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼𝑝𝑝𝐽𝐽𝑝𝑝𝛼𝛼(𝑥𝑥)� = 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 ∑ (−1)𝑘𝑘

(2𝛼𝛼)𝑝𝑝+2𝑘𝑘𝛽𝛽!Γ(𝛽𝛽+𝑝𝑝+1)
(𝑥𝑥𝛼𝛼)2(𝑝𝑝+𝛽𝛽)∞

𝛽𝛽=0 =

𝑥𝑥𝛼𝛼𝑝𝑝

Γ(𝛽𝛽+1)
∑ (−1)𝑘𝑘

𝛽𝛽!Γ(𝛽𝛽+𝑝𝑝)
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
𝑝𝑝+2𝛽𝛽−1

∞
𝛽𝛽=0 = 𝑥𝑥𝛼𝛼𝑝𝑝

Γ(𝛽𝛽+1) 𝐽𝐽𝑝𝑝−1
𝛼𝛼 (𝑥𝑥). 

Replacing 𝑥𝑥 by 𝑖𝑖𝑥𝑥 in the equation above and using Eq. (18), we have 

1
𝑖𝑖𝛼𝛼

𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑖𝑖𝛼𝛼𝑝𝑝𝑥𝑥𝛼𝛼𝑝𝑝𝐽𝐽𝑝𝑝𝛼𝛼(𝑖𝑖𝑥𝑥)� = 𝑖𝑖𝛼𝛼𝑝𝑝

Γ(𝛽𝛽+1)𝑥𝑥
𝛼𝛼𝑝𝑝𝐽𝐽𝑝𝑝−1𝛼𝛼 (𝑖𝑖𝑥𝑥),  

From which we get  

𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼𝑝𝑝𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥)� = 1

Γ(𝛽𝛽+1)
𝑥𝑥𝛼𝛼𝑝𝑝𝐼𝐼𝑝𝑝−1𝛼𝛼 (𝑥𝑥). 

Now to obtain Eq. (21), we proceed as follows:  

𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥−𝛼𝛼𝑝𝑝𝐽𝐽𝑝𝑝𝛼𝛼(𝑥𝑥)� = 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 ∑ (−1)𝑘𝑘

(2𝛼𝛼)𝑝𝑝+2𝑘𝑘𝛽𝛽!Γ(𝛽𝛽+𝑝𝑝+1)
(𝑥𝑥𝛼𝛼)2𝛽𝛽∞

𝛽𝛽=0 =
1

Γ(𝛽𝛽+1)
∑ (−1)𝑘𝑘

(2𝛼𝛼)𝑝𝑝+2𝑘𝑘−1(𝛽𝛽−1)!Γ(𝛽𝛽+𝑝𝑝+1)
(𝑥𝑥𝛼𝛼)2𝛽𝛽−1∞

𝛽𝛽=0 . 

 

If we make the change of index 𝑘𝑘 = Ω + 1, we will have 

𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥−𝛼𝛼𝑝𝑝𝐽𝐽𝑝𝑝𝛼𝛼(𝑥𝑥)� =  −𝑥𝑥

−𝛼𝛼𝑝𝑝

Γ(𝛽𝛽+1)
∑ (−1)Ω

Ω!Γ(𝑝𝑝+Ω+2)
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
𝛽𝛽+2Ω+1

∞
𝛽𝛽=0 = 𝑖𝑖2𝑥𝑥−𝛼𝛼𝑝𝑝

Γ(𝛽𝛽+1)
𝐽𝐽𝑝𝑝+1𝛼𝛼 (𝑥𝑥),  

replacing 𝑥𝑥 by 𝑖𝑖𝑥𝑥 and applying Eq. (18), we get 

1
𝑖𝑖𝛼𝛼

𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑖𝑖−𝛼𝛼𝑝𝑝𝑥𝑥−𝛼𝛼𝑝𝑝𝐽𝐽𝑝𝑝𝛼𝛼(𝑖𝑖𝑥𝑥)� = 𝑖𝑖2−𝛼𝛼𝑝𝑝𝑥𝑥−𝛼𝛼𝑝𝑝

Γ(𝛽𝛽+1)
𝐽𝐽𝑝𝑝+1𝛼𝛼 (𝑖𝑖𝑥𝑥),  

from which we obtain 

𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥−𝛼𝛼𝑝𝑝𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥)� = 𝑖𝑖2(𝛼𝛼+1)

Γ(𝛽𝛽+1)
𝑥𝑥−𝛼𝛼𝑝𝑝𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝑥𝑥). 

Eq. (22) is obtained from Eq. (20) by applying the 𝑀𝑀-truncated derivative. Similarly, Eq. (23) is 
derived from Eq. (21) by applying the 𝑀𝑀-truncated derivative. Eq. (24) is obtained by adding Eqs. 
(22,23), and Eq. (25) is obtained by subtracting Eqs. (22,23). ∎ 
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3.2 𝑴𝑴-truncated fractional modified Bessel differential equation  

Analogous to second order homogeneous linear differential equation  

                                      𝑃𝑃(𝑥𝑥)𝑓𝑓′′(𝑥𝑥) + 𝑄𝑄(𝑥𝑥)𝑓𝑓′(𝑥𝑥) + 𝑅𝑅(𝑥𝑥)𝑓𝑓(𝑥𝑥) = 0,                                             (26) 

we formulate the second order homogeneous linear fractional differential equation as 

                                      𝑃𝑃(𝑥𝑥)𝒟𝒟𝛼𝛼𝒟𝒟𝛼𝛼𝑓𝑓(𝑥𝑥) + 𝑄𝑄(𝑥𝑥)𝒟𝒟𝛼𝛼𝑓𝑓(𝑥𝑥) + 𝑅𝑅(𝑥𝑥)𝑓𝑓(𝑥𝑥) = 0.                                (27) 

Definition 3.2.1 A point 𝑥𝑥 = 𝑥𝑥𝑜𝑜 is called 𝛼𝛼-regular singular point of Eq. (27) if: 

                                               lim
𝑥𝑥→𝑥𝑥𝑜𝑜

(𝑥𝑥 − 𝑥𝑥𝑜𝑜)𝛼𝛼𝑄𝑄(𝑥𝑥) exists and lim
𝑥𝑥→𝑥𝑥𝑜𝑜

(𝑥𝑥 − 𝑥𝑥𝑜𝑜)2𝛼𝛼𝑅𝑅(𝑥𝑥) exists. 

Remark 3.2.1 If 𝑃𝑃, 𝑄𝑄 and 𝑅𝑅 are polynomials with no common factors, then the singular points of 
Eq. (27) are those for which 𝑃𝑃(𝑥𝑥) = 0. 

Consider the 𝑀𝑀-truncated fractional modified Bessel differential equation 

𝑥𝑥2𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝑓𝑓(𝑥𝑥) + 𝛼𝛼

Γ(𝛽𝛽+1)
𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝑓𝑓(𝑥𝑥) + 1

[Γ(𝛽𝛽+1)]2 (𝑖𝑖2𝛼𝛼𝑥𝑥2𝛼𝛼 − 𝛼𝛼2𝑝𝑝2)𝑓𝑓(𝑥𝑥) = 0,             (28) 

where 𝛼𝛼 ∈ (0,1], 𝑝𝑝 is a real number, and 

                                                    𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 𝑓𝑓(𝑥𝑥) = 𝑥𝑥1−𝛼𝛼

Γ(𝛽𝛽+1)
𝑓𝑓′(𝑥𝑥),                                                           (29) 

               𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝑓𝑓(𝑥𝑥) = 1

[Γ(𝛽𝛽+1)]2 �𝑥𝑥
2(1−𝛼𝛼)𝑓𝑓′′(𝑥𝑥) + (1 − 𝛼𝛼)𝑥𝑥1−2𝛼𝛼𝑓𝑓′(𝑥𝑥)�.                          (30) 

If we apply the limit 𝑖𝑖 → 0 on both sides of Eq. (5) and take 𝛽𝛽 = 𝛼𝛼 = 1, then Eq. (28) is the 
classical modified Bessel differential equation. 

𝑥𝑥 = 0 is a 𝛼𝛼-regular singular point for Eq. (28). In this case, for 𝑥𝑥 > 0, to find its first solution, we 
write the fractional Frobenius series as follows 

                                                    𝑓𝑓(𝑥𝑥) = ∑ 𝑎𝑎𝛽𝛽𝑥𝑥(𝛽𝛽+𝛿𝛿)𝛼𝛼∞
𝛽𝛽=0 ,                                                                (31) 

 Where 𝛿𝛿 is any real number. The first and second fractional derivatives for Eq. (31) are 

                                       𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 𝑓𝑓(𝑥𝑥) = 𝛼𝛼

Γ(𝛽𝛽+1)
∑ (𝑘𝑘 + 𝛿𝛿)𝑎𝑎𝛽𝛽𝑥𝑥(𝛽𝛽+𝛿𝛿−1)𝛼𝛼∞
𝛽𝛽=0 ,                                     (32) 

              𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝑓𝑓(𝑥𝑥) = � 𝛼𝛼

Γ(𝛽𝛽+1)�
2
∑ (𝑘𝑘 + 𝛿𝛿)(𝑘𝑘 + 𝛿𝛿 − 1)𝑎𝑎𝛽𝛽𝑥𝑥(𝛽𝛽+𝛿𝛿−2)𝛼𝛼∞
𝛽𝛽=0 .              (33) 

Substituting Eqs. (31,32,33) into Eq. (28), we get 

� 𝛼𝛼
𝛤𝛤(𝛽𝛽+1)�

2
∑ (𝑘𝑘 + 𝛿𝛿)(𝑘𝑘 + 𝛿𝛿 − 1)𝑎𝑎𝛽𝛽𝑥𝑥(𝛽𝛽+𝛿𝛿−2)𝛼𝛼∞
𝛽𝛽=0 + � 𝛼𝛼

𝛤𝛤(𝛽𝛽+1)�
2
∑ (𝑘𝑘 + 𝛿𝛿)𝑎𝑎𝛽𝛽𝑥𝑥(𝛽𝛽+𝛿𝛿)𝛼𝛼∞
𝛽𝛽=0 +

                                   1
[𝛤𝛤(𝛽𝛽+1)]2

(𝑖𝑖2𝛼𝛼𝑥𝑥2𝛼𝛼 − 𝛼𝛼2𝑝𝑝2)∑ 𝑎𝑎𝛽𝛽𝑥𝑥(𝛽𝛽+𝛿𝛿)𝛼𝛼∞
𝛽𝛽=0 = 0   (34) 

which can be reformulated as 
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�� 𝛼𝛼
Γ(𝛽𝛽+1)�

2
𝛿𝛿(𝛿𝛿 − 1) + � 𝛼𝛼

Γ(𝛽𝛽+1)�
2
𝛿𝛿 − � 𝛼𝛼

Γ(𝛽𝛽+1)�
2
𝑝𝑝2� 𝑎𝑎𝑜𝑜𝑥𝑥𝛿𝛿𝛼𝛼 + �� 𝛼𝛼

Γ(𝛽𝛽+1)�
2
𝛿𝛿(𝛿𝛿 + 1) +

� 𝛼𝛼
Γ(𝛽𝛽+1)�

2
(𝛿𝛿 + 1) − � 𝛼𝛼

Γ(𝛽𝛽+1)�
2
𝑝𝑝2� 𝑎𝑎1𝑥𝑥(𝛿𝛿+1)𝛼𝛼 + ∑ ��� 𝛼𝛼

Γ(𝛽𝛽+1)�
2

(𝑘𝑘 + 𝛿𝛿)(𝑘𝑘 + 𝛿𝛿 − 1) +∞
𝛽𝛽=2

                            � 𝛼𝛼
Γ(𝛽𝛽+1)�

2
(𝑘𝑘 + 𝛿𝛿) − � 𝛼𝛼

Γ(𝛽𝛽+1)�
2
𝑝𝑝2� 𝑎𝑎𝛽𝛽 + 𝑖𝑖2𝛼𝛼𝑎𝑎𝑘𝑘−2

[Γ(𝛽𝛽+1)]2� 𝑥𝑥
(𝛽𝛽+𝛿𝛿)𝛼𝛼 = 0       (35) 

If we define  

                                      ϕ(𝛿𝛿) = � 𝛼𝛼
Γ(𝛽𝛽+1)�

2
𝛿𝛿(𝛿𝛿 − 1) + � 𝛼𝛼

Γ(𝛽𝛽+1)�
2
𝛿𝛿 − � 𝛼𝛼

Γ(𝛽𝛽+1)�
2
𝑝𝑝2,                     (36) 

then we can write Eq. (35) as 

            ϕ(𝛿𝛿)𝑎𝑎𝑜𝑜𝑥𝑥𝛿𝛿𝛼𝛼 + ϕ(𝛿𝛿 + 1)𝑎𝑎1𝑥𝑥(𝛿𝛿+1)𝛼𝛼 + ∑ �ϕ(𝛿𝛿 + 𝑘𝑘)𝑎𝑎𝛽𝛽 + 𝑖𝑖2𝛼𝛼𝑎𝑎𝑘𝑘−2
[Γ(𝛽𝛽+1)]2� 𝑥𝑥

(𝛽𝛽+𝛿𝛿)𝛼𝛼∞
𝛽𝛽=2 = 0.    (37) 

For 𝑎𝑎𝑜𝑜 ≠ 0, we have 

                                       ϕ(𝛿𝛿) = � 𝛼𝛼
Γ(𝛽𝛽+1)�

2
(𝛿𝛿2 − 𝑝𝑝2) = 0,  � 𝛼𝛼

Γ(𝛽𝛽+1)�
2
≠ 0,                                   (38) 

which implies that               

                             𝛿𝛿1 = 𝑝𝑝, 𝛿𝛿2 = −𝑝𝑝.                                                                    (39) 

case(I): For 𝑝𝑝 = 0 

                               ϕ(𝛿𝛿1 + 1)𝑎𝑎1 = � 𝛼𝛼
Γ(𝛽𝛽+1)�

2
𝑎𝑎1 = 0, � 𝛼𝛼

Γ(𝛽𝛽+1)�
2
≠ 0 ⇒ 𝑎𝑎1 = 0;                              (40) 

                              ϕ(𝛿𝛿𝛽𝛽 + 1)𝑎𝑎𝛽𝛽 + 𝑖𝑖2𝛼𝛼𝑎𝑎𝑘𝑘−2
[Γ(𝛽𝛽+1)]2 = 0 ⇒ 𝑎𝑎𝛽𝛽 = −𝑖𝑖2𝛼𝛼

(𝛽𝛽𝛼𝛼)2
𝑎𝑎𝛽𝛽−2, 𝑘𝑘 ≥ 2.                                    (41) 

From the recurrence relation Eq. (41), the odd numbered coefficients vanish, and for the even 
numbered coefficients we have 

𝑎𝑎2 = −𝑖𝑖2𝛼𝛼

(2𝛼𝛼)2
𝑎𝑎0  

𝑎𝑎4 = −𝑖𝑖2𝛼𝛼

(4𝛼𝛼)2
𝑎𝑎2 = −𝑖𝑖2𝛼𝛼

(4𝛼𝛼)2
. −𝑖𝑖

2𝛼𝛼

(2𝛼𝛼)2
𝑎𝑎0 = 𝑖𝑖4𝛼𝛼

(2𝛼𝛼)2(2)(2!)2
𝑎𝑎0   

𝑎𝑎6 = −𝑖𝑖2𝛼𝛼

(6𝛼𝛼)2
𝑎𝑎4 = −𝑖𝑖2𝛼𝛼

(6𝛼𝛼)2
. 𝑖𝑖4𝛼𝛼

(2𝛼𝛼)2(2)(2!)2
𝑎𝑎0 = −𝑖𝑖4𝛼𝛼

(2𝛼𝛼)2(3)(3!)2
𝑎𝑎0  

. 

. 

. 

                                            𝑎𝑎2𝛽𝛽 = (−1)𝑘𝑘𝑖𝑖2𝑘𝑘𝛼𝛼

(2𝛼𝛼)2𝑘𝑘(𝛽𝛽!)2
𝑎𝑎0 = 𝑖𝑖2(𝛼𝛼+1)𝑘𝑘

(2𝛼𝛼)2𝑘𝑘(𝛽𝛽!)2
𝑎𝑎0.                                                          (42) 
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Hence, the first solution of the 𝑀𝑀-truncated fractional modified Bessel equation of zero order is 

                                       𝑓𝑓1(𝑥𝑥) = 𝐼𝐼0𝛼𝛼(𝑥𝑥) = 𝑎𝑎0 ∑
𝑖𝑖2(𝛼𝛼+1)𝑘𝑘

(𝛽𝛽!)2
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
2𝛽𝛽

.∞
𝛽𝛽=0                                                 (43) 

Case (II):  𝑃𝑃 ≠ 0 

For 𝑝𝑝 > 0, we have 

                          ϕ(𝛿𝛿1 + 1)𝑎𝑎1 = � 𝛼𝛼
Γ(𝛽𝛽+1)�

2
(2𝑝𝑝 + 1)𝑎𝑎1 = 0 ⇒ 𝑎𝑎1 = 0.                                          (44) 

Equating the coefficient of 𝑥𝑥(𝛿𝛿+𝛽𝛽)𝛼𝛼, 𝑘𝑘 ≥ 2 in Eq. (37) to zero, we get the following recurrence 
relation 

                                                    𝑎𝑎𝛽𝛽 = −𝑖𝑖2𝛼𝛼

𝛽𝛽(2𝑝𝑝+𝛽𝛽)𝛼𝛼2
𝑎𝑎𝛽𝛽−2, 𝑘𝑘 ≥ 2.                                                         (45) 

From 𝑎𝑎1 = 0 and the recurrence relation above we get 

𝑎𝑎3 = 𝑎𝑎5 = ⋯ = 0, 

and 

𝑎𝑎2 = −𝑖𝑖2𝛼𝛼

(2𝛼𝛼)2(𝑝𝑝+1)
𝑎𝑎0,  

𝑎𝑎4 = −𝑖𝑖2𝛼𝛼

4(2𝑝𝑝+4)𝛼𝛼2
𝑎𝑎2 = −𝑖𝑖2𝛼𝛼

4(2𝑝𝑝+4)𝛼𝛼2
. −𝑖𝑖2𝛼𝛼

(2𝛼𝛼)2(𝑝𝑝+1)
𝑎𝑎0 = 𝑖𝑖4𝛼𝛼

(2𝛼𝛼)2(2)2!(𝑝𝑝+1)(𝑝𝑝+2)
𝑎𝑎0,  

𝑎𝑎6 = −𝑖𝑖2𝛼𝛼

6(2𝑝𝑝+6)𝛼𝛼2
𝑎𝑎2 = −𝑖𝑖2𝛼𝛼

6(2𝑝𝑝+6)𝛼𝛼2
. 𝑖𝑖4𝛼𝛼

(2𝛼𝛼)2(2)(2!)2(𝑝𝑝+1)(𝑝𝑝+2)
𝑎𝑎0 = −𝑖𝑖6𝛼𝛼

(2𝛼𝛼)2(3)3!(𝑝𝑝+1)(𝑝𝑝+2)(𝑝𝑝+3)
𝑎𝑎0,  

. 

. 

. 

                                            𝑎𝑎2𝛽𝛽 = 𝑖𝑖2(𝛼𝛼+1)𝑘𝑘

(2𝛼𝛼)2𝑘𝑘𝛽𝛽!(𝑝𝑝+1)(𝑝𝑝+2)…(𝑝𝑝+𝛽𝛽)
𝑎𝑎0.                                                (46) 

If we take 𝑎𝑎0 = 1
(2𝛼𝛼)𝑝𝑝Γ(𝑝𝑝+1)

, the first solution of the 𝑀𝑀-truncated fractional modified Bessel 

differential equation is 

𝑓𝑓1(𝑥𝑥) = 𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥) = ∑ 𝑖𝑖2(𝛼𝛼+1)𝑘𝑘(𝑥𝑥𝛼𝛼)2(𝑝𝑝+𝑘𝑘)

(2𝛼𝛼)𝑝𝑝+2𝑘𝑘(𝛽𝛽!)Γ(𝑝𝑝+1)(𝑝𝑝+1)(𝑝𝑝+2)…(𝑝𝑝+𝛽𝛽)
∞
𝛽𝛽=0 = ∑ 𝑖𝑖2(𝛼𝛼+1)𝑘𝑘

𝛽𝛽!Γ(𝛽𝛽+𝑝𝑝+1)
�𝑥𝑥

𝛼𝛼

2𝛼𝛼
�
𝑝𝑝+2𝛽𝛽

.∞
𝛽𝛽=0           (47) 

 

3.3 Orthogonality of the FMBFs 

In the classical sense, two function 𝑓𝑓, 𝑔𝑔 are said to be orthogonal on the interval [𝑎𝑎, 𝑏𝑏]; if 
∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = 0. Understanding the orthogonality relation of the FMBFs is mandatory to 
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compute coefficients of series whose terms include them. These series represent solutions of the 
fractional differential equations. In the view of 𝑀𝑀-truncated integral definition Eq. (14), we 
introduce the following interesting results on orthogonality of FMBFs. 

 

Theorem 3.3.1 If 𝜆𝜆 and 𝜇𝜇 are roots of the equation 𝐼𝐼𝑝𝑝𝛼𝛼(𝜉𝜉𝑥𝑥) = 0, then the orthogonality relation of 
the FMBFs 𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥) over the interval [0, 𝜉𝜉] with respect to the weight function 𝜔𝜔(𝑥𝑥) = 𝑥𝑥2𝛼𝛼−1 is 
defined by 

                         ∫ 𝑥𝑥2𝛼𝛼−1𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥)𝑑𝑑𝑥𝑥𝜉𝜉
0 = Γ(𝛽𝛽+1)𝜉𝜉2𝛼𝛼

2𝛼𝛼𝑖𝑖2𝛼𝛼
�𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝜉𝜉)�

2
𝛿𝛿𝜆𝜆𝜆𝜆 , 𝛼𝛼 ∈ (0,1],                     (48) 

where 𝛿𝛿𝜆𝜆𝜆𝜆 is the familiar kronker delta function. 

Proof 

Since 𝐼𝐼𝑝𝑝𝛼𝛼(𝑥𝑥) is a solution of Eq. (28), it follows that 𝑦𝑦 = 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) satisfies the more general 
differential equation 

𝑥𝑥2𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝑦𝑦(𝑥𝑥) + 𝛼𝛼

Γ(𝛽𝛽+1) 𝑥𝑥
𝛼𝛼 𝔇𝔇𝛼𝛼,𝜂𝜂

𝑖𝑖
𝑀𝑀 𝑦𝑦(𝑥𝑥) + 1

[Γ(𝛽𝛽+1)]2
(𝑖𝑖2𝛼𝛼𝜆𝜆2𝛼𝛼𝑥𝑥2𝛼𝛼 − 𝑝𝑝2)𝑦𝑦(𝑥𝑥) = 0.            (49) 

It is convenient to reformulate Eq. (49) in the following way: 

                         𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝜂𝜂

𝑖𝑖
𝑀𝑀 𝑦𝑦(𝑥𝑥)�+ 1

[Γ(𝛽𝛽+1)]2
(𝑖𝑖2𝛼𝛼𝜆𝜆2𝛼𝛼𝑥𝑥2𝛼𝛼 − 𝑝𝑝2)𝑦𝑦(𝑥𝑥) = 0.                  (50) 

Consequently, 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) and 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) satisfy the following 𝑀𝑀-truncated fractional differential 
equations, respectively: 

             𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)�+ 1

[Γ(𝛽𝛽+1)]2
(𝑖𝑖2𝛼𝛼𝜆𝜆2𝛼𝛼𝑥𝑥2𝛼𝛼 − 𝑝𝑝2)𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) = 0,                       (51) 

              𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥)�+ 1

[Γ(𝛽𝛽+1)]2
(𝑖𝑖2𝛼𝛼𝜇𝜇2𝛼𝛼𝑥𝑥2𝛼𝛼 − 𝑝𝑝2)𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) = 0.                        (52) 

Multiplying Eq. (51) by 𝑥𝑥−𝛼𝛼𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) and Eq. (52) by 𝑥𝑥−𝛼𝛼𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) and then subtracting the resulting 
equations, we get 

       1
[𝛤𝛤(𝛽𝛽+1)]2

(𝜆𝜆2𝛼𝛼 − 𝜇𝜇2𝛼𝛼)𝑖𝑖2𝛼𝛼𝑥𝑥𝛼𝛼𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) = 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥)� −

                                             𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)�.                                                             (53)       

In view of the 𝑀𝑀-truncated fractional integral formula Eq. (14), we 𝛼𝛼-integrate this expression 
over the interval [0, 𝜉𝜉], which gives the following: 

1
Γ(𝛽𝛽+1)

(𝜆𝜆2𝛼𝛼 − 𝜇𝜇2𝛼𝛼)𝑖𝑖2𝛼𝛼 ∫ 𝑥𝑥2𝛼𝛼−1𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥)𝑑𝑑𝑥𝑥𝜉𝜉
0 = ∫ 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) 𝔇𝔇𝛼𝛼,𝜂𝜂

𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥)� 𝑑𝑑𝑥𝑥

𝑥𝑥1−𝛼𝛼
𝜉𝜉
0 −

                                           ∫ 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 �𝑥𝑥𝛼𝛼 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)� 𝑑𝑑𝑥𝑥

𝑥𝑥1−𝛼𝛼
𝜉𝜉
0 .                                                  (54) 
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Applying integration by parts on the right-hand side and dividing both sides by the factor 
Γ(𝛽𝛽 + 1)(𝜆𝜆2𝛼𝛼 − 𝜇𝜇2𝛼𝛼)𝑖𝑖2𝛼𝛼, we get 

∫ 𝑥𝑥2𝛼𝛼−1𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥)𝑑𝑑𝑥𝑥𝜉𝜉
0 = Γ(𝛽𝛽+1)

(𝜆𝜆2𝛼𝛼−𝜆𝜆2𝛼𝛼)𝑖𝑖2𝛼𝛼
�𝑥𝑥𝛼𝛼 �𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) − 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)��

0

𝜉𝜉
.        (55) 

Hence, according to the values of 𝜆𝜆 and 𝜇𝜇, we consider the following two cases: 

(I) If 𝜆𝜆 ≠ 𝜇𝜇, the integral term vanishes at the lower limit because 𝑥𝑥 = 0, and it also vanishes at the 
upper limit because 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝜉𝜉) = 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝜉𝜉) = 0. Hence, if 𝜆𝜆 ≠ 𝜇𝜇, Eq. (55) gives  

                                                    ∫ 𝑥𝑥2𝛼𝛼−1𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥)𝑑𝑑𝑥𝑥𝜉𝜉
0 = 0.                                                    (56) 

(II) If 𝜆𝜆 = 𝜇𝜇, then the resulting integral 

                                                   𝐼𝐼 = ∫ 𝑥𝑥2𝛼𝛼−1 �𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)�
2
𝑑𝑑𝑥𝑥𝜉𝜉

0 ,                                                          (57) 

Creates an interest to look at. To deduce its value, we take the limit of Eq. (55) as 𝜇𝜇 → 𝜆𝜆. As the 
right- hand side in Eq. (55) approaches the indeterminate form 0

0
 in the limit, we apply L’Hopital’s 

rule as follows: 

𝐼𝐼 = lim
𝜆𝜆→𝜆𝜆

Γ(𝛽𝛽+1)
(𝜆𝜆2𝛼𝛼−𝜆𝜆2𝛼𝛼)𝑖𝑖2𝛼𝛼

�𝑥𝑥𝛼𝛼 �𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽
𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) − 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) 𝔇𝔇𝛼𝛼,𝛽𝛽

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)��

0

𝜉𝜉
=

lim
𝜆𝜆→𝜆𝜆

Γ(𝛽𝛽+1)
(−2𝛼𝛼𝜆𝜆2𝛼𝛼)𝑖𝑖2𝛼𝛼

�𝑥𝑥𝛼𝛼 �𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) 𝔇𝔇𝜆𝜆
𝛼𝛼,𝛽𝛽  

𝑖𝑖
𝑀𝑀 𝔇𝔇𝑥𝑥

𝛼𝛼,𝛽𝛽  
𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) − 𝔇𝔇𝜆𝜆

𝛼𝛼,𝛽𝛽  
𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜇𝜇𝑥𝑥) 𝔇𝔇𝑥𝑥

𝛼𝛼,𝛽𝛽  
𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)��

0

𝜉𝜉
=

                 Γ(𝛽𝛽+1)
(2𝛼𝛼𝜆𝜆2𝛼𝛼)𝑖𝑖2𝛼𝛼

�𝑥𝑥𝛼𝛼 � 𝔇𝔇𝜆𝜆
𝛼𝛼,𝛽𝛽  

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) 𝔇𝔇𝑥𝑥

𝛼𝛼,𝛽𝛽  
𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) − 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) 𝔇𝔇𝜆𝜆

𝛼𝛼,𝛽𝛽  
𝑖𝑖
𝑀𝑀 𝔇𝔇𝑥𝑥

𝛼𝛼,𝛽𝛽  
𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)��

0

𝜉𝜉
        (58) 

Using the following recurrence relations of MFBFs, 

                                       𝔇𝔇𝑥𝑥
𝛼𝛼,𝛽𝛽  

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) = 𝑝𝑝

𝜆𝜆𝛼𝛼
𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) + 𝑖𝑖2(𝛼𝛼+1)𝑥𝑥𝛼𝛼𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝜆𝜆𝑥𝑥),                                 (59) 

                                            𝔇𝔇𝜆𝜆
𝛼𝛼,𝛽𝛽  

𝑖𝑖
𝑀𝑀 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) = 𝑝𝑝

𝑥𝑥𝛼𝛼
𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥) + 𝑖𝑖2(𝛼𝛼+1)𝜆𝜆𝛼𝛼𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝜆𝜆𝑥𝑥),                                  (60) 

it follows that  

𝐼𝐼 =
Γ(𝛽𝛽 + 1)

2𝛼𝛼𝑖𝑖2𝛼𝛼
�
𝑝𝑝2

𝜆𝜆2𝛼𝛼
�𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)�

2
+ 𝑥𝑥2𝛼𝛼 �𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝜆𝜆𝑥𝑥)�

2
+
𝑖𝑖2(𝛼𝛼+1)𝑥𝑥𝛼𝛼𝑝𝑝

𝜆𝜆𝛼𝛼
𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝜆𝜆𝑥𝑥)�

0

𝜉𝜉

 

              = Γ(𝛽𝛽+1)𝜉𝜉2𝛼𝛼

2𝛼𝛼𝑖𝑖2𝛼𝛼
�𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝜆𝜆𝜉𝜉)�

2
. ∎                                                                                                     (61) 

As a special case of theorem 3.3.1, the following result can be easy verified. 

 

Corollary 3.3.1. The FMBFs are orthogonal over the interval [0,1] with respect to the weight 

function 𝜔𝜔(𝑥𝑥) = 𝑥𝑥2𝛼𝛼−1 and ∫ 𝑥𝑥2𝛼𝛼−1𝐼𝐼𝑛𝑛𝛼𝛼(𝜆𝜆𝑥𝑥)𝐼𝐼𝑛𝑛𝛼𝛼(𝜇𝜇𝑥𝑥)𝑑𝑑𝑥𝑥1
0 = Γ(𝛽𝛽+1)

2𝛼𝛼𝑖𝑖2𝛼𝛼
�𝐼𝐼𝑝𝑝+1𝛼𝛼 (𝜆𝜆)�

2
𝛿𝛿𝜆𝜆𝜆𝜆 .                         (62) 
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Using the orthogonality property Eq. (48), one can easily represent a given function 𝑓𝑓(𝑥𝑥) over the 
interval [0, 𝜉𝜉] by a series of a Bessel functions such as 

                                                   𝑓𝑓(𝑥𝑥) = ∑ 𝑎𝑎𝑖𝑖𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)∞
𝑖𝑖=0 , 0 < 𝑥𝑥 < 𝜉𝜉,                                              (63) 

where 𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝜉𝜉) = 0, 𝑖𝑖 = 0, 1, 2, 3, …, and 𝑎𝑎𝑖𝑖 are determined by 

                         𝑎𝑎𝑖𝑖 = 2𝛼𝛼𝑖𝑖2𝛼𝛼

Γ(𝛽𝛽+1)𝜉𝜉2𝛼𝛼�𝐼𝐼𝑝𝑝+1
𝛼𝛼 (𝜆𝜆𝜉𝜉)�

2 ∫ 𝑥𝑥2𝛼𝛼−1𝑓𝑓(𝑥𝑥)𝐼𝐼𝑝𝑝𝛼𝛼(𝜆𝜆𝑥𝑥)𝑑𝑑𝑥𝑥𝜉𝜉
0 , 𝑖𝑖 = 0, 1, 2, 3, …                     (64) 

 

4. Conclusion  

Some crucial features of the FMBFs in view of the 𝑀𝑀-truncated derivative are obtained in this 
work. The 𝑀𝑀-truncated fractional modified Bessel differential equation is solved via power series 
for its first solution, and the orthogonality relation of such functions in the interval [0, 𝜉𝜉] is 
introduced and analytically proved. The findings of this study are taken as evidence that the results 
in the sense of the local 𝑀𝑀-truncated fractional derivative and the results in terms of the classical 
integer order calculus are consistent. Our results can be extended into applications in future 
research studies. 
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