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Abstract

The Hamiltonian operator of the translation invariant shell model is formulated. Accordingly, the classifications of
the ground and the excited states of the nuclei with mass number A = 3 and 7 are given and discussed. Furthermore,
the basis functions of this model are used to construct the basis of the nuclear supermultiplet model. Moreover, the
methods of calculating the two-particle orbital and spin-isospin fractional parentage coefficients are given. The
resulting tables of these coefficients are given.
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1. Introduction

The nuclear shell model [1], despite a somewhat checkered career, has emerged as a useful
approximation to the many-particle description of the atomic nucleus. Basically, it is perhaps the
closest of all nuclear models to being unified, i.e., to describe all properties of all states of all
nuclei. Unfortunately, even with the restriction to a shell structure, the number of possible states
is often very large and there are few nuclei whose properties can be described without a prohibitive
amount of computational labor. Thus, several sub-models of the shell model have been constructed
to reduce the number of states and hence also the computational difficulty. These sub-models
describe many of the physical structure of states in terms of well-defined quantum numbers.

Simultaneous with the development of the shell model has been the construction of various
collective models [2]. In their simplest forms, however, these two types of models seem to have
little in common: the shell model assumes of independent particle motion, whereas the collective
models rely on the coherent motion of many nucleons. Neither model in its simplest form is very
successful; qualitative features of nuclear energy levels can be described, but quantitative
precisions is lacking. In the extreme form of the shell model, the single-particle sub-model (in
which the properties of states are given by the shell model orbit of the last odd nucleon), estimates
can be made for electromagnetic transition probabilities and magnetic moments (Schmidt values)
which, while often of the correct order of magnitude, yet lack precision. For the collective models,
on the other hand, (e.g., one based on the rotation of a nucleus deformed into a non-spherical
shape) the observed approximate J(J + 1) dependence of bands of energy states of some nuclei
can be explained and electromagnetic transitions predicted to be proportional to the square of a
Clebsch-Gordan coefficient [3-4]. However, the moment of inertia and deformation characteristics
must be treated as parameters [5-10].

With the development of both types of models, it soon become apparent that they may not in
fact be different. The shell model goes beyond its single-particle features with the introduction of
configuration mixing, while the rotational model gains some individual-particle features in the
construction of the rotating intrinsic state. The fundamental principle on which the shell model is
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based is that the interactions of any nucleon with all the other nucleons may be approximated by
an average single-particle potential. Initially we assume this field to be spherically symmetric. In
practice, this field is rarely derived from any self-consistent (e.g., Hartree-Fock [11]) arguments
but rather from considerations of the basic physics of the problem. Thus, since the nucleons are
bound together in a finite region of space, the average field is expected to be attractive throughout
the region occupied by the nucleus and to vanish everywhere else. The lowest bound states of an
A-particle system are then formed by filling the lowest bound orbits in the central well obeying

the Pauli principle. Since each nucleon can have spin and isospin projections of i%, each single-
particle orbital state will be occupied by at most four particles: with (mg,m;) =

11 1 1 11 1 1
(32).G=3) (=53).and (=5.=3)

If we are concerned only with the lowest bound states, the single-particle orbits of the actual
finite potential are like those of an appropriate infinite potential, e.g., the harmonic oscillator well.
The advantage of using harmonic oscillator functions is that they are more amenable to
mathematical manipulation. We can thus concentrate on the physical many-body aspect of the
problem without additional complication in the mathematics.

There exist two basic problems in the shell model: first, the introduction of the appropriate
residual interaction, second, finding the configurations of extra core nucleons which form the
eigenfunctions. The residual interaction is supposed to take account of the effects of the nucleon-
nucleon interaction which have not been included in the average central field. The effective
residual interaction differs from the nuclear force between free nucleons for several reasons: the
presence of other nucleons inhibits the final states which may result from any interaction-quite
generally. This effect of the Pauli principle causes the effective residual interaction to have a longer
range than the free force. The nucleons polarize other nucleons, so it may be considered that the
interaction is taking place between quasi particles which are not real nucleons. Thus, one has some
freedom in choosing the effective residual interaction which will lead to eigenfunctions possessing
the observed features of the lowest energy levels, e.g., energies, moments, transition probabilities,
etc.

The simplification technique often used in all many-body problems is to apply the invariance
properties of the Hamiltonian with respect to a group G. Since the nucleus is to be considered
isolated in space, it is clear that the Hamiltonian, H, will not be changed by any rotation of the
coordinate system, i.e., it will be invariant with respect to the group of rotations in three
dimensions, R5. According to the representation theory of groups, we can say immediately that the
eigenfunctions of H can belong to a definite irreducible representation of R5. Thus, we can label
the eigenvalues by an integral or half -integral number J describing the irreducible representations.
For each eigenvalue, there corresponds a degeneracy of eigenfunctions corresponding at least to
the dimension (2] + 1) of the representation. Each of these functions can be labeled with the
quantum number J of the eigenvalue.

In looking for groups which are invariant with respect to R5, the one that immediately springs
to mind is the space-inversion, or parity, group. Since nucleons are fermions, they must obey the
Pauli principle and hence it is possible to represent the many body eigenfunctions of the nuclear
Hamiltonian in terms of the complete set of completely anti-symmetric functions. In group
language, the eigenfunctions belong to the totally anti-symmetric representation of the permutation
group S,, where A is the number of particles.

An approximate-symmetry group G is one for which the Hamiltonian H is approximately
invariant with respect to G. This means that:
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1- the matrix elements of H are negligibly small between states transforming according to different
representation of G, and

2- the matrix elements of H are the same between states transforming according to the same
representation of G.

A broken symmetry group is one for which only the condition (1) above is true. In this case the
Hamiltonian is not invariant with respect to the group G, but its eigenfunctions still transform
according to a definite representation of G. Functions that belong to the same representation are,
however, not degenerate. looking for additional groups it must still be remembered that these must
always allow a simultaneous classification according to Rs, i.e., states must still have a definite
angular momentum.

Nuclear forces are considered largely charge independent. Thus, nuclear states will transform
according to the representations of the group SU. of two-dimensional special unitary

transformations (det =1) between the two basic isospin components m, = i% (i.e., the proton and

the neutron). Eigenfunctions can thus be labeled with the representation label T of SU, and
functions belonging to the same representation will be degenerate in energy. It is as well to point
out that functions of the same isospin T but different projections M, belong to nuclei of the same
mass number but different charge. Thus, at this stage all nuclei of the same mass can be treated at
the same time if we consider all possible isospin components. For nuclear forces, the isospin
classification is treated as an approximate symmetry. In actual nuclei, however, there exists the
Coulomb repulsion between protons, which of course is not charge independent. In light nuclei it
is usual to treat Coulomb force as a breaking-symmetry term. Thus, states can still be classified
according to isospin, but now states of the same isospin in different nuclei of the same mass number
will not be degenerate in energy. Isospin then is a broken symmetry.

Another example of an approximate symmetry arises in the Wigner supermultiplet theory [12].
In this case, it is assumed that nuclear forces are not only charge (isospin) independent but also
largely spin independent, i.e., the dominant part of the nuclear force operates only in orbital space.
Nuclear eigenfunctions can thus be considered to transform according to the representations of the
group U4 of four-dimensional unitary transformations in charge and spin space. Functions which
have a definite symmetry according to Us also have a definite symmetry according to the group of
permutations Sa between the particle numbers of charge-spin states. Remembering that the
complete functions representing nuclear states must be totally anti-symmetric with respect to
permutations of Sa between particle numbers in the full charge-spin-orbit space, we shall find it
perhaps not hard to accept the fact that symmetry with respect to Sa in charge-spin space
automatically defines the symmetry in the orbital space. The symmetry of the orbital functions is
said to be adjoint to the symmetry of the charge-spin functions. All the orbital functions that
transform between themselves according to a definite representation of Sa go together with the
charge-spin functions of adjoint symmetry to form one totally anti-symmetric nuclear state.

Our exposition will be based on the translation-invariant shell model (TISM), or sometimes
called the unitary scheme model (USM) [12-43] which is indispensable in considering the
clustering effects in the p-shell nuclei. The use of oscillator functions allows us to treat freely the
degrees of freedom of the cluster internal motion, but we pay for this freedom by having to be
content with an incorrect asymptotic behavior of the functions used [44-57]. This would require
some modification of the wave-function tails at low and medium energies (of order 100- 500
MeV), but it may be acceptable at the high energies (Ep > 1GeV) and at sufficiently high energies
of knocked out clusters, where the volume process dominates.
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In the present paper, we formulated the Hamiltonian operator of the TISM and accordingly, its
energy eigenvalues and eigenfunctions are given. Hence, the classifications of the ground and the
excited dtates of a specific nucleus are given and discussed. Furthermore, the basis functions of
the TISM are used to construct the basis of the nuclear supermultiplet model. Moreover, the
methods of calculating the two-particle orbital and spin-isospin fractional parentage coefficients
are given. Also, tables of the tow-particle orbital and spin-isospin fractional parentage coefficients
for nuclei with mass number A = 3 and 7 are given.

2. Classification of States in the TISM

The TISM Hamiltonian is free of spurious states. The spurious states that must be eliminated
correspond to the non-zero motion of the center of mass of the whole nucleus. The TISM
Hamiltonian describes the mutual motion of A nucleons in a nucleus and is of the form [17-28]

HO =34, {% (p; — Zzﬁzlpk)z + %(Ti - ZZﬁ=1 pk)z}, (1)

where r; and p; are the coordinate and momentum operators of a quasi-particle i, m is the nucleon
mass, and o is the oscillator frequency. Let us introduce the Jacobi’s transformations [12]

xai = ;Cl=1 Bik E(Xk a = 1’2!3 } (2)
Pai = Y=t Bix Tax Lk=12,...,4)
where the transformation matrix B satisfies the conditions
1 i .
BiA:\/_Z B Z‘I‘clleki=\/Z 5}1 B l=1,2,..,A. (3)
Appling transformations (2) to equation (1) the result is
_ 1 mw?
H® =%5 f‘:f(g moi + —— fﬁi)- (4)

Having the considerations of the second quantization space, we introduce the annihilation and
creation oscillator quanta operators as

ab .= [2=20¢ L
@k 2n Sak” e Ttk
mw i
Qg k = E fa k + V2mho Mgk (5)

These operators satisfy the commutation relations

[aai » ag k] = [a?;i s aEk] = 0, [aai s aEk] = 6a,ﬁ 8i x - (6)
The Hamiltonian operator (4) now takes the form

HO = [ S_ YA tal ay + % (A - 1)] hw. 7
It can be noticed that it is not so difficult to verify that the Hamiltonian operator (7) is invariant

with respect to the transformations of the 3(4 — 1) dimensional unitary group Usa-1).
The eigenfunctions of the Hamiltonian (7) are given by [12-28]:
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mw
— + + + % V'3 Al g2
Pay iy may iy = C Aoy Aoy iy - -+ Agyiy © 2F e=1 i1 $ai (8)
and the corresponding eigenvalues are represented by:

EY = [N +2 (A-l)] ho. (9)

Since the functions (8) are symmetric with respect to permutations of any pair of its indices, they
may be used as bases for irreducible representation (IR) of a symmetric tensor of the rank N. The
Young Scheme {N} is useful for obtaining such IR. It is clear that the dimension of the

representation {N} of the group Us(a-1) is equal to the number of functions ¢4, i, ..« iy The bases
(8) are usually denoted by [12, 17, 18]
|AT My; s Mg Mr) = [AN {p} ) a [f1 (A1) L My;[f] ST Ms My), (10)

where I" and I's are the sets of all orbital and spin-isospin quantum numbers characterizing the
states, respectively. The total number of quanta N is the irreducible representation (IR) of the group
Usa-1). The irreducible representations of groups Uz and Ua-1 are set by the same symbols {p} =
{p1, P2, p3}, Where p; = p, = p5 are any integers satisfying the requirements p; + p, + p3 = N.
The symbol (Ap) of the SUs symmetry is determined by the relations A = p; — p, , u=p, — p3,
which enables us to find the values of the total orbital angular momentum L, by using Elliott’s rule
[12]. According to this rule:

L =KK+1,.. K+B; K=0CC-2,..,1or0for K0,
L =BB-2,.,1or0ifK = 0where C = min(4,u) and B = max(4, ).

The allowed Young Schemes [f] for the representation {p;, p,, ps} of group Ua-1 may be found
using the formalism of plethysm, which has been described in detail in [12]. In equatopn (10), M,
stands for the IR of the group SO2. The representation (v) is an IR of the group Oa-1 and [f] is an
IR of the symmetric group. S, M are the spin, its projection and T, M are the isospin, its projection
which are IR of the direct product of the groups SU, x SU,. Among all the possible Young
schemes [f], only those comprising not more than four columns should be selected. If, after that,
the values S, T are to be taken for the conjugated Young diagrams [f] , we shall obtain the total
list of the TISM states with given quantum number N.

3. The Supermultiplet Model of the Nucleus

In this section, we are in prospect to study the special features of the wave function. This function
can be built, disregarding the internal structure of the orbital wave function of the nucleus. The
supermultiplet model [12] will be based on the properties of symmetric group and irreducible
tensor spaces of the unitary groups. The method of constructing the supermultiplet wave function
of nucleus is based on that simple position, which follows from the theory of symmetric group,
according to

a([A1 X [f] = [fD = s([f'). [f D),
a([11x [f'1 > [fD = 8([f ') [f])- (11)

AVAILABLE ONLINE AT www.alexjournals.org 5 -


https://alexjournals.org/AlexJournal/Mathematics/

ALEXANDRIA JOURNAL OF MATHEMATICS Volume 12 Number 2 May 2023 (ISSN 2090-4320)

Anti-symmetric representation [17] is contained only in the direct product of the two conjugate

representations [f] X [f]. Therefore, the anti-symmetric wave function can be separated into
orbital and spin-isospin functions by the simple binding and have the following form:

~ 1A
VLA = T iy 0 () o) UL (12)
In equation (12), 15, designates orbital and Vi spin-isospin functions characterized by the
[F11/1[A]

collections of orbital I, and spin-isospin I; quantum numbers, the coefficients C LI [14]

are

Clebsch-Gordan Coefficients (CGCs). of the symmetric group S,, and

I, = N{p}(W[fILM, and [ = [f]STMsMr. (13)
The totally anti-symmetric Young Scheme [14] = [11...1] (A-times) is the irreducible
representation (IR) of the group . Since [14] = [f] x [f] therefore, the (IR) of the group 5 can
be reduced to direct product of two unitary groups Us(a-1) and U 4 corresponding to the orbital and
spin-isospin functions i.e.,

Uz(a-1
Io X . (14)
U,a
The orbital and the spin-isospin reduction-group chain are given by [12]
SU,
SU(3) 2505 o S0, SU4DS;2
Usa—1) @ X and Uy DUy D X . (15)
Up-12 0p-1 2 54 Ug 2
Sa
Finally, the reduction chain of the group 3 possesses the form:
Up-1 > 041 2 Sa
Usa-1y 2 X
SU; D S0; ) S0,
3 D X
SU, > SU, x  SU,
U,a ) Ussa ) X

UA D SA (16)

The first coefficient in which designates spin and the second isospin of function. Let sf ) and Sf)
are symmetric groups, which transpose respectively spin and isospin coordinates. Then, the spin
function is characterized by the diagram

A A

[fs] = [E+S';_S]’ (17)
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and the isospin by the diagram
frl= G+T.2-T], (18)
The corresponding basis is symbolically denoted by

V=Yg, (Ms) Pippyp, (Mr) (19)

which is designated through ps and ur. [fs] designates both the irreducible representation of a
group Sa and irreducible representation of a group SU-, which assigns the nucleons. According to

the chain

S, 28,..2...05,>5,. (20)
we have

. A-1 43 A-1 IS

] = 5= +5—— 5]

[f =[5 +5,5 = Slete, (21)

Obviously, the spin-isospin function of the nucleus can be built via the binding of ideas [fs] and
[fr] by the CGCs of the symmetric group Sa, we have

V(03D = Dir Wi M) Vi (M) L 1L @)

With the aid of formulas (12) and (22) we actually achieved the construction of the supermultiplet
wave function of the nucleus, and for this purpose it is sufficiently enough to use only two types
of CGCs of the group Sa satisfying the relatio

ns

[f1x [f1 - [17], (23)
[fs] % [fr] = @lf] (24)

Subsequently, the supermultiplet wave function of the nucleus is designated by

and

¥ = Y(LAISIDEF D[L4]1Ms M) (25)

Let us further consider that the states of nuclei must be described by quantum number J of the total
angular momentum J = L + S. Hence, it follows that the collection I, must include the quantum
number of the total orbital angular momentum L and of its projection M, therefore, if we replaced
I, in (25) with new collection I'LM; and to connect the momenta L and S in J, then the
supermultiplet wave function of the nucleus with the most complete characteristic takes the
following form:

¥ (L L ([F1ASIFD @ [FDIL1 M My) (26)

In equation (24), explicitly in additionally extracted the quantum number &, determining the parity
of the orbital wave function of the nucleus. We find [f ] together with the representation of a group
Sa, also does designate irreducible representation of a group SUa, and this IR is given in the chain:
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SU, > SU, x SU,,

which in turn does lead to quantum numbers S, Mg and T, M. This sense acquires and bringing
[fs] X [fr] » @ [f] which with the use of the transformation properties of group SU4 should be
written in the form:

] =2Zisim@ (F] 2 [fs] [f2]) [fs] [, (27)

here @ is the number of repetitions of identical [fs], [f7] in [f]; it can be in abbreviated form
designated thus:

[f] =Zsra([f] = ST) IS, T]. (28)

All possible values S and T of the diagram [f] are obtained in the brackets [S, T]. We instead of
the IR [f,f>fsf.] of the group Ua use the simpler IR [f; — fi . f> — fa. f5 — fu, 0] of the unitary
unimodular subgroup SUs. It also follows that from this circumstance of the supermultiplet
structures (i.e. the possible collections of S and T) of the orbital diagrams of the form of [4...4f 7]
and [f °] are identical, therefore, for example, in this sense instead of the diagram [4...4321] it is
sufficient to examine the diagram of [321], etc. Moreover, the diagrams [f1 f2 ...] and [... 4-f2, 4-
f1] also have identical supermultiplet structure. The less symmetrical diagrams of Young contain
more high values of spin and isospin of the nucleus. For example, in the case of the nuclei with
A =7, we have IR of the symmetric group S7 which we deal with in our calculations, denoted by

[f] = [43], [421], [331] and [322] which have |T | = [2%1], [3211], [322], and [331] respectively.
By using equations (18) and (19) we can obtain the values of S and T, as follows:

First, we write all inner products of A = 7 characterized by [f1 f2] such that f; + f2= A as follows:
[61] x [52] = [61] + [52] + [511] + [43] + [421]

[61] x [43] = [52] + [43] + [421] + [331]

[52] x [52] = [7] + [61] + 2[52] + [511] + [43] + 2[421] + [41%] + [331] + [322]

[52] x [43] = [61] + [52] + [511] + [43] + 2[421] + [331] + [322] + [3211]

[43] x [43] = [7] + [61] + [52] + [511] + [43] + [421] + [41°%] + [331] + [322] + [3211] + [231].

Second, we search in what inner product there exist [f], we find [2°1] in the inner product [43]
x [43]; [3211] in [52] x [43] and [43] x [43]; [41%] in [52] x [52] and [43] x [43]; [322] in [52] x
[52], [52] x [43] and [43] x [43]; and finally [331] in [61] x [43], [52] X [52] and [43] x [43].

Third, we compare the diagrams of [fs] and [f;] and the corresponding for each [f] we find for
[2°1] that (S, T) = (5 ., 5); for [3211] we find ($,T) = G . 5), G . 2) and (5 . 5); for [41%] we find
_,3 3 1 1, . /3 3,3 1, , 3 1 1,
(S, T) = (E R E) and (E ,55), for [3223 we find (S, T) = (E R 5), (5 , E)' (5 , E) and (E , E), flnaIIy for
[331] we find (5,7) = C . 5), G . 2. ¢, 2) and (5 , ). By this way for any [f] we can find (S, T).
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4. The Fractional Parentage Decomposition in the TISM

4.1 The Orbital Fractional Parentage Decomposition in the TISM

Doma and Machabeli [20] modified the recurrence method, introduced by Vanagas [12], for
calculating the two-particle orbital fractional parentage coefficients (FPCs). of nuclei with any
mass number A and they applied the new method for selected bases of the TISM corresponding to
nuclei with A = 6 and N = 2, and 4. Furthermore, Doma [36, 41] constructed the bases of the
TISM for nuclei with A = 4, N =0, 2, 4, 6, 8 and nuclei with A = 6 and N = 2, 4, and 6. Also,
Doma and Gharieb [33, 35] constructed the bases of the TISM for the nucleus °He corresponding
to number of quanta of excitation N = 1 and 3. they have calculated the two-particle orbital FPCs.
for these nuclei. Moreover, a general and direct method for calculating the two-particle spin-
isospin FPCs. has been introduced by Doma et al. [18-21] and then applied to the calculation of
some coefficients of the two-particle spin-isospin FPCs. for nuclei with A = 4 and 6.

The resulting two-particle FPCs. are very useful in calculating the matrix elements of any kind
of the two-particle operators, such as the central, the tensor, the spin orbit and the quadratic spin
orbit operators. In the following, we are interested in the case where the quantum number I" of the
supermultiplet function ¥ assumes the following classification:

I'=I[f] I, I, (29)

where [f] is an irreducible representation (IR) of the symmetric group of A objects, Sa, I'o and I's
are the sets of all the other orbital and spin-isospin quantum numbers, respectively.

Following the method introduced by Vanagas [12], the expansion coefficient of the

decomposition of the nuclear wave function with A particles into its two subfunctions

corresponding to A" and A" particles, Brs r,  r, can be factorized in terms of product of orbital

and spin-isospin parts as follows:

Be v v Ve e aoA%g]]Fg Y e
' 1F"] @ [F [ f
XCm ry Ca 1M a 17117 (30)
here a, and &, are repetition indices in the orbital and the spin-isospin states, respectively and the
last factor under the sum is the isoscaler factor of the CGC of the symmetric group Sa. The second
factor in the right-hand side of Eqgn. (30) is a CGC of the unitary group in four dimensions Ua. The
first factor in Eqn. (30) is the orbital FPC. This factor can be factorized as follows:

A1 — 85, (3 7] [r"D
Lo, [l agly — P PP 28 A () (") (") B . () [f] ao
% C{e} {P } B {p} (31)

v UM YL ML v LM

where {p'}, {p"} and {p} are IR of the unitary groups in 3(A'-1), 3(A"-1) and 3(A-1) dimensions,
respectively. They are also IR of the group SUs, simultaneously. L', L' and L are orbital-angular
momentum quantum numbers of the sets A’, A" and A particles, respectively. M';, M"'; and M,, are
the z-projections of L', L" and L, p shows how many times {p} appears in the multiplication {p'}
x {p"}. Similarly, the repetition index y shows how many times L appears in {p}, and the same for
y' and y". Concerning the repetitions index ap of Egn. (30) it shows how many times the IR [f]
appears in (v), where (v) is an IR of the orthogonal group Oa-1. The last factor in (31) represents
the CGC of the group SU3. Substituting from Eqn. (31) into Eqgn. (30) we get:
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L0 11 1D
1Ty I's — Z p'+p", p ZB {p’} (U’) {p"} (‘U”) g, @ I[fl a

By vy v [ vy vt
[f] [f] . (32)

wclh e s C[f’] "1 @ 7] _
Y "M y"L"M[ yLM, 1§ T% Ts a [F'1 " @ [F] [7"]

Eqn. (32) gives the total many-particle FPC of the supermultiplet of the nuclear wave function
For A” = 2and A’ = A — 2, the two-particle total FPC has the form:

) (0} [7] o) REICI
m Ip T's, [fi2l e ¢my smgtme; [f] To s = A{ﬁ} W) {e} ) ; @) [f] L M, £ mpy L My,

ARl 1A i 33)

S MsT My s mgtm; S Mg T Mr dig)

where [fi2] = [2] or [11], To =N {p} vy L M, Ts = [f| S Ms T Mr, dp7 and diy) are the

dimensions of the IR [f] and [f], respectively. The first coefficients in the right-hand side of Eqn.
(33) which are usually called the two-particle orbital FPC are calculated as follows:

A({P} r1  [fi2l) Z Z ({p} Fi))
P} @ {& W) ; @ If } B @, @ 171 [7]

([f] 7l ) o)
U Do (@ 34
7 ol P 7)) (34)

where

Dg F(a’) = D:n’ m(a’) ((ﬁ (52 81) p12) 1% | ((ﬁ 82) ﬁ’ 81) p>

(B e9) P ea) PI(P (55 £) p12) P): (35)
Here,
flzp_ﬁ:é'z:ﬁl_ﬁa ﬁ[_ia P p plz_{plapZ}ngxgl,
j: E (pl _pZ) am, = E (82 81) m= E ( —81) and
! | aill aIZ a'/ _ A a, _ A-2
Tl=ay @l TP 2Aa-D) TR [2(A-D)

In Eqn. (35), Dj;l, .(a") are the matrix elements of the IR of the group SU> and are given by

1
o = Z[(Hm’)! (G-m)! (G + m)! (-m)!]2
fm i -m’-)! (j + m-i)! (i-m +m”)!
X a,1j+m—i alzl aéi—m+m' a:}j—m'—i (36)
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The last two factors in the right-hand side of Eqgn. (35) are the recoupling matrix elements of the

IR of the SU3 group and are given by AliSauskas [52]. The factors U[%] [[;] ]) in (34) are the
i 12

recoupling matrix elements of the IR of the group Sa and are given by Vanagas [12]. The
Al [

'} ® @ o [Fl
of linear homogeneous equations:

coefficients of equ. (34) are orthonormal solutions of the following system

S0} @ G| P [t @ 1) A, LU
- B} o} ), ®) £ 1]
[f] {0} 1A
= Y-D__ 37
f[mimv(“g 0} (03 @), W A7) 37

where the matrix elements <{p} {} {7}| Paia |{p} o) {7}> can be obtained from Dg (@)

of Egn. (35), by replacing the determinant a' by a, where
a; a
|a2 -41

1
| , a4y =— and a, =

The second factor in the right-hand side of Eqgn. (32) is the CGC of the SUs group and can be
calculated from the chain of groups SUz DRs where Rs is the rotational group in 3-dimensions, as
follows:

py e} {p} {0} (e} {p}
ZﬁLt’meLML (LML’{)mglLM)CL { L (38)

where (LM, , ¢ m,|LM,) isa CGC of the group Rs and C{p} {e} 1P} is an isoscalar factor of
L ¢ L
the SU; group. The isoscalar factor of Eqn. (38) can be rewritten in the form

¢t} 8 0} _ (7 BT, g ) 22100 L), (39)
L ¢ L

where do =&, — &, , o= &,A=p, =P, , A=P,— Py -A=p1—py and p = p, —
ps. All the isoscalar factors needed in our calculations can be found in refs. [19,20]

4.2 The Spin-lsospin Fractional Parentage Coefficients in the TISM
The two-particle spin-isospin FPCs are equivalent to the CGCs of the U, group and from references
[19,20] they can be factorized as follows:
<A FslA -2 fs, Zras > = (.S-' Ms, Smg | SMs)(T MT, tmtl TMT)
X< [fs] (Ifs] UfsDs Ufrl (Lf7] [feD | @ [f] (If] [faD) > (40)

where [f£] is the partition conjugate to [f] and
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fil = G+ 5 -kl (e =5,T,...), 41)

signify irreps of groups corresponding to the spin S and the isospin T of the nucleus. The matrix
elements appearing in the R. H. S. of Eq. (41) are identically equal to the isoscalar factors of the
CGC of the symmetric group S, corresponding to a reduction with respect to the group chain S, >
Sa—2 X S3

5. Results and Discussuin

We applied the methods of classifying the states in the TISM for the nuclei with mass number A =
3 and 7. In Table-1, we present the classifications of the different IRs which classify the different
basis functions of the TISM for the three-particle system.

Table-1 Classifications of states in the TISM for nuclei with A = 3 and number of quanta of
excitations 0 < N < 10

No |N|{p} [(v) [If] al |S
1 |0 {0y [0 [[3] [0 [1r2
2 2[4 [ [[3] [0 |12
3 2042y [@ [[21] [0 |12
4 2042y [@ [[21] |2 |32
5 |2 |{1y[©* |11 |12
6 444 [0 [[3] |0 |12
7 1444 @ [[217 [0 |12
8 444 [@ [[21] [2 |32
9 444 [ [[21] |0 |12
10 [4[{4 [(@ [[21] [2 |32
11 |4 [ {31} | (0)* [[111] |1 |12
12 (41 |[211 [1 |12
13 |4 [ {31} (2 |[21] |1 [3r2
14 |4 {31} (2 [[21] [2 |32
15 (4 [{222[(0) [[3] [0 [1r2
16 |6 {6} |(0) |[3] |0 |1/2
17 |6 {6} |2 |[21] [0 |12
18 |6 {6} |(2 |[21] |2 |32
19 |6 {6} |(4 [[21] [0 |12
20 |6 [46F [@ [[21] [2 |32
21 |6 ({6} [(6) [[111]]0 |12
22 |6 46} [(6) [[3] |0 |12
23 |6 [{513 [ (O* 1111 |12
24 |6 [ {51} (@ [[21] [1 |32
25 |6 {51} (@ [[21] [2 |32
26 |6 {51} (@ [[21] |1 |32
27 |6 {51} [ (@ [[21] [1 |12
28 |6 {51} | (@ [[21] |1 |32
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29 [6 [{51} [ (@) [[21] [2 [3r
30 |6 [{42}|(0) |[3] |0 |12
31 |6 {42} | (2 |[21] |0 |1r2
32 (6 {422 (2 |[21] |wm2]|3R2
33 (6 {42} | (2) |[21] |ww2]|32
34 |6 {33} | (O)* |[[111]|1 |12
35 (8 ({8} |(0) |[3] |0 |12
36 |8 {8} |(2 |[21] |0 |12
37 18 ({8} | (2 |[21] |2 |1~
38 |8 [{8} |(4) |[21] |0 |3r
39 (8 ({8} | (@) [[21] |2 |1~
40 |8 [ {8} |(6) |[111]|0 |1~
41 (8 [ {8} |(6) |[3] |0 |3r
42 18 ({8} |(8) |[21] |0 |3r
43 (8 [ {8} |(8) |[21] |2 |1~
44 |8 [ {713 [(o* (1111 |12
45 (8 ({713 () |21 |1 |12
46 |8 {71} (@ |[21] |2 |3r
47 18 ({70 (@ |21 |1 |12
48 |8 [ {71} (4 [[21] |2 |3r
49 |8 ({713 (@) |[21] |1 |12
50 |8 [{71} | (4) |[21] |1 |1”2
51 |8 [{71}[(6) |[111]|1 |12
52 |8 ({71} ](6) |[3] |1 |3r
53 |8 [{62}|(0) |[3] |2 |3r
54 [8 [{62} |(2 |[21] |1 [3R
55 |8 |{62} | (2 |[21] |1 |12
56 |8 {62} |(2 |[21] |1 |3R
57 |8 [{62} |(4) |[21] [0 |12
58 |8 | {62} |(4) |[21] |w2]|3R2
59 |8 [ {62} |(4) |[21] | w232
60 |8 |{53} |(0)*|[111]|1 |12
61 |8 {53} | (2 |[21] |1 |12
62 |8 {53} |(2 |[21] |2 |32
63 |8 [{53} |(2 |[21] |1 [3r2
64 |8 [{44y [(0) [[3] |0 [1r2
65 |10 |{10,0}|(0) |[3] |0 |1/2
66 |10 [ {10,0} [ (2 |[21] [0 [1r2
67 |10 {10,0} | (2) |[21] |2 |32
68 |10 {100} [ (4 [[21] [0 [1r2
69 | 10| {10,0} | (4) |[21] |2 |32
70 |10 {100} [(6) [[3] |0 |12
71 [10[{10,0r[(6) [[111]]0 [1/2
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72 [10]{10,03[(8) [[21] [0 [1/2
73 |10 ({100} [(8) [[21] [2 [1r2
74 [10[{10,03 [ (10) [[21] [0 [1r2
75 [10[{10,0} [ (10) [[21] [2 |32
76 |10 {91}y [(0)* [[111]|1 [1r2
77 [10[{91y [(@ [[21] [1 |12
78 [10[{91} [ (2 [[21] |1 [1r2
79 [10[{91} [(@ [[21] [2 [3r2
80 |10 {91} |(4) [[21] [1 [1r2
81 |10 {91} |(4) [[21] [1 [3r2
82 |10 ({91} |4 [[21] [2 [3r2
83 |10 {91} [(6) [[3] |1 |12
84 [10[{o1}y [(6) |[111][1 [1r2
85 [10[{91} | (8) [[21] [1 |12
86 |10 {91} [ (8) [[21] |2 |32
87 [10/{91} [ (8) [[21] |1 |32
88 |10/{82} | (0) |[3] |0 |12
89 [10/{82} | @ [[21] [0 |12

90 |10[{82} | (@ |[21] | 2] 3R
01 [10[{82} | (@ [[21] |oz2]3P2
92 (10482} [(#) [[21] |0 [1/2
93 [10[{82} | @ [[21] | 2|32
94 [10[{82} | (@ |[21] |oz2]| 32

95 10482} |[(6) |[111]]0 [1/2
96 [10[4{82} [(6) |[[3] |0 [|1/2
97 [10[4{73} [(O)* |[111]]1 [1/2
98 [10[{73} [ (@ [[21] [1 [1r2
99 [10[4{73} [ (@) [[21] |2 |32
100 |10 [ {73} [ (@ [[21] [1 |32
10110473} [ (@) [[21] [1 [1r2
102 (10 [ {73} [ (@) [[21] |1 |32
10310 [ {73} [ (@) [[21] [2 |32
104 |10 {64} [ (0 [[3] |0 |1/2
105 (10 [ {64} | (@ [[21] [0 [1r2
106 | 10 | {64} | (@) [[21] | w2 |32

107 | 10 | {64} | (2) |[21] | 022|372
108 | 10 | {55} | (O)* |[111]|1 |1/2

In Table-2, we present the classification of the TISM-bases for the nuclei with A =7, N =
3,57and J",T) = & ,3).
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Table-2 Classification of the TISM-bases for nuclei with A =7, N=3,5, 7and (J,T) = (2_ ,%).

No. N {r} (v) [f] a |L S T

1 3 {3} (3) [43] 1 1/2 1/2
2 3 {21} (21) [421] 1 1/2 1/2
3 3 {21} (21) [421] 1 312 1/2
4 3 {21} (21) [421] 3 312 1/2
5 5 {5} (3) [43] 1 1/2 1/2
6 5 {5} (5) [43] 2 1 1/2 1/2
7 5 {5} (5 [421] 2 1 1/2 1/2
8 5 {5} (5) [421] 2 1 312 1/2
9 5 {5} (5 [421] 2 3 312 1/2
10 5 {5} (5) [331] 1 172 1/2
11 5 {5} (5) [331] 1 312 1/2
12 5 {5} (5) [331] 3 312 1/2
13 5 {41} (3) [43] 1 1/2 1/2
14 5 {41} (3) [43] 2 172 1/2
15 5 {41} (21) [421] 1 1/2 1/2
16 |5 {41y | @D [[421] 1 312 1/2
17 5 {41} (21) [421] 2 172 1/2
18 5 {41} (21) [421] 2 312 1/2
19 |5 {41y | (1) |[421] 3 312 172
20 5 {41} (41) [43] 2 1 1/2 1/2
21 |5 {41y |40 [[421] 4 1 172 1/2
22 5 {41} (41) [421] 4 1 312 1/2
23 5 {41} (41) [421] 4 2 1/2 1/2
24 |5 {41y |41 [[421] 4 |2 312 1/2
25 5 {41} (41) [421] 4 3 312 1/2
26 |5 {41y | (41) |[331] 1 12 172
27 5 {41} (41) [331] 1 312 1/2
28 |5 {41y | (41) |[331] 2 12 172
29 |5 {41y | (41) |[331] 2 32 1/2
30 5 {41} (41) [331] 3 312 1/2
31 |5 {41y | (4D [[327] 1 172 1/2
32 5 {41} (41) [322] 1 312 1/2
33 5 {41} (41) [322] 2 172 1/2
34 5 {41} (41) [322] 2 3/2 1/2
35 5 {41} (41) [322] 3 312 1/2
36 5 {32} (3) [43] 1 172 1/2
37 5 {32} (3) [43] 2 1/2 1/2
38 5 {32} (21) [421] 1 172 1/2
39 5 {32} (21) [421] 1 3/2 1/2
40 5 {32} (21) [421] 2 172 1/2
41 5 {32} (21) [421] 2 3/2 1/2
42 5 {32} (21) [421] 3 3/2 1/2
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EEE 32y [(32) [[43] 2 1 172 1/2
44 |5 {32y (32 |[43] 2 |2 1/2 1/2
45 |5 32y | (32) |[421] 3 1 172 1/2
46 |5 32y | (32) |[[421] 3 1 312 1/2
47 |5 {32y | (32) |[421] 3 |2 1/2 1/2
48 |5 32y | (32) |[421] 3 |2 312 1/2
49 |5 32y | (32) |[[421] 3 |3 312 1/2
50 |5 32y | (32 |[331] 2 1 172 1/2
51 |5 32y | (32 |[[331] 2 1 312 1/2
52 |5 32y (32 |[[331] 2 |2 1/2 1/2
53 |5 32y | (32 |[331] 2 |2 312 1/2
54 |5 32y | (32 |[[331] 2 |3 312 1/2
55 |5 32y | (32 |[327] 1 1/2 1/2
56 |5 32y | (32 |[[327] 1 32 1/2
57 |5 32y | (32 |[[327] 2 172 1/2
58 |5 32y | (32 |[[327] 2 312 1/2
59 |5 32y | (32) |[[327] 3 312 1/2
60 |5 {311} | (1) |[[421] 0 312 1/2
61 |5 {311}y | (21) |[421] 2 172 172
62 |5 {311} | (1) |[[421] 2 312 1/2
63 |5 {311} | (311) [[421] 2 |0 32 1/2
64 |5 {311} | (311) |[421] 2 |2 172 1/2
65 |5 {311} | (311) |[421] 2 |2 312 1/2
66 |5 {311} | (311) [[331] 0 312 1/2
67 |5 {311} | (311) |[311] 2 172 1/2
68 |5 {311} | (311) [[311] 2 312 1/2
69 |5 {311} | (311) |[322] 0 312 1/2
70 |5 {311} | (311) |[322] 2 1/2 1/2
71 |5 {311} | (311) |[322] 2 312 1/2
72 |5 221y | (21) |[[421] 1 172 1/2
73 |5 {221}y | (21) |[421] 1 312 1/2
74 |5 {221y | (221) |[43] 1 172 1/2
75 |5 {221y | (221) |[421] 1 172 172
76 |5 {221}y | (221) |[421] 1 312 1/2
77 |5 {221} | (221) |[331] 1 1/2 1/2
78 |5 {221} | (221) |[331] 1 312 1/2
79 |5 {221} | (221) |[322] 1 172 1/2
80 |5 {221y | (221) [[322] 1 312 1/2
8L |7 {7} (3) | [43] 1 172 1/2
82 |7 {7} G) | [43] 2 1 172 1/2
83 |7 {7} (G) | [421] 2 1 172 1/2
84 |7 {7} (G) | [421] 2 1 312 1/2
85 |7 {7} (G) | [421] 2 |3 312 1/2
86 |7 {7} (G) | [331] 1 172 1/2
87 |7 {7} (G) | [331] 1 312 1/2
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88 |7 {7} (G)  |[331] 3 312 1/2
89 |7 {7} 7 | [43] 4 |1 172 1/2
90 |7 {7} (7 | [421] 5 |1 172 1/2
91 |7 {7} (7 | [421] 5 |1 312 1/2
92 |7 {7} (7 | [421] 5 |3 312 1/2
93 |7 {7} (7 | [331] 2 |1 172 1/2
94 |7 {7} (7 |[331] 2 |1 312 1/2
9% |7 {7} (7 | [331] 2 |3 312 1/2
9% |7 {7} 7 |[322] 1 172 1/2
97 |7 {7} (7 | [322] 1 312 1/2
98 |7 {7} 7 | [322] 3 312 1/2
99 |7 {613 | (3) [[43] 1 172 1/2
100 |7 {61y |3 [[43] 2 172 1/2
101 |7 {61y | (1) |[[421] 1 172 1/2
102 |7 {61} [(21) |[[421] 1 312 1/2
103 |7 {61} [(21) |[[421] 2 172 1/2
104 |7 {61y | (21) |[[421] 2 312 1/2
105 |7 {61} [(21) |[[421] 3 312 1/2
106 |7 61y |G |[43] 2 |1 172 1/2
107 |7 {61y [ (5) [[43] 2 |2 172 1/2
108 |7 61y | (5) [[421] 2 1 172 1/2
109 |7 {61} [(5) [[421] 2 1 312 1/2
110 |7 {61} [ (5) [[421] 2 |2 172 1/2
11 |7 61y | (5) [[421] 2 |2 312 1/2
112 |7 {61} [ (5) [[421] 2 |3 312 1/2
113 |7 {61y | (5) [[331] 1 172 1/2
14 |7 {61} [(5) [[331] 1 312 1/2
115 |7 {61y | (5) [[331] 2 172 1/2
116 |7 61y | (5) [[331] 2 312 1/2
117 |7 {61} [(5) [[331] 3 312 1/2
18 |7 {61y | (41) [[43] 2 |1 172 1/2
119 |7 {61}y [ (1) [[43] 2 |2 172 1/2
120 |7 {61} | (41) |[421] 4 1 172 1/2
121 |7 {61} [ (a1) |[[421] 4 1 312 1/2
122 |7 {61} | (41) |[421] 4 |2 172 1/2
123 |7 {61}y | (41) |[[421] 4 |2 312 1/2
124 |7 {61} | (a1) |[[421] 4 |3 312 172
125 |7 {61} [(@1) |[[331] 1 172 1/2
126 |7 {61y | (41) [[331] 1 312 172
127 |7 {61} [(@1) |[[331] 2 172 1/2
128 |7 {61y | (41) [[331] 2 312 172
129 |7 {61y | (41 [[331] 3 312 1/2
130 |7 {61} (@1 |[[322] 1 172 1/2
131 |7 {61y | (41 |[[3227] 1 312 172
132 |7 {61} [(@1) |[[322] 2 172 172
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133 |7 {61} [(@1) [[322] 2 312 1/2
134 |7 {61y | (41) |[[327] 3 312 1/2
135 |7 {61}y [ (61) [[43] 6 |1 172 1/2
136 |7 {61}y [(61) [[43] 6 |2 172 1/2
137 |7 {61y | (61)) |[[421] 12 |1 1/2 1/2
138 |7 {61} [ (61) |[[421] 12 |1 312 1/2
139 |7 {61y | (61)) |[[421] 12 |2 1/2 1/2
140 |7 {61} [ (61) |[[421] 12 |2 312 1/2
141 |7 {61} | (61) |[421] 12 |3 312 1/2
142 |7 {61y | (61) |[[331] 5 1 1/2 1/2
143 |7 {61} [ (61) |[[331] 5 1 312 1/2
144 |7 {61y | (61) |[[331] 5 |2 172 1/2
145 |7 {61}y [ (61) |[[331] 5 |2 312 1/2
146 |7 {61y | (61) |[[331] 5 |3 312 1/2
147 |7 {61} [ (61) |[[322] 4 1 172 1/2
148 |7 {61} [ (61) |[[322] 4 1 312 1/2
149 |7 {61y | (61) |[[327] 4 |2 172 1/2
150 |7 {61} [ (61) |[[322] 4 |2 312 1/2
151 |7 {61y | (61) |[[322] 4 |3 312 1/2
152 |7 {52y () [[43] 2 |2 172 1/2
153 |7 {52y |1 [[421] 2 1/2 1/2
154 |7 {52} [ (1) |[[421] 2 312 1/2
155 |7 {52} [ (1) |[[421] 3 312 1/2
156 |7 52y |G [[43] 2 |2 172 1/2
157 |7 {52y [ (5) [[421] 2 |2 172 1/2
158 |7 {52y |5 [[421] 2 |2 312 1/2
159 |7 {52y [ (5) [[421] 2 |3 312 1/2
160 |7 {52y |5 [[831] 2 172 1/2
161 |7 {52y |5 [[831] 2 312 1/2
162 |7 {52y [ (5) [[331] 3 312 1/2
163 |7 {52y | (4D [[43] 2 |2 172 1/2
164 |7 {52} | (a1) |[[421] 4 |2 172 1/2
165 |7 {52y | (41 [[421] 4 |2 312 1/2
166 |7 {52} | (a1) |[[421] 4 |3 312 1/2
167 |7 {52y | (41 [[331] 2 172 1/2
168 |7 {52y | (41 [[331] 2 312 1/2
169 |7 {52y | (41 [[331] 3 312 172
170 |7 {52}y [(@1) |[[322] 2 172 1/2
171 |7 {52} | (1) |[[322] 2 312 172
172 |7 {52}y [(@1) |[[322] 3 312 1/2
173 |7 {52y | (32 [[43] 2 |2 172 172
174 |7 {52} [ (32) |[421] 3 |2 172 1/2
175 |7 {52}y [(32) |[[421] 3 |2 312 1/2
176 |7 {52y | (32) |[[421] 3 |3 312 172
177 |7 {52y [(32) [[331] 2 |2 172 172
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178 |7 {52} [(32) [[331] 2 |2 312 1/2
179 |7 {52y | (32) [[331] 2 |3 312 1/2
180 |7 {52}y [(32) |[[322] 2 172 1/2
181 |7 {52}y [(32) |[[322] 2 312 1/2
182 |7 {52y | (32) |[[327] 3 312 1/2
183 |7 {52y [ (52) [[43] 7 |2 172 1/2
184 |7 {52} | (52) |[421] 13 |2 1/2 1/2
185 |7 {52} [ (52) |[[421] 13 |2 312 1/2
186 |7 {52y | (52) [[421] 13 |3 312 1/2
187 |7 {52} [ (52) |[331] 7 |2 1/2 1/2
188 |7 {52}y [ (52) |[[331] 7 |2 312 1/2
189 |7 {52y | (52) [[331] 7 |3 312 1/2
190 |7 {52}y [ (52) |[[322] 6 |2 172 1/2
191 |7 {52y | (52) [[327] 6 |2 312 1/2
192 |7 {52}y [ (52) |[[322] 6 |3 312 1/2
193 |7 43y ) [[43] 1 172 1/2
194 |7 43y |3 [[43] 2 1/2 1/2
195 |7 {43y [ (1) |[[421] 1 172 1/2
196 |7 {43y | (21) |[421] 1 32 1/2
197 |7 {43y [(1) |[[421] 2 172 1/2
198 |7 {43y | (21) |[421] 2 32 1/2
199 |7 {43y [(1) |[[421] 3 312 1/2
200 |7 {43y |41 [[43] 2 |1 172 1/2
201 |7 {43y | (41) |[43] 2 |2 1/2 1/2
202 |7 {43y [ (1) |[[421] 4 1 172 1/2
203 |7 {43}y | (a1) |[421] 4 1 312 1/2
204 |7 {43y [ (a1 |[[421] 4 |2 172 1/2
205 |7 {43y | (41) |[421] 4 |2 312 1/2
206 |7 {43y [ (a1) |[421] 4 |3 312 1/2
207 |7 {43y |1 [[331] 1 172 1/2
208 |7 {43y | (41 [[331] 1 312 1/2
209 |7 {43y |1 [[331] 2 172 1/2
210 |7 {43y | (41) |[331] 2 312 1/2
211 |7 {43y |1 [[331] 3 312 1/2
212 |7 {43y | (41) |[322] 1 1/2 1/2
213 |7 {43y | (41) |[322] 1 312 1/2
214 |7 {43y [ (41 |[[322] 2 172 1/2
215 |7 {43y (@1 |[[322] 2 312 1/2
216 |7 {43y [ (41 |[[322] 3 312 172
217 |7 {43y (32 [[43] 2 |1 172 1/2
218 |7 {43y [ (32 [[43] 2 |2 172 1/2
219 |7 {43y [ (32) |[[421] 3 1 172 1/2
220 |7 {43y [(32) |[[421] 3 1 312 1/2
221 |7 {43y [ (32) |[[421] 3 |2 172 1/2
222 |7 {43y [(32) |[[421] 3 |2 312 172
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223 |7 {43y [(32) [[421] 3 |3 312 1/2
224 |7 {43y | (32) |[[331] 2 1 172 1/2
225 |7 {43y [(32) [[331] 2 1 312 1/2
226 |7 {43y [(32) [[331] 2 |2 172 1/2
227 |7 {43y | (32) [[331] 2 |2 312 1/2
228 |7 {43y [(32) [[331] 2 |3 312 1/2
229 |7 {43y | (32) |[[327] 1 172 1/2
230 |7 {43y [ (32) |[[322] 1 312 1/2
231 |7 {43y | (32) |[[327] 2 172 1/2
232 |7 {43y | (32) |[[327] 2 312 1/2
233 |7 {43y [ (32) [[322] 3 312 1/2
234 |7 {43y | (43) [[43] 4 |1 172 1/2
235 |7 {43y (@3 [[43] 2 172 1/2
236 | 7 {511} | (41) [[327] 0 312 1/2
237 |7 {511} [ (@41) |[[322] 2 172 1/2
238 |7 {511} [ (41) |[[322] 2 312 1/2
239 |7 {511} | (311) |[421] 2 |o 312 1/2
240 |7 {511} | (311) |[421] 2 |2 172 1/2
241 |7 {511} | (311) |[421] 2 |2 312 1/2
242 |7 {511} [ (311) |[331] 0 312 1/2
243 |7 {511} | (311) [[331] 2 172 1/2
244 |7 {511} [ (311) |[331] 2 312 1/2
245 |7 {511} [ (311) |[322] 0 312 1/2
246 | 7 {511} | (311) [[322] 2 172 1/2
247 |7 {511} [ (311) |[322] 2 312 1/2
248 |7 {511} | (511) |[43] 2 |2 172 1/2
249 |7 {511} | (511) |[421] 8 |o 312 1/2
250 |7 {511} | (511) |[421] 8 |2 172 1/2
251 |7 {511} | (511) |[421] 8 |2 312 1/2
252 |7 {511} [ (511) |[331] 4 o 312 1/2
253 |7 {511} | (511) [[331] 4 |2 172 1/2
254 |7 {511} |[(511) |[331] 4 |2 312 1/2
255 | 7 {511} | (511) |[322] 4 |0 312 1/2
256 | 7 {511} | (511) |[322] 4 |2 172 1/2
257 |7 {511} | (511) [[322] 4 |2 312 1/2
258 | 7 {4213 | (3) |[43] 1 1/2 1/2
250 |7 {4213 | (3 [[43] 2 172 172
260 |7 {421}y [(21) |[[421] 2 1 172 1/2
261 |7 {421}y [ (21) |[421] 2 1 312 172
262 |7 {421}y [(21) |[[421] 2 |2 172 1/2
263 | 7 {421y | (21 |[[421] 2 |2 312 172
264 |7 {421y | (21 |[[421] 2 |3 312 1/2
265 |7 {421y [(41) [[43] 2 |1 172 1/2
266 | 7 {421y | (4D [[43] 2 |2 172 172
267 |7 {421}y [ (1) |[[421] 4 1 172 172
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268 |7 {421y [(a1) [[421] 4 1 312 1/2
269 |7 {421} | (41) |[421] 4 |2 1/2 1/2
270 |7 {421y [ (a1) |[[421] 4 |2 312 1/2
2711 |7 {421} [ (a1) |[[421] 4 |3 312 1/2
272 |7 {421}y | (41) |[331] 1 172 1/2
273 |7 {421}y [(41) [[331] 1 312 1/2
274 |7 {421}y | (41) |[331] 2 172 1/2
275 |7 {421}y [(41) [[331] 2 312 1/2
276 | 7 {421}y | (41) |[331] 3 312 1/2
2717 |7 {421}y | (41) |[322] 1 1/2 1/2
278 |7 {421}y [ (41) |[[322] 1 312 1/2
279 |7 {421}y | (41) |[322] 2 1/2 1/2
280 |7 {421}y [ (41) |[[322] 2 312 1/2
281 |7 {421}y | (41) |[322] 3 312 1/2
282 |7 {421y [(32) [[43] 2 |1 172 1/2
283 |7 {421y [(32) [[43] 2 |2 172 1/2
284 |7 {421} | (32) |[421] 3 |1 1/2 1/2
285 |7 {421}y [ (32) |[[421] 3 1 312 1/2
286 | 7 {421} | (32) |[421] 3 |2 1/2 1/2
287 |7 {421}y [ (32) |[[421] 3 |2 312 1/2
288 |7 {421y | (32) |[[421] 3 |3 312 1/2
289 |7 {421}y [(32) [[331] 2 1 172 1/2
290 |7 {421}y [(32) [[331] 2 1 312 1/2
201 |7 {421}y | (32) |[331] 2 |2 172 1/2
292 |7 {421}y [(32) [[331] 2 |2 312 1/2
293 |7 {421y | (32) [[331] 2 |3 312 1/2
294 |7 {421}y [(32) |[[322] 1 172 1/2
295 |7 {421y | (32) |[[322] 1 312 1/2
296 | 7 {421y | (32) |[[327] 2 1/2 1/2
297 |7 {421}y [(32) |[[322] 2 312 1/2
298 |7 {421y | (32) |[[327] 3 312 1/2
299 |7 {421} [ (311) |[421] 2 1 172 1/2
300 |7 {421}y | (311) [[421] 2 1 312 1/2
301 |7 {421} [ (311) |[421] 2 |2 172 1/2
302 |7 {421} | (311) |[421] 2 |2 312 1/2
303 |7 {421}y | (311) |[421] 2 |3 312 1/2
304 |7 {421}y | (311) [[331] 1 172 1/2
305 |7 {421} [(311) [[331] 1 312 1/2
306 |7 {421}y | (311) [[331] 2 172 1/2
307 |7 {421} [(311) [[331] 2 312 1/2
308 |7 {421}y | (311) [[331] 3 312 172
309 |7 {421}y | (311) [[322] 1 172 1/2
310 |7 {421} [ (311) [[322] 1 312 1/2
311 |7 {421} [ (311) |[322] 2 172 1/2
312 |7 {421} [ (311) [[322] 2 312 172
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313 |7 {421} [(311) [[322] 3 312 1/2
314 |7 {421} | (221) |[43] 1 1/2 1/2
315 |7 {421y [ (221) [[43] 2 12 1/2
316 |7 {421} [ (221) |[421] 1 172 1/2
317 |7 {421} | (221) |[421] 1 312 1/2
318 |7 {421} [ (221) |[421] 2 172 1/2
319 |7 {421} | (221) |[421] 2 312 1/2
320 |7 {421} [ (221) |[421] 3 312 1/2
321 |7 {421} | (221) |[331] 1 1/2 1/2
322 |7 {421} | (221) |[331] 1 312 1/2
323 |7 {421} [ (221) [[331] 2 172 1/2
324 |7 {421} | (221) |[331] 2 312 1/2
325 |7 {421} [ (221) [[331] 3 312 1/2
326 |7 {421} | (221) |[322] 1 1/2 1/2
327 |7 {421} [ (221) |[322] 1 312 1/2
328 |7 {421} [ (221) |[322] 2 172 1/2
329 |7 {421} | (221) |[322] 2 312 1/2
330 |7 {421} [ (221) |[322] 3 312 1/2
331 |7 {421} | (421) |[43] 4 |1 1/2 1/2
332 |7 {421y [ (421) [[43] 4 |2 172 1/2
333 |7 {421} | (421) |[421] 9 1 1/2 1/2
334 |7 {421} | (421) |[421] 9 1 312 1/2
3B |7 {421} | (421) |[421] 9 |2 172 1/2
336 |7 {421} | (421) |[421] 9 |2 312 1/2
337 |7 {421} | (421) |[421] 9 |3 312 1/2
338 |7 {421} | (421) [[331] 6 1 1/2 1/2
339 |7 {421} [ (421) |[331] 6 1 312 1/2
340 |7 {421} | (421) [[331] 6 |2 172 1/2
341 |7 {421} | (421) |[331] 6 |2 312 1/2
342 |7 {421} [ (421) |[331] 6 |3 312 1/2
343 |7 {421} | (421) |[322] 6 1 1/2 1/2
344 |7 {421} | (421) |[322] 6 1 312 1/2
345 |7 {421} | (421) |[322] 6 |2 1/2 1/2
346 |7 {421} | (421) |[322] 6 |2 312 1/2
347 |7 {421} | (421) |[322] 6 |3 312 1/2
348 |7 {331} | (1) |[[421] 1 1/2 1/2
349 |7 {331} | (1) [[421] 1 312 1/2
350 |7 {331}y [(32) [[43] 2 1 172 1/2
3B1L |7 {331} | (32) |[[421] 3 1 172 1/2
/2 |7 {331} [(32) |[[421] 3 1 312 1/2
353 |7 {331} | (32) |[[331] 2 1 172 1/2
34 |7 {331} |(32) |[[331] 2 1 312 1/2
35 |7 {331}y [(32) |[[322] 1 172 1/2
356 |7 {331} | (32) |[[3227] 1 312 172
37 |7 {331} [(311) |[421] 2 1 172 172
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358 |7 {331} [ (311) [[421] 2 1 312 1/2
359 |7 {331} | (311) [[331] 1 1/2 1/2
360 |7 {331} | (311) |[331] 1 312 1/2
361 |7 {331} | (311) |[322] 1 1/2 1/2
362 |7 {331} | (311) |[322] 1 312 1/2
363 |7 {331} | (331) |[43] 1 172 1/2
364 |7 {331} |(331) |[421] 4 1 1/2 1/2
365 |7 {331} | (331) |[421] 4 1 312 1/2
366 |7 {331} | (331) |[331] 2 1 1/2 1/2
367 |7 {331} | (331) |[331] 2 1 312 1/2
368 |7 {331} |(331) |[322] 2 1 172 1/2
369 |7 {331} | (331) |[327] 2 1 312 1/2
370 |7 322y |3 |[43] 1 1/2 1/2
371 |7 {322} | (21) |[421] 1 1/2 1/2
372 |7 {322y | (21) |[421] 1 312 1/2
373 |7 {322y | (32) |[43] 2 1 172 1/2
374 |7 {322} | (32) |[421] 3 1 1/2 1/2
375 |7 {322y | (32) |[421] 3 1 312 1/2
376 |7 {322} | (32) |[331] 2 1 1/2 1/2
377 |7 {322y | (32) |[331] 2 1 312 1/2
3718 |7 {322} | (32) |[322] 1 1/2 1/2
379 |7 {322y | (32) |[327] 1 312 1/2
380 |7 {322} | (221) |[43] 1 172 1/2
8L |7 {322} | (221) |[421] 1 1/2 1/2
382 |7 {322}y | (221) |[421] 1 312 1/2
383 |7 {322} | (221) |[331] 1 1/2 1/2
384 |7 {322} | (221) |[331] 1 312 1/2
385 |7 {322} | (221) |[322] 1 1/2 1/2
386 |7 {322} | (221) |[322] 1 312 1/2
387 |7 {322} | (322) |[43] 1 172 1/2
388 |7 {322} | (322) |[421] 2 1 1/2 172
389 |7 {322y | (322) |[421] 2 1 312 1/2
390 |7 {322} | (322) |[331] 2 1 1/2 1/2
391 |7 {322y | (322) |[331] 2 1 312 1/2
392 |7 {322} | (322) |[322] 2 1 1/2 1/2
393 |7 {322} | (322) |[322] 2 1 312 1/2
394 |7 {43}y [ (@3) |[421] 8 |1 172 1/2
395 |7 {43y | (43) |[[421] 8 |1 312 1/2
396 |7 {43y [ (@3) |[[421] 8 |2 172 1/2
397 |7 {43y | (43) |[[421] 8 |2 312 1/2
398 |7 {43y | (43) |[[421] RE 312 1/2
399 |7 {43y | (43) |[[331] 4 1 172 1/2
400 |7 {43y | (43) [[331] 4 1 312 1/2
401 |7 {43y [ (@3) [[331] 4 |2 172 1/2
402 |7 {43y | (43) [[331] 4 |2 312 1/2
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403 |7 {43y [(43) [[331] E 312 1/2
404 |7 {43y | (43) |[[327] 3 1 172 1/2
405 |7 {43y | (43) |[[327] 3 1 312 1/2
406 |7 {43y | (43) |[[327] 3 |2 1/2 Yy

407 |7 {43y | (43) |[[327] 3 |2 312 1/2
408 |7 {43y | (43) |[[327] 3 |3 312 1/2
409 |7 {511} | (21) |[[421] 0 312 1/2
410 |7 {511} | (21 | [421] 2 172 1/2
41 |7 {511} | (21) |[421] 2 312 1/2
412 |7 {511} | (41) |[43] 2 |2 1/2 1/2
413 |7 {511} | (41) | [421] 4 o 312 1/2
414 |7 {511} | (4)) |[421] 4 |2 1/2 1/2
415 |7 {511} | (41) | [421] 4 |2 312 1/2
416 |7 {511} | (41) |[[331] 4 o 312 1/2
47 |7 {511} | (41) | [331] 4 |2 172 1/2
418 |7 {511} | (41) [ [331] 4 |2 312 Y

In Tables-3, we present the matrices of the two-particle orbital FPCs for nuclei with mass
number A = 3 and number of quanta of excitations 0 < N < 10
Tables-3 Two-particle orbital FPC for nuclei with mass number A = 3 and number of quanta of
excitations 0 < N < 10

Table-3.1 Orbital FPC for N=0, {p} = {0}, [fz] = [2]

710
Gr | @18 (1

{0} 1

Table-3.2N =2, {p} = {2}, [f:] = [2]

v { f 1 (0) 181 (111) | 2) [21] (211
5 1 1
@ & &
0 1 1
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{p} = 12}, [fa] = [17]

(ONIT (1)
{p

(2) [21] (121)

{1}

1

Table-3.3 {p} = {11}, [f:] = [17]

f1(r)
{p

(0)* [3] (321)

{1}

1

Table-3.4 N =4, {p} = {4}, [fa] = [2]

[f1(r) | (0) [3] (111) | (2) [21] (211) | (4) [21] (211)
{9}
{4} V6 2V2 V2
4 4 4
{2} 2 0 2V3
4 4
{0} V6 —242 V2
4 4 4
{p} = {4}, [fa] = [17]
{[ﬂ(r) (2) [21] (121) | (4) [21] (121)
p
{3} 1 1
V2 V2
{1} 1 1
V2 V2

Table-3.5 {p} = {31}, [f:] = [2]

[f1(r)
{

(2) [21] (211)

{2}

-1
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N =4, {p} = {31}, [fa] = [17]

{[f](r) (0)*[111](322) | (2)[21] (121)

p

{3} 1 1
V2 V2

{1 1 1
V2 V2

Table-3.6 N=6, {p} = {6}, [f:] = [2]

00 o1 | @21 @1y | @REeL | ©RI
@ | VD | V@ iz | V2
5 | § 5 |
Kl T | s | ®
o | V2 V2 VB | Vm®
5 | s | s | ®
@ | VD VB | @2 V2
5 | s | ® | ~®

N =6, {p} = {6}, [fa] = [17]

[1() | (2)[211(121) | (4)[21] (121) | (B)[2°](321)

{p}

{5} V20 V32 V12
8 8 8

@ m | 0 | _m
8 8

{1} V20 V32 V12
8 8 8
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Table-3.7 N =38, {p} = {8}, [f:] = [2]

{f](r) (O)[31(111) | ()[21](211) | (HI21](211) | (6)[31(111) | (8)[21](211)
p
{8} V70 iz V56 4 V2
16 e 16 16 16
{6} V40 4 V32 V112 V56
16 16 16 16 16
{4} 6 0 V80 0 V140
16 16 16
{2} V40 _4 V32 V112 V56
16 16 16 16 16
{0} V70 V112 V56 _4 V2
16 16 16 16 16

Table-3.8 N = 10, {p} = {10, 0}, [fa] = [2]

v)[fl | (0)3] 21 | @2 | G)3] | (B)[21] | (10)[21]
(111) (211) 11 | (111) | (11) (211)
{p} (211)
{10} 252 V420 | /240 | /90 V20 V2
32 32 32 32 32 32
{8} V140 V84 —/48 | —/338| —/324 | —/90
32 32 32 32 32 32
{6} V120 V8 —224 —/84 | 168 V420
32 32 32 | 32 32 32
{4} V120 —/8 —\/224 84 | —/168 | —/420
32 32 32 32 32 32
{2} V140 —/84 | —/48| V338 | —/324 V90
32 32 32 32 32 32
{0} 252 —V/420 | =240 —/90 V20 —2
32 32 32 | 32 32 32
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{p} = {10, 0}, [fa]=[11]

f(r) | (2)[21](121) | (4)[21](121) | (6)[111](321) | (8)[21](121) | (10)[21](121)
{p
{9} —/96 —/96 —/9 V32 —/5
16 16 16 16 16
{7} -9 —/32 —V12 —/96 V60
16 16 16 16 16
{5} V60 0 V70 0 —/120
16 1o 16
{3} V56 V32 —V12 V96 V60
16 16 16 16 16
{1} —/96 V96 9 —/32 —/5
16 16 16 16 16

Table-3.9 N =10, {p} = {91}, [f:] = [2]

{[ﬂ(r) (2)[21](211) | (4)[21](211) | (6)[3](111) | (8)[21](211)
p
{8} —/56 4 V72 —112
16 16 16 16
{6} —72 —V/112 —/56 4
16 16 16 16
{4} —72 V112 —V/56 -4
16 16 16 16
{2} —/56 -4 V72 —V112
16 16 16 16
{p}= {91}, [fa] = [11]
f(r) (0)*[111] | (2)[21] | (A[21] | (B)[111] | (B)[21]
(p (321) | (121) | (121) | (321) | (121)
© 4 ViiZ | —V2 | =70 | —V/56
16 16 16 16 16
0 —V112 | 4 | V56 | —V40 | V32
16 16 16 16 16
{5} 0 o |Vis0| =6 | V80
16 16 16
(3} Vii2 | 4 | V56 | V40 | V32
16 16 16 16 16
W -4 | V112 | —V2 | —J70 | V56
16 16 16 16 16
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Table-3.10 N = 10, {p} = {82}, [f:] = [2]

a0 | O @r ]| @r ] G
It a11) | @11 | @11 | @11
V2o | V30 | —vZ | —viz
{8} 38 38 8 8
SRR
® S5 w55
i | —v2 |30 | v2o
{4} 38 8 38 8
= 5 | 7 |5

{p} = {82}, [fa] = [11]

{;](r) ()[21](121) | #)[21](121) | (6)[111](321)

0 | V2o V2 V32
8 8 8

By | v | 0
8 8

{3} V20 V12 V32
8 8 8

Table-3.11 N = 10, {p} = {73}, [fa] = [2]

00 [ RICT) [@R1eT)

p

© | L -1
7z 2

@ -1 -1
7z 2
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N =10, {p} = {73}, [fa] = [11]

{ ﬂ(r) (0)*[111](321) | (2)[21](121) | (4)[21](121)
p
{7y V6 vz —V50
e Y 5
) 2 12 12
8 i 5
® 54 vz i
e s 5

Table-3.12 N =10, {p} = {64}, [f:] = [2]

{ﬂ(f) O)[31(111) | (2)[21](211)
p
{6} 1 1
V2 V2
4} 1 -1
V2 V2

{p} = {64}, [fa] = [11]

f1(r)
(. | A2

{5} 1

Table-3.13 {p} = {55}, [fa] = [11]

f1(r) | (0)*[111](321)
{p
{5} 1
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Tables-4 Orbital FPC for nuclei with A = 7
4.1N=3, [f] = [41], [f12] = [2]

v)[f]
(U {3¥(3)43] | {21}H{21}[421]
{3H3}3) 1 0

21321321 0 1

42 N=3,[f] = [41], [fi2] = [11]

v)[f]
(U {3¥(3)[43] | {21}H{21}[421]
{2H2}(2) -1 -1

4.3 N=3, [f] = [32], [f12] = [2]

v)[f]
e {21}(21)[421]
{23{2}(2) -.9984
{2H{1}(1) -.0488
{113{1}(1) 0.0282

4.4 N=3, [f] = [32], [f1.] = [11]

{ ﬁ}{g U1 1 s3@)u3 | {213e4e
(343}(D) 0.25 0
{31{3}(3) 0.25 0
{31{2}(2) 0.8660 0
(3H1X(1) 0.25 0
({1} 0.25 0.7071
[21H1}Y) 0 0.7071

45 N =3, [f] = [311]

o {5}[{;2] @[421][2] | (1[421][11]
RIH21 D) 1 0
{LIH{11}(11) 0 1
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46 {p} = {21}, [f] = [221], [fiz] = [2]

D]
Bl (b1l
2U{21CD 1

4.7 {p} = (5} [f] = [41] [fiz] = [2]

o {5[{ L (3)[43] (5)[421]
{51:{5}(5) 0.0404 0.0455
{5}{5}(5) 0.0404 -.0455
{51{5}(3) 0.0286 0.0114
{53{5}(1) 0.0286 _0114
{5} {4}(4) 0.3780 0.0000
{53:{4}(4) 0.3780 0.0000
{5H3}(3) 0.2000 0.0979
£313}(3) 0.2000 -.0979
{5H{3}(1) 0.0369 0.0651
£313¥(1) -.0369 0.0651
{542}(2) 0.4583 0.0680
{342}(2) 0.5669 ~.0550
{5H1}1) 0.2353 -.3465
{3H1}(1) 0.0148 0.8487
{1H1Y(1) -1991 -3465

48 {p} = {5}, [f] = [41], [f1o] = [11]

7] (5)[421]
{o}Hp}(@

{41 {4}(4) 5063
{43:{4}(4) -5963
{4H3}(3) 4728
{4{2}(2) 0422
2H2}2) 0.0066
{4131 0.1783
{2H1}(1) 0.1783

AVAILABLE ONLINE AT www.alexjournals.org 32 -


https://alexjournals.org/AlexJournal/Mathematics/

ALEXANDRIA JOURNAL OF MATHEMATICS Volume 12 Number 2 May 2023 (ISSN 2090-4320)

49 {p}={5}[f1=[32] [fiz] = [2]

] @M | OHA | B8
{5}.{5}(5) 0.4082 0.0945 0.0408
{53{5}(5) 0.4082 ~0945 0.0408
{5}{5}(3) 0.4082 0.0000 ~.0816
{51{3}(3) ~5000 0.0000 0.1000
(31{3}(3) 0.5000 0.0000 0.1000
{53{4}(4) 0.0000 0.3660 _5523
{(5H{4}(2) 0.0000 0.3660 0.5523
{53{2}(2) 0.0000 0.7319 ~.3000
(31{2}(2) 0.0000 0.4226 0.5196

4.10 {p} = {5}, [f] = [32].[fi] = [11]

[f]
AT (3)43] (5)[421] (5)[331]
{4H{4}(4) -.7071 0.0000 6601
{4H4}(2) -7071 0.0000 0.6601
{43}(3) 0.0000 0.5774 0.0000
{4H2¥(2) 0.0000 -.4082 0.3105
{212}(2) 0.0000 -7071 -1793

411 {p} = {5} [f] = [311], [fiz] = [2]

7]
o G)421] | G331
{5}.{5}(5) 0.5652 0.1890
{53.{5}(5) 0.5652 0.1890
{5H5}(3) 0.5652 ~3780
{51{3}(3) ~1443 0.5000
£31{3}(3) 0.1443 0.5000
{5}{4}(4) 0.0000 0.5345
412 {p} = (5}, [F= 311 [fi] = [11]

7]

B ®)421]

{4}H{4}(4) 0.5204

{4}{3}(3) 0.8539
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4.13 {p} = {5} [f] = [221], [fiz] = [2]

{p}{ﬁ[}ﬂv (®)1421]
{5}{5}(5) 0.7559
{5}H4}(4) 0.6547

4.14 {p} = {5}, [f] = [221], [f1o] = [11]

{p}{ﬁ[}ﬂv (©)[331]
{4{4}(a) 1

4.15 {p} = {7} [f] = [41], [f12] = [2]

[f] (3)43] (5)[421] [f] (343] | (5)[421]
{pHp}(@ {pHp}
{7H1}(1) 0.1103 -.1977 {5H{4}(2) 0.2673 | 0.0000
{5H1}(1) -.0274 -.0510 {7h:{4}(4) 0.2160 | 0.0000
{3H1}(1) -.0274 0.0510 {51:{4}(4) 0.2673 | 0.0000
{1H1}1) 0.1103 0.1977 {73:{4}(4) 0.2160 | 0.0000
{7H2}(2) 0.2186 0.0000 {5}{4}(4) 0.2673 | 0.0000
{512}(2) -.0290 -.4515 {7H5}1) 0.2539 | 0.0000
{3H2}(2) -.0205 0.6386 {51{5}1) 0.2539 | 0.0000
{7H3}(1) -.1000 0.2761 {7H5}3) 0.2539 | 0.0000
{513}(1) 0.0863 0.0000 {5}{5}3) 0.2539 | 0.0000
{34{3}1) -.1000 -.2761 {71:{5}(5) 0.2539 | 0.0000
{7H3}(3) -.1000 0.2761 {51:{5}(5) 0.2539 | 0.0000
{543}(3) 0.0863 0.0000 {7}A5}(5) 0.2539 | 0.0000
{343} -.1000 -.2761 {5}{5}(5) 0.2539 | 0.0000
{7H4}(2) 0.2160 0.0000
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4.16 {p} = {7}, [f] = [41], [fi2] = [11]

] G)[421]
{pHp}(
{6}{1}(1) 0.5512
{4H1}(1) 0.6039
{2H1}1) 0.5512
{61{2}(2) 0.0321
{4H2}(2) -1361
{2H2}(2) 0.0717
{6}{3}(1) 0.0269
{43{3}(1) 0.0269
{61{3}(3) 0.0269
{41{3}(3) 0.0269

417 {p} = {7} [f] = [32], [f12] = [2]

ol

@) (3)43] (5)[421] (5)[331] (G)[322]
{7H4Y(4) 0.4373 4484 -.5365 -.1897
{5M{4}(4) 0.5411 0.3624 0.1858 - 5477
{7H4Y(2) 0.4373 -.4484 0.5365 0.1897
{5H{4}(2) 0.5411 0.3624 -.1858 0.5477
{7H5}(3) 0.0730 0.0303 0.1601 -.2864
{5H{5}(3) -.0730 0.0303 0.1601 -.2864
{7T1{5}(5) 0.0730 0.0303 0.1601 0.2864
{5}1{5}(5) -.0730 0.0303 0.1601 0.2864
{7}A5}(5) 0.0730 0.0303 -.3203 0.0000
{5}{5}(5) -.0730 0.0303 -.3203 0.0000
{7H2}(2) 0.0000 0.4270 0.0000 0.0000
{5H2}(2) 0.0000 0.2700 0.0000 0.0000
{3H2}(2) 0.0000 0.1909 0.0000 0.0000
{51{3}(3) 0.0000 0.1952 0.0000 0.0000
{7H3}(3) 0.0000 0.0000 0.1543 0.0000
{3H3}(3) 0.0000 0.0000 -.1543 0.0000
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418 Loy — {73, [T1=1[321,[f1>1—[11]

v @M | GK2] | @381
{6}{4}(4) 0.5175 ~ 2501 0.1718
{43{4}(4) 0.2134 0.6064 _2315
{63{4}(2) 0.5175 - 2501 - 1718
{43{4}(2) 0.2134 0.6064 0.2315
{63{5}(3) _3528 0.0000 0.0000
{63:{5}(5) ~ 3528 0.0000 0.0000
{61.{5}(5) ~3528 0.0000 0.0000
{61{2}(2) 0.0000 _1318 0.0000
{43{2}(2) 0.0000 ~.1863 0.0000
23{2}(2) 0.0000 ~.2946 0.0000
{61{3}(3) 0.0000 _0165 6457
{43{3}(3) 0.0000 0.0165 _.6457

419 {p} ={7}[f] = [311], [fiz] = [2]

5} {5[{ ]v (5)[421] (5)[331]
{71{5}(5) 0.4629 0.0000
{5}:1{5}(5) 0.4629 0.0000
{7}:{5}(5) -.1548 0.0452
{5}{5}(5) 0.1548 0.0452
{7}H4}(4) 0.3553 0.1964
{5H{4}(4) -.1231 0.5669
{7H3}(3) 0.5528 0.3250
{5H3}(3) -.1906 0.5103
{3H3}(3) -.2006 0.4107
{TH5}(3) 0.0000 0.2249
{5}{5}(3) 0.0000 0.2249
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420 {p} = {7}, [f] = [311], [fio] = [11]

) {5[{]1) (5)[421] (7)[322]
{632{5}(5) 0.9160 0.0000
{61{5}(3) 0.0000 -.6222
{6}1{5}(5) 0.0000 -.3381
{6}{4}(4) -.1138 -.5669
{6H{3}(3) -.1713 0.0000
{43{4}(4) 0.1533 -.4208
{4H{3}(3) 0.3083 0.0000

421 {p} ={7}[f] = [221], [fiz] = [2]

[f] (5)[421] (N[322]
{pHp}(@
{73{5}(5) 0.4629 -.1369
{5}{5}(5) 0.4629 0.1369
{7H4}(4) 0.6547 0.4905
{5H4}(4) 0.3780 -.8496

422 {p} = {7} [f] = [221],[f12] = [11]
il O3] e
{6H{4}(4) -.5000 -5078
{4H4}(4) -.8660 0.2932
{61{5}(5) 0.0000 0.8101

(ISSN 2090-4320)
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Tables-5 Spin-lIsospin FPC for nuclei with mass number A = 3

Table-5.1 [f] = [3], r = (111)

[fe]
[2]
S, t
S, T 1,0 0,1
1/2, 1/2 ! 1
’ V2 V2

Table-5.2 [f] = [21], r = (211) and r=(121)

[f] [2] (211) | [11] (121)
$t11010,1/00] 11

S, T

1 111 |1 1

23 V2 [ V2 (V2| V2

13 dolalol

2’2

5,1 11010 -1

2’2

Table-5.3 [f] =[111], r=(123)

[fa] [11]
s,

) 00 | 1,1
ST

11 111
2 | 2|7
23 0 1
2 2
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Tables-6 Spin-lsospin FPC for nuclei with mass number A = 7

Table-6.1 [f]=[43], [f]=1[41], [fiz] =[2]

ST, st 11 11
——,10 __;01
ST 22 22
11 -.3780 0.3780
22
6.2 [f1=1[43], [f1=132], [fiz] =[2]
ST st 11 0 31 0 11 o1 13 o1
22’ 22’ 22’ 22’
ST
11

55 0.1890 | 0.3780 | 0.1890 | 0.3780

63 [f1=1[43], [f1=1[32], [fiz] =[11]

ST, st 1o f1r 131 113
- 22 22 22 22

1 1

= 0.1890 | -.1890 | 0.3780 | 0.3780

64 [f]1=1[421], [f]=1[41], [fi2] = [2]

ST, st 11 10 11 01
,S ~ i
ST 22 22

11 0.2390 0.2390
22

31 -.3381

22

13 -.3381
22
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6.5 [f]=[421],[f] = [41] [fo] = [11]

11 11
ST, st EE’ EE'

ST

11 0.2390 -.2390
5

31 -.3381
22

13 -.3381
22

6.6 [f1=1[421], [f]=1[32], [fiz]l =[2]

ool 30 123 10t 0132 01122 o4
st 2210 272010 |3720100 320 153015
ST
11
5 -1890 | 0.1890 0.1890 -1890
31
. -1336 | 02113 0.2835
13
13 _2835 | 0.1336 _2113
22
6.7 [f1=1[421], [f]1=132] [fio]=1[11]
3L ool B0 (11113 1|13 4
ST, 5 2229 2299 |2zt gzt g
ST
11 0.2673 | -.2673
:
= 0.1336 -1890 | 0.2988
%% -1336 | 0.1890 - 2988
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68 [f1=1[421], [f]=[311] [fi.] = [2]

L0l 3200 12200123 1012 0122 0122 01123 01
STt 137y 22’ 22' (2207 |22 |22 | 220 T | 22
ST
11
== -1952 | 0.2182 -.1952 0.2182
%% -0690 | -.2440 0.1091 0.3086
%; >< 0.1091 | 0.3086 | -.0690 -.2440

6.9 [f1=1[421], [f]=I[311], [fiz] = [11]

hetl1 00| 3Loo |23 g0 2L 1|3t 11131133 ¢4
273’ 272’ 22 220 220 22 | 22
ST
11
- -1195 -.2789 | -.0891 | -.0891 | -.2520
;% -.1336 0.0282 | 0.0996 | 0.2520 | 0.2817
%% -1336 | 0.0282 | 0.2520 | 0.0996 | 0.2817
6.10 [f]1=10331], [f]=132], [fi.] =1[2]
— 11 |81 |13 11 131 |13
§ 22’ 22’ 22° 0 (2270|2200 | 22
ST
11
- -.3086 | 0.1543 -.3086 0.1543
;% -2440 | -.3858 0.1725
%; 0.1725 | -.2440 3858
33 -.3450 -.3450
22
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6.11 [f]1=1[331], [fl=1[32], [fiz] =[11]

L1 ool 3200 (23 0o 2L 4113 1123 4
Tst |22°°°0 | 2207° | 22790 | 2271 |22 | 22
ST
11
= 1890 _4410 | -.0630 | -.0630
%% _2113 0.0996 | 0.1575 | 0.3984
%% _2113 | 0.0996 | 0.3984 | 0.1575
33 -1992 | -.3150 | -.3150
22
6.12 [f]1=1[322], [f]=1I[221], [fio] =[11]
GEL 00| 2300 |11 40 (3L 23 4|33 112 20 4
22209 22299 |zt g g g gt 2
ST
11 _345 | 345
:
>3 2315 244 | -.0345 -3086 | .169
%; _2315 | -244 0345 | 3086 -169
;; 2182 | -.2182 2673 | -.2673
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6.13 [fI=1[322], [f]=I[311] [fio] =[11]

et 00| 3L o0 12300132 002t 11|32 1123 41]33 11
22°00| 22000 | 33001 55,00 55 1 gg g g

ST

11
= 345 1150 | -2572 | -2572 | 1455
;% _1725 1818 | 3343 | -3253 | .0727
%; _1725 1818 | -3253 | 3343 | .0727
%% 2182 | -2300 | 1626 | .1626 | -.3637

6.14 [f]1=1[322], [fl=1[32], [fiz] =12]

ST,s 22 22 22 22 22 22
ST

11 -.244 -.244 244 244
3

—— .3858 -.122 21728
%
—— -.2728 | -.3858 122
—— .3450 -.3450
22
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6.15 [f]=1[331], [f]=I[311], [fi] = [2]

ST,st |11 31 13 33 11 31 13 33

ST

%% _1543 | -.3450 1543 3450
;% 2440 | -1725 3858 -2182
%; -3858 | 2182 | -.2440 1725
;; -1543 | 3450 1543 3450
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