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Abstract 
In this paper, we are concerned with an internal nonlocal Cauchy problem and a parameterize problem of 

impulsive differential equation. The existence of solutions are proved. The continuations of the 

parameterize problem of impulsive differential equation and its solution to the internal nonlocal Cauchy 

problem and its solution will be studied. 
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1 Introduction 
Impulsive differential equations, by means, differential equations involving impulse eff- 

ects, are seen as a natural description of observed evolution phenomena of several real 

world problems. For example, population dynamics [1], physics, Chemistry [2], engine- 

ering [3], ecology, biological systems, biotechnology, industrial robotics, pharmacokin- 

etics, optimal control, and so on. The quantitive investigation of impulsive differential 

equations began in 1960 with the work of Mil’man and Myshkis [4]. Inrecent years, there 

have been intensive studies on the qualitative behavior of solutions of impulsive 

differential equations; see for instance [4, 5, 6, 7, 8, 9]. Basically, impulsive differential 

equations consist of three components. A continuous-time differential equation, which 

governs the state of the system impulses, an impulse equation, which model an impulsive 

jump, defined by a jump function at the instant an impulse occurs and a jump criterion, 

which define a set of jump events[10]. According to the way in which the moments of the 

change by jumps are determined, the impulsive differential equations are classified as 

follows:- 

I. Equations with fixed moments of impulse effect (the moments of jump are previously     

    fixed). 
II. Equations with unfixed moments of impulse effect (the moments of jump occur when    

    certain space-time relations are satisfied). 

And the equations with unfixed moments of impulse effect is complicated, particularly if 

their solutions considered in an infinite interval [11].There has been a significant 

development in impulsive theory especially in the area of impulsive differential equations 

with fixed moments. 

    Consider the internal nonlocal Cauchy problem: 
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and the parameterized problem of impulsive differential equation 

 

                                          ,],0()),(,()(  tandTttxtftx                            (1.3) 

 

                                         ).1,0(,)()(    oxxx                                      (1.4) 

 

Where RRTf ],0[:  is a given function, Rxo  , )(lim)( hxx
oh

 

   

and )(lim)( hxx
oh

 

   represent the right and left limits of )(tx  at  .t  

 

       Our aim here is to study the continuation of the problem (1.3)-(1.4) and its solution 

to the problem (1.1)-(1.2) and its solution, as 1 . 

 

2 Preliminaries           

 In this section, we need some basic definitions and properties of impulsive differential 

equation which are used throughout this paper. By ],0[ TC  we denote the Banach space 

of all continuous functions, defined on ],0[ T with the norm  
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set  whichattforexcapteverywherecontinuousisRTxRTPC  ],0[:)],,0([  
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with the norm 
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Definition 2.1  

([6, 12]) )(tx  is said to be the solution of problem (1.3)-(1.4) if it satisfies the following 

conditions:  

 

           (1)  for ),0(   , t , )(tx  is differentiable and ))(,()( txtftx  , 

  

         (2) )(tx is left continuous in ),0(  and if t ,  then 1,)()(    oxxx . 

 

3 Main Results 

3.1 Internal nonlocal problem 

Now, consider the internal nonlocal problem (1.1)-(1.2). 
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Definition 3.1 

 By a solution of problem (1.1)-(1.2), we mean a function )],,0([ RTCx  

that satisfies the problem (1.1)-(1.2) itself . 

 

Theorem 3.1 

Let ,],0[: RRTf   is continuous function and satisfies the lipschitz condition 

                     ,],0[),(),,(,))(,())(,( RTxtxtxxktxtftxtf                                    

with lipschitz constant .0k   

If  

                                                                  1Tk  .                                                              (3.1) 

Then, the problem (1.1)-(1.2) has a unique solution. This solution can be expressed by the 

formula 
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Proof  
 Integrating equation(1.1),  we get 
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let, t  in (3.3),  we can deduce that 
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from (1.2),  we have 
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substituting from (3.4) into (3.3),  we have 
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Applying the Banach contraction fixed point theorem, we can deduce that the integral 

equation (3.5) has a unique solution ],0[ TCx . This solution satisfies the problem 

(1.1)-(1.2) . 

Now,  let ],0( t  in (3.5) we obtain 
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Also,  let ],( Tt   in (3.5), we obtain 
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                                                     (3.7) 

Combining (3.6)-(3.7), we obtain the result of the theorem.                                

  

3.2  Impulsive differential equation 

Now, consider the problem (1.3)-(1.4). 
 
Definition 3.2  

By a solution of problem (1.3)-(1.4), we mean a function )],,0([ RTPCx  

that satisfies the problem (1.3)-(1.4). 

 

Theorem 3.2   

Let the assumptions of theorem (3.1) are satisfied. Then the problem (1.3)-(1.4) has a 

unique solution. 

Proof  
 Integrating equation (1.3) and using (1.4) we obtain 
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Applying the Banach contraction fixed point theorem, we deduce that there exist a unique 

solution )],,0([ RTPCx  of integral equation (3.8). This solution satisfies the problem 

(1.3)-(1.4). 

 

3.3  Continuation theorem 

Now, we have the following theorem: 

Theorem 3.3  

 If 1 ,  then the problems (1.3)-(1.4) and (1.1)-(1.2) are coincide with 

the same solution. 

Proof   

Letting 1   in (1.4), then the problem (1.3)-(1.4) coincide with the problem 

(1.1)-(1.2).  Let  )(,)( txtx   are given by (3.2) and (3.8) respectively, then 

                                        .],0(),()(lim 1 Tttxtx                                               (3.9) 
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And the two problems (1.1)-(1.2),(1.3)-(1.4) have the same solution. 

 

4 Examples 

In this section, we consider some first order impulsive differential equations and the 

following examples will be helpful to illustrate the main results of this paper. 

 

Example 4.1 

Consider the following impulsive differential equation 
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Fig.1 The continuation of solutions of Ex. (4.1) 
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Example 4.2. Consider the following impulsive differential equation 
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                             Fig.1 The continuation of solutions of Ex. (4.2) 
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