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Abstract 
Two types of cluster-cluster potentials are obtained for the beryllium isotopes. The first one of the 

suggested four-body potentials is an attractive Gaussian interaction and the second is a superposition of 

repulsive and attractive Gaussian forces. The ground-state wave functions of the beryllium isotopes 
8
Be, 

9
Be and 

10
Be are expanded in series in terms of products of two wave functions: the first 

represents the set of A-4 nucleons and the second represents the set of the last four nucleons. We use 

the four-particle fractional parentage coefficients to separate the wave function into a function of (A-

4)-nucleons and the other for the remaining alpha particle. In the construction of these wave functions 

we have used the basis functions of the translation-invariant shell model. The expansion coefficients of 

the factorizations of these wave functions are products of four-particle orbital and spin-isospin 

fractional parentage coefficients. 

 

Keywords: Translation invariant shell model, four-particle fractional parentage coefficients, cluster-

cluster potentials.  

     
1. Introduction 

There are numerous phenomena of nuclear behavior that suggest the clustering of 

nucleons into groups within a nucleus. The earliest and simplest nuclear model to 

consider such characteristics is the α-particle model. The fact that four nucleons in a 

relative ¹¹S0 state could strongly interact played an important role in accounting for 

the binding energy of nuclei. Nuclear ground states would thus be expected to favor 

such quasi-α particle configurations and also consequently exhibit large spatial 

symmetry. 

    Phenomenological cluster-cluster potentials are of interest for applications to α-

cluster models [1-5], for the correlation of experimental α-α scattering and for 

comparison with the results of theoretical studies of the interaction. Most of these 

studies make use of nucleon-nucleon forces and the resonating group structure 

method with the α-particles constrained to be in the ground state. 

    In a previous paper by Doma et al. [5] the authors obtained two Gaussian     

potentials which are suitable for the calculations of the ground states of the four 

lithium isotopes, namely: 
6
Li, 

7
Li, 

8
Li and 

9
Li, by constructing the suitable clusters for 

these nuclei. One of these potentials is attractive and the other is a superposition of 

attractive and repulsive interactions. In these calculations they used the basis 

functions of the translation invariant shell model [6-8] with number of quanta of 

excitations N up to 6, 7, 8 and 9 for the nuclei 
6
Li, 

7
Li, 

8
Li and 

9
Li, respectively. In 

these calculations the authors used the basis functions of the translation invariant shell 

model [6-8] with number of quanta of excitations N up to 6, 7, 8 and 9 for the nuclei 
6
Li, 

7
Li, 

8
Li and 

9
Li, respectively.     

    In the present paper we proceed as in the work of the lithium nuclei [5] to study the 

structure of the ground-state of the three beryllium isotopes: 
8
Be, 

9
Be and 

10
Be by 

employing the same two different types of cluster-cluster potentials: the first of which 

has one attractive Gaussian force and the second consists of a repulsive and an 

attractive Gaussian forces. The methods of calculating the four-particle orbital and 

spin-isospin fractional parentage coefficients (f.p.c.) [3] are used to construct the 
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ground-state nuclear wave functions of the beryllium nuclei in the form of sums of 

products of two wave functions. The first represents the set of the four-particles and 

the second represents the set of the A-4 particles added to them the coordinates, the 

spins, and the isospins of the line joining the center of masses of the two systems. In 

these calculations we have used the basis functions of the translation invariant shell 

model [6-8] with number of quanta of excitations N up to 8, 9 and 10 for the nuclei 
8
Be, 

9
Be and 

10
Be, respectively.  

     

2. The Translation Invariant Shell Model Hamiltonian 

The internal Hamiltonian operator of the translation invariant shell model (TISM) 

which describes the mutual motions of the A nucleons relative to the nucleus center of 

mass has the form [6-8]  
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    A group theoretical method of classifying the states in the TISM was proposed by 

Kretzschmar [9]. The energy eigenvalues and the total antisymmetric wave functions 

of a state characterizing such Hamiltonian are given, with the usual notations, by [8] 
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                                    |A ΓA>=|A N{ρ}(ν)[f]αLMLSMSTMT>.                                 (2.3) 

 

    In equation (2.3) the number of quanta of excitation N is an irreducible 

representation (irrep) of the unitary group U3(A-1). The representation {ρ}={ρ1,ρ2,ρ3}, 

ρ1 ≥ ρ2 ≥ ρ3 ≥ 0 and ρ1+ρ2+ρ3=N, is related to Elliot symbol (λμ) [8,10] by the 

relations λ=ρ1-ρ2, μ=ρ2-ρ3. {ρ} is an irrep of the unitary group UA-1 and the unitary 

unimodular subgroup of three dimensions SU3, at the same time. The representation 

(ν) is an irrep of the orthogonal group OA-1, [f] is an irrep of the symmetric group SA, 

and α is a repetition quantum number of the irreps in the chain of groups. L and ML 

stand for the orbital angular momentum and its z-component and are also irreps of the 

rotational groups SO3 and SO2, respectively. S, MS are the spin, its z-component and 

T, MT are the isospin, its z-component which are irreps of the direct product of the 

groups SU2 x SU2. The basis functions (2.3) transform according to the following 

chain of groups:  
  

                                                        SU4      SU2     SU2 
  

                   U4
A

       U4A                        
  

                                                 UA         OA      SA                                                
 

                                 
 

                  U3(A-1)                      UA-1         OA-1      SA   
   

                                                                
          
                                                      SU3      SO3      SO2. 
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    Wave functions having definite total angular momentum quantum number J, its z-

projection MJ, and isotopic spin T, and its z-projection MT are constructed from the 

functions (2.3), in the usual manner, as follows 

 

    TJTMAJM   
 JSL MMM

JSL MJSM,LM    TSL TMSMLM]f[AN  ,           (2.4) 

 

where  JSL MJSM,LM are the Clebsch-Gordan coefficients of the rotational group 

SO3. 

    The fractional parentage coefficients (f.p.c.) of separation of four particles are 

given in terms of the f.p.c. of separation of two particles as follows [3] 

     

                   

   .LL;LLLLU

2,242,4A2A

2,2AA4,4AA

f42A224A

22424A2A

22A

,

A44AA

22A


















 


                            (2.5) 

 

    The first three factors on the right-hand side of equation (2.5) are two-particles 

f.p.c. for the sets of A, A-2, and 4-particles, respectively. U is the Racah coefficient 

and  f  is defined by 
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where j,i  is the axial distance between the numbers i and j in the Young tableau. ΓA 

is the set of all orbital, spin, and isotopic spin quantum numbers of the system 

consisting of A nucleons and similarly for the other systems.  

     

3. The Cluster-Cluster Potentials 

For our potentials, we have used two types of interactions having Gaussian-radial 

dependence. The first consists of one attractive term of the form [5] 
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where 1aV  and 1aR  are the depth and range parameters of the interaction, 

respectively. The second potential consists of an attractive and repulsive terms of the 

form [5] 
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where 
2a

V  and 2rV  are the depth parameters of the attractive, and the repulsive 

terms, respectively. 2aR  and 2rR  are the corresponding range parameters, 

respectively. In equations (3.1), and (3.2) R  is the inter-alpha distance defined by 
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 RRR                                                        (3.3) 

 

Here  1

R   and  2

R  are the radius vectors of the centers of mass of the two clusters. 

 

4. The Four-Particle Matrix Elements 

The four-particle matrix elements of the potentials  1V , given by equation (3.1), and 

hence of  2V  of equ. (3.2), with respect to the TISM basis functions, equ. (2.3), are 

given by [5] 
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In equation (4.1)  
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 are normalized 9-j symbols. 

    Accordingly, the Hamiltonian matrices H which are the sum of the TISM-

Hamiltonian H
(0)

, given by equation (2.1), and the perturbed ones with elements given 

by equation (4.1) can be constructed as functions of the oscillator parameter  , 

equation (2.2), and the potential parameters. Diagonalizing these matrices with 

respect to the oscillator parameter  , which is allowed to vary in a wide range of 

values 308    MeV in order to obtain the best ground-state energy eigenvalue 

for each nucleus, the ground-state energy eigenvalues and eigenfunctions are then 

obtained for each nucleus. 

     

5. Results and Conclusions 

The attractive depth parameter 
1a

V  of the first potential is varied in the range –50.0 ≤ 

1a
V  ≤ -10.0 MeV with a step 1.0 MeV, and the corresponding range parameter 

1a
R  

is varied in the range 1.5 ≤ 
1a

R  ≤ 10.0 fm with a step 0.0001 fm, in order to obtain 

the best values of the binding energies of the three nuclei 
8
Be, 

9
Be and 

10
Be. The 

attractive depth parameter of the second potential 
2a

V  is allowed to vary in the same 

energy range as for 
1a

V  with step 1.0 MeV. The corresponding range parameter 
2a

R  

is allowed to vary in the same range as for 
1a

R  with a step 0.0001 fm. The repulsive 

depth parameter 
2r

V  is varied in the range 1.0 ≤ 
2r

V  ≤ 50 MeV with a step 1.0 
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MeV. The corresponding range parameter 
2r

R  is varied in the range 2.0 ≤ 
2r

R  ≤ 7.5 

fm with a step 0.1 fm. 

    In Figure-1 we present the variation of the range parameter Rr with respect to the 

depth parameter Va for the three isotopes 
8
Be, 

9
Be and 

10
Be. In Fig. 2 we present the 

variation of the range parameter Ra with respect to the depth parameter Vr for the 

three isotopes 
8
Be, 

9
Be and 

10
Be. Fig. 3 presents the variation of the range parameter 

Rr with respect to the depth parameter Vr for the three isotopes 
8
Be, 

9
Be and 

10
Be. In 

Fig. 4 we present the variation of the range parameter Ra with respect to the depth 

parameter Va for the three isotopes 
8
Be, 

9
Be and 

10
Be. Also, in Fig. 5 we present the 

variation of the range parameter Rr with respect to the depth parameter Vr for the three 

isotopes 
8
Be, 

9
Be and 

10
Be. Fig. 6 shows the variation of the range parameter Rr with 

respect to the range parameter Ra for the three isotopes 
8
Be, 

9
Be and 

10
Be. Finally, in 

Fig. 7 we present the variation of the range parameter Rr with respect to the depth 

parameter Va for the three isotopes 
8
Be, 

9
Be and 

10
Be. 

    As seen from the figures it is always possible to find a potential of the form given 

by either of equation (3.1) or (3.2), in the considered range of values of the potential 

parameters, which gives rise to good agreement between the calculated value of the 

binding energy of one of the beryllium isotopes and the corresponding experimental 

value. 

    Indeed, each cluster-cluster potential is a collection of nucleon-nucleon Gaussian 

potentials arranged in some way in order to average the effects of their mutual 

interactions. 
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Fig. 1 Variation of the range parameter Rr with respect 
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Fig. 2 Variation of the range parameter Ra with respect to 
the depth parameter Vr. 
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Fig. 3 Variation of the range parameter Rr with respect to the 

depth parameter Vr. 
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Fig. 4 Variation of the range parameter Ra with respect to the depth 

parameter Va. 



 7 

 
                 

 
               

 

 

                      

                                                                                                   

 

2.05 
2.15 
2.25 
2.35 
2.45 
2.55 
2.65 
2.75 
2.85 
2.95 
3.05 
3.15 

24.5 25.5 26.5 27.5 28.5 29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5 39.5 

Beryllium 8 

Beryllium 9 

Beryllium 10 
Vr 

R
r

 

Fig. 5 Variation of the range parameter Rr with respect to 

the depth parameter Vr. 
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Fig. 6 Vriation of the range parameter Rr with 

respect to the range parameter Ra. 
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Fig. 7 Variation of the range parameter Rr with respect  
to the  depth parameter Va  
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    The calculated ground-state nuclear wave function of the nucleus 
8
Be is a 

superposition of two S-states with symmetry type [44] which admits the possibility of 

forming α + α structure of this nucleus. The ground-state of the 
8
Be nucleus is also a  

superposition of P, and D-states of symmetry type [431] together with a D-state of 

symmetry type [422], which admit the possibility of forming the α + t + p, α + 
3
He + n 

structures of this nucleus. Other structures are available for this nucleus with smaller 

weights. The main structure in the ground-state nuclear wave function of the nucleus 
9
Be is of the form α + α+n. Among the other available structures for this nucleus is 

the one which is a superposition of P and D-states of symmetry type [432], that admits 

the possibility of forming α + t + d structure of this nucleus. Structure of the form α + 
3
He + n+n is also available with a smaller weight. Finally, the main structure in the  

ground-state nuclear wave function of 
10

Be is of the symmetry type [442] which 

admits the possibility of forming an α + α+n+n-structure for this state.     
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