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Abstract 
The electric quadrupole moment, the total ground-state energy, the nuclear moment of 

inertia, the liquid drop inertia, the liquid drop energy, and the Strutinsky inertia of the even-

even nuclei in the sd-shell; namely: 
20

Ne, 
24

Mg, 
28

Si, 
32

S and 
36

Ar are calculated by applying 

the cranked Nilsson model and the single-particle Schrödinger fluid model. The obtained 

results of the electric quadrupole moment for these nuclei are in good agreement with the 

corresponding experimental values. Moreover, the obtained results of the cranking model-

moment of inertia, by using the single-particle Schrödinger fluid, for these nuclei are also in 

good agreement with the corresponding experimental values.  
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1. Introduction 

A large number of models have been developed to get insight into the 

spectroscopic properties of nuclei. One of the most successful models that 

deals with axially symmetric deformed nuclei is the deformed shell model 

(Nilsson model) [1]. 

    In     nuclei, neutrons and protons occupy the same orbitals, and thus 

can have the largest probability to interact with each other which leads to 

neutron-proton pairing. It is well known that the study of     nuclei is the 

domain which is expected to give the most relevant information about the 

properties of the neutron-proton (n-p) interaction. An interesting question for 

the yrast band properties is whether the expected strong n-p interaction will 

modify the rotational-alignment picture in     nuclei. It has been 

suggested using cranking approaches in a single-j shell (see the references 

cited in ref. [2]) that the rotational-alignment properties can be modified by 

the residual n-p interaction. The main difficulty in extending the study of 

    nuclei to high spins is that their population has extremely low cross-

sections in the small number of available reactions. 



 

 

    On the other hand, the cross-shell excitation costs a large amount of 

energy, leading to high excitation energy of several MeV for the   -state. In 

even-even nuclei with one closed and one open shell it does cost significantly 

less energy to produce this excited state, namely the energy to break a pair of 

nucleons in the open shell, about 1 to 1.2 MeV [3].  

    Despite the difficulties, progress in the development of large γ-ray arrays 

and associated ancillary detectors, and refinements of the data processing 

techniques, has allowed recent advance in the knowledge of some heavier 

    nuclei (see, for example, refs. [2, 4, 5, 6]).   

    Until the present a major activity in the study of shape-phase transitions for 

nuclei in the ground-state at zero temperature is carried out within the 

interacting boson model (IBM) )see, for example, [7, 8] and references 

therein)  . The model naturally incorporates different symmetry limits 

associated with specific nuclear properties [9]. While the IBM can be easily 

extended to a thermodynamical limit     , which is well suitable for the 

study of phase transitions, the analysis is rather oversimplified. For example, 

the model does not take into account the interplay between single-particle and 

collective degrees of freedom in even-even nuclei.  

    In the Nilsson-Strutinsky approach [10], the total energy is split into an 

average part, parameterized by a macroscopic expression, and a fluctuating 

part extracted from the variation of the level density around the Fermi 

surface. The microscopic part includes the Strutinsky shell correction and the 

pairing energy. In the Cranked Nilsson Strutinsky )CNS)  model [10], we 

calculate the intrinsic quadrupole moments from proton single-particle wave 

functions at appropriate equilibrium deformations, such that neutrons have no 

contribution to this moment. 

    The concept of the single-particle Schrödinger fluid [11-13] is based on 

generating and adopting a fluid-mechanical interpretation of the time-

dependent Schrödinger equation by suitably choice of the single-particle 

wave function. It gives an accurate method for calculating the nuclear 

moment of inertia of an axially deformed nucleus in framework of the 

cranking model, but for the rigid-body model further modifications are 

needed to achiev good agreement with the corresponding experimental values 

[13-15].   

    In the present paper we are dealing with the properties of the even-even 

deformed nuclei in the sd-shell; namely the nuclei: 
20

Ne, 
24

Mg, 
28

Si, 
32

S and 
36

Ar, from the point of view of the deformation structure. Accordingly, we 

have applied the single-particle Schrödinger fluid model to calculate the 

reciprocal moments of inertia of the mentioned five nuclei for both of the 

rigid-body model and the cranking model. Furthermore, we have applied the 

cranked Nilsson Strutinsky model to calculate the electric quadrupole 



 

 

moment, the total ground-state energy, the liquid drop inertia, the liquid drop 

energy, and the Strutinsky inertia of the five mentioned nuclei. 

     

2. Cranked Nilsson – Strutinsky Model   

The single particle Hamiltonian,   for the cranked Nilsson model assumes 

the form [16] 

                                                         ,                                    (2.1) 
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where     is the triaxial Nilsson Hamiltonian [17].  

    The oscillator frequencies               assume the compact form [18] 
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with                    . The calculations are carried out in the 

stretched coordinate system [19, 20],          ,           and 

         . The parameters ε and γ are the quadrupole deformation 

degrees of freedom. The quantity ε is related to the deformation parameter β 

by the relation  ε  
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    The second term in the right hand side of equation (2.1) is given by 
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where      
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Here   
 is the stretched square radius.  

    The potential    in equation (2.4) is the hexadecapole potential and is given 

by [21, 22] 
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Y4,−4.                                                                                                          (2.6) 

                               

In equation (2.4) the potential   
 is given by 

                                          
           

     
     .                       (2.7) 

     



 

 

    In the above equation t refers to the stretched coordinates,             

etc., the parameters   and    might either be given the same values for each 

shell or, alternatively, as indicated in (2.7), they can be made dependent on 

the main oscillator quantum number N = Nt. The parameter    
  is the 

oscillator strength (or is the value of    when β = 0) and ε  in equation (2.4) 

refers to the hexadecapole deformations degree of freedom. 

 

3. The Electric Quadrupole Moment of Deformed Nuclei 

In [23] the nuclear electric quadrupole moment is a parameter which 

describes the effective ellipsoidal shape of the nuclear charge distribution. 

The deviation from spherical symmetry is given by the electric quadrupole 

moment and is denoted by the symbol Q. The definition of Q is given in 

terms of the operator   , which is expressed in the form: 

                                    

                                           
  
                                                (3.1) 

       
            

 

with the  -axis along the axis of symmetry defined by nuclear spin. The 

expression in (3.1) is the average of           taken over the charge density 

distribution: 

 

                                                           .               (3.2) 

 

Here   is the total nuclear charge, in units of e. The units of    
are     or 

barns                  . For a spherical charge distribution  
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(3.3) 

 

If we substitute the above expression in equation (3.2) we get       

If      
 

 
    

 
the shape becomes prolate ellipsoid for which       and 

if      
 

 
     we get oblate ellipsoid for which         

    In quantum mechanics:   is replaced by    , where   is the wave function 

which leads to the result for the nucleus of spin   that measures nuclear 

electric quadrupole moments. For    , the symbol Q is defined by 
 

 

                                                

  
    

      
  .                                              (3.4) 

  

    For      
 

 
      which implies that there is no rotation since there is 

no symmetry axis defined. In summary: in order to learn something about the 

shape of the nucleus, we have to determine its intrinsic quadrupole 



 

 

moment,     defined with respect to the body fixed frame.  For a nucleus 

which has both N and Z value magic numbers, the nuclear charge is 

symmetrically distributed and the shape is spherical,     . If the charge 

density of the nucleus is concentrated along the z-axis (symmetry axis of the 

particle), the term proportional to    
 dominates,    

is positive and the shape 

is prolate (cigar shape). 

    

There are two important relations combines between the intrinsic 

quadrupole moment       
and deformation parameter  β follows:

  
 

                                               
          

           
                                              (3.5) 

                                  

                                            
 

   
   β       β ,                                (3.6) 

                   

with      
    

   
    The methods of calculating the total ground-state energy, the liquid drop 

inertia, the liquid drop energy, the volume conservation factor and the 

Strutinsky inertia are well-known and can be found in [10]. 

 

4. Single-Particle Schrödinger Fluid
 

The most important property distinguishing non spherical from spherical 

nuclei is the presence of rotational energy levels in the non spherical nuclei. 

The study of the velocity fields for the rotational motion of the nucleon in a 

deformed nucleus led to the formulation of the concept of the single-particle 

Schrödinger fluid [12]. Since the Schrödinger fluid theory is at present an 

independent particle model, the cranking model approximation for the 

velocity fields and the moments of inertia play the dominant role in this 

theory. 

    In the static part of the single particle Schrödinger fluid the nucleon is 

assumed to move in an axially deformed potential of the nucleus, which is 

chosen to be the anisotropic oscillator with          .   

    The polar form of the time-dependent     -single particle wave function is 

given by [11] 

 

                            
 

 
           

 

 
 ε 
 

 
           .   (4.1)  

 

Here      represents some time-dependent collective parameters,   is a real 

function and   is a positive real function. In the case of rotation, the 

parameter      becomes the angle of rotation,  .  



 

 

    The single-particle Hamiltonian   is  -dependent through its potential and 

the time-dependent Schrödinger equation 

                                     
 

  
 

 
                                         (4.2) 

 

can be separated into real and imaginary parts, by using Eq. (4.1), and as a 

result two equations are obtained. The first is the continuity equation 

 

                                                                 
  

  
                                  (4.3) 

 

where the density       and the irrotational velocity field   is defined by 

 

                                                                                                            (4.4) 
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    The second equation is 

 

                                                      ε   .                                           (4.6) 

                     

This is a modified Schrödinger equation through the modified dynamical 

potential 
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     In addition to the irrotational velocity field  , which has been result from 

the fluid dynamical equation, other velocity fields which satisfy the continuity 

equation of the Schrödinger equation occur. Among these velocity fields are 

the incompressible velocity field, the regular velocity field, the geometric 

velocity field and the rigid body velocity field.  

    For rotations, the rigid body velocity field 

 

     is defined by 

                                                                                                         (4.8) 

 

It is seen that this velocity field is incompressible, regular and also of a 

geometric type.  

    In the adiabatic approximation where 
  

  
    the collective kinetic energy 

of a nucleon in the nucleus is given by [11] 
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and the collective kinetic energy   of the nucleus is given by 

                                  
 

 
   

 
                                                  (4.10) 

where  
 
 is the total density distribution of the nucleus and

 

    is the total 

velocity field 
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5. Moments of Inertia 
 

The following expressions for the cranking-model and the rigid body-model 

moments of inertia can be easily obtained on the basis of the concept of the 

single-particle Schrödinger fluid [11, 12] 
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where   is the anisotropy of the configuration, which is defined by 

 

                                                         
          

          
                                      (5.3) 

and E is the total energy 

 

                                                                        (5.4) 

 

In equations (5.3) and (5.4)       and    are the state quantum numbers of 

the oscillator. The summations in (5.3) and (5.4) are carried out over all the 

occupied single-particle states. The method of filling these states is illustrated 

in [15]. Also, in (5.1) and (5.2)   is a measure of the deformation of the 

potential and is defined by 
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The frequencies       and    are given by [17] 
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For the non deformed frequency   
  we use the one which is given in terms of 

the mass number A, the number of neutrons N and the number of protons Z 

by [24] 
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The well-known deformation parameter β is related to the parameter   by the 

following relation [19]  

                                                  β  
 

 
 

  

 
                                               (5.10) 

    We note that the cranking-model and the rigid body-model moments of 

inertia are equal only when the harmonic oscillator is at the equilibrium 

deformation.    

    Once the nuclear moment of inertia   is known, the energy of the 

rotational states of a deformed even nucleus is given by [25]                            

              

                                          
 
 

  
                ,                         (5.18) 

 

where   is a constant determined by the rotation-vibration interaction and   is 

the nuclear total angular momentum number. 

 

6. Results and Conclusions 
In the present paper the calculations of the electric quadrupole moment, the 

ground-state total energy, the Strutinsky inertia, the liquid drop inertia, the 

liquid drop energy and the volume conservation factor     
  , are carried out 

for the doubly even deformed nuclei in the sd-shell; namely rhe nuclei: 
20

Ne, 
24

Mg, 
28

Si, 
32

S and 
36

Ar by applying the Cranked Nilsson Model. Moreover, 

the reciprocal values of the cranked-model and the rigid-body model 

moments of inertia are calculated for these five nuclei by using the concept of 

the single particle Schrödinger fluid. 

    We have also investigated the dependence of the calculated cranked 

Nilsson characteristics of the five nuclei 
20

Ne, 
24

Mg, 
28

Si, 
32

S and 
36

Ar on the 

non axiality parameter  γ (which is assumed to vary between      and     in 

steps of    .  

 

Firstly, for the nucleus 
20

Ne 

At fixed quadrupole deformation parameters ε      and  ε    we have
 

 



 

 

      

  Fig. 1 The L. D. energy as function of              Fig. 2 The L. D. inertia as function of  

                the non-axiality parameter  γ                            the non-axiality parameter  γ  

 

       
    

 Fig. 3 The Strutinsky inertia as function of γ    Fig. 4 The volume conservation factor as  

                                                                             function of γ   

      
    

Fig. 5 The oscillator parameter    
                    Fig. 6 The electric quadrupole moment as  

            as function of                                                            function of    
 

 
 

Fig. 7 The total energy as function of  γ 
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Secondly, for the nucleus 
24

Mg 

At fixed quadrupole deformation parameters ε      and  ε    we have 

 

      
 

 Fig. 8 The Liquid drop energy as                      Fig. 9 The Liquid drop inertia as              

function of  γ                                                                    function of  γ        
 

     
 
Fig. 10 The Strutinsky inertia as                        Fig. 11 The volume conservation factor as 

function of                                                                     function of                                                                                          

          
  
 Fig. 12 The oscillator parameter    

     Fig. 13 The electric quadrupole moment as                                        

as function of                                                       function of    
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                                          Fig. 14 The total energy as function of   

 

Thirdly, for the nucleus 
28

Si 

At fixed quadrupole deformation parameters ε       and  ε        we 

have 

 

      

 Fig. 15 The L.D.energy as function of              Fig. 16 The L.D.inertia as function of   
               

      

Fig. 17 The Strutinsky inertia                         Fig. 18 The volume conservation factor as                                       

as function of                                                               function of    
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 Fig. 19 The oscillator parameter    
  as         Fig. 20 The electric quadrupole moment            

function of                                                                          as function of    
 

                                               
  

                                        Fig. 21 The total energy as function of   
                                               

Fourthly, for the nucleus 
32

S 

At fixed quadrupole deformation parameters ε      and  ε         we 

have 

 

       

Fig. 22 The L.D. energy as function of  γ         Fig. 23 The L.D. inertia as function of  γ   
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Fig. 24                                              Fig. 25 The volume conservation factor as 

function of  γ                                                         as function of  γ   

            

     
  
Fig. 26 The oscillator parameter    

               Fig. 27 The electric quadrupole moment         

as function of                                                                          as function of   

 

                                                                                                                           

                                           
  

                                Fig. 28 The total energy as function of  γ                                                                                                                       
 

Fifthly, for the nucleus 
36

Ar 

At fixed quadrupole deformation parameters ε       and  ε    we have
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 Fig. 29 The L.D.energy as function of              Fig. 30 The L.D.inertia as function of    
 

     
 
Fig. 31 The Strutinsky inertia                         Fig. 32 The volume conservation factor           

as function of                                                                as function of        
 

        
    
 Fig. 33 The oscillator parameter    

  as        Fig. 34 The electric quadrupole moment  as 

function of                                                                    function of                                      
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                                  Fig. 35 The total energy as function of  γ    
 

    In Table-1 we present the calculated values of the electric quadrupole 

moment (in barns) of the doubly even five nuclei 
20

Ne, 
24

Mg, 
28

Si, 
32

S and 
36

Ar according to formulas (3.5) and (3.6) together with the corresponding 

experimental values [26] and the value of the non axiality parameter γ, for 

which the calculated value is in better agreement with the corresponding 

experimental value.         

 

Table-1 Electric quadrupole moment of the doubly even deformed nuclei in 

the s-d shell: 
20

Ne, 
24

Mg, 
28

Si, 
32

S and 
36

Ar by using the cranked Nilsson 

model. 

 

 

 
 
 

 

 

 

 

 

    In Table-2 we present the calculated values of the reciprocal moments of 

inertia of the nuclei 
20

Ne, 
24

Mg, 
28

Si, 
32

S and 
36

Ar by using the concept of the 

single-particle Schrödinger fluid for both of the cranking-and the rigid-body 

models. The values of the deformation parameter β, which produce the best 

values of the reciprocal moments of inertia, and the oscillator parameter 

   
  are also given in Table-2. 

    It is clear from Table - 1 that the results of the obtained electric quadrupole 

moment for the doubly even nuclei 
20

Ne, 
24

Mg, 
28

Si, 
32

S and 
36

Ar are in good 

agreement with the corresponding experimental values [26].   
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      γ        

20
Ne -0.23 -0.229      

 

24
Mg -0.166 -0.1648     

28
Si 0.165 0.1643     

32
S -0.149 -0.1396     

36
Ar 0.11 0.1064     



 

 

Table-2 Reciprocal  moments of inertia of the nuclei 
20

Ne, 
24

Mg, 
28

Si, 
32

S and 
36

Ar by using the single-particle Schrödinger fluid. 

   Nucleus 20
Ne 

24
Mg 

28
Si 

32
S 

36
Ar 

      
  (MeV) 

11.88 11.55 11.22 10.91 10.62 

 β  0.436 0.331 -0.233 0.487 0.324 

  
 
 

    
 (KeV) 

279.85 233.8 324.67 371.3 374.1 

   
 
 

     
 (KeV) 

172.32  69.86 57.97 41.96 152.3 

   
 
 

     
 (KeV) 

279.90 237.90 324.60 371 374 

 

    According to previous works [14, 15] the parameter β takes values in the 

interval       β       with a step 0.01. It is seen from Table-2 that the 

value of the deformation parameter β for the nucleus 
28

Si is negative while the 

corresponding values for the four nuclei 
20

Ne, 
24

Mg, 
32

S and 
36

Ar are positive.      

    Furthermore, it is seen from Table-2 that the calculated values of the 

cranking-model reciprocal moments of inertia are in better agreement with 

the corresponding experimental values [27] rather than the rigid-body values. 

The disagreement between the values of the rigid-body reciprocal moment of 

inertia and the corresponding experimental values is due to the fact that the 

pairing correlation is not taken in concern in this model [13]. 

    Moreover, it is seen from Figs. 4, 11, 18, 25 and 32 that the volume 

conservation factor does not depend mainly on the non axiality parameter γ 

and the variations are slowly for the five nuclei. The same conclusion holds 

also for the non deformed oscillator parameter    
 , as seen from Figs. 5, 12, 

19, 26 and 33.  
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