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Abstract
We have investigated the motion of a stretched elastic rectangular membrane which is subjected to a 

restorative force proportional to the velocity. The perturbation method is applied to obtain the solutions 

of the problem in the presence of the restorative force in terms of those in the absence of the 

perturbation. Furthermore, the roles of the initial displacement and initial velocity are investigated and 

the numerical solutions are then given by using the program Mathematica. Moreover, the nodal lines of 

the vibrations are also given.  
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1. Introduction 
Hyperbolic partial differential equations involve second derivatives of opposite sign, 

such as the wave equation describing the vibrations of a stretched string. Hyperbolic 

partial differential equations are very essential in engineering and theoretical physics 

problems. One of the famous problems of their applicability in theoretical physics is 

the solution of the motion of a relativistic quantum mechanical particle in an 

electromagnetic field. The problems of vibrating rectangular or circular membrane are 

also very interesting especially when the membrane is subject to a restorative force.  

    The vibrating membrane problem can be used as a rather appropriate example to 

demonstrate the power of computer algebra systems like Axiom, Maple, Mathematica, 

Derive, etc. [1]. 

    Different methods have been applied for the investigation of vibrating membranes. 

The differential quadrature method was applied for frequency analysis of rectangular 

and circular membranes [2,3]. Accordingly, some important studies concerning 

analysis of membranes have been carried out [4,5]. Furthermore, free vibration 

analysis of plates and shells has been also investigated [6,7].     

    The simplest method for solving the problem of a vibrating rectangular membrane is 

given, as usual [8], by separating the variables. In the presence of a restorative force, 

that is proportional to the velocity, the perturbation expansions [9] for eigenvalues and 

eigenfunctions are also of particular interest. Based upon the known solutions of the 

problem in the absence of the restorative force one can then derive the solutions of the  

problem in the presence of the external force in the form of a power series in terms of 

those solutions. 

    In a previous paper [10] we have investigated the problem of the vibration of a 

circular membrane which is subjected to a restorative force, proportional to the 

velocity, by applying the perturbation method. The displacement at any point ��, �� on 

the membrane and any instant of time � has been obtained numerically by applying the 
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program Mathematica. The obtained results showed that the second-order of the 

approximations produce results in excellent agreement with those obtained by using 

the method of separation of variables.   

    In the present paper, we have applied the perturbation method [9] to solve the 

differential equation, which represents the motion of a stretched elastic rectangular 

membrane that is subjected to a restorative force proportional to the velocity. The 

membrane is assumed to be homogeneous, perfectly flexible and offers no resistance 

to bending. Moreover, in order to simplify the problem, the deflection of the 

membrane during the motion is supposed to be small compared to the size of the 

membrane. The displacement of the membrane at any given point ��, �� and instant of 

time � is given in terms of the solutions of the problem in the absence of the restorative 

force and the numerical solutions are then given by using the program Mathematica. 

The roles of the initial displacement and initial velocity are also investigated. 

Moreover, the nodal lines are also given.   
 

2. Formulation of the Problem 

2.1 The Differential equation 
The differential equation which governs the motion of the vibrating rectangular 

membrane is given by [8] 

 

                                            
	
��	
 = �� �	
��	�
 + 	
��	�
 �,                                                (2.1)

                              where c is a constant, which is given in terms of the tension per unit lengths and the 

density � by the relation 

                                              � = ��� , ft/sec.                                                            (2.2) 

The constant � has the dimension of velocity, as expected. The solutions of equation 

(2.1) are well known when the boundary and initial conditions are stated [8]. 

    When the membrane is subjected to a restorative force that is proportional to the 

velocity the new differential equation is now given by 

 

                                          
	
�	
 + ! 	�	 = �� �	
�	�
 + 	
�	�
�,                                           (2.3)

                               where ! is the proportionality constant.   

 

2.2 The Boundary Conditions 

We take " to be zero on the boundary of the membrane, so that   

                                       " = 0, 0 ≤ � ≤ % and 0 ≤ � ≤ *,                                     (2.4) 

for all � ≥ 0.  
 

2.3 The Initial Conditions 

The initial displacement is taken, as in practical applications, as follows 

                                               "��, �, 0� = ,��, ��,                                                   (2.5) 

where  ,��, �� is assumed to be a continuous function. 

    The initial velocity is 

 

                                                 -	�	 ./0 = 1��, ��,                                                      (2.6) 

                                                

where 1��, �� is also a continuous function. 
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3. The Method of Separation of Variables 
By separating the variables, one can easily obtain the following solutions for equation 

(2.1) under the stated above boundary and initial conditions: 

 

"0��, �, �� = ∑ ∑ 3456,7�89:;6,7�< + =6,79>?:;6,7�<@
× 9>? B6C�D E 9>? B7C�F E GH7/IH6/I  ,                         (3.1)   

                                         

 

where 

                          56,7 = JDF K K ,��, ��9>? B6C�D E 9>? B7C�F E L�L�F0D0 ,                       (3.2) 

 

                

                        =6,7 = JDFMN,O K K 1��, ��9>? B6C�D E 9>? B7C�F E L�L�F0D0 ,                   (3.3)

                         

 

                   

 

and 

                                            ;6,7 = �P�6

D
 + 7


F
 ,                                                     (3.4) 

             

Q = 1, 2, …   %?L ? = 1, 2, …  .  
     

    Furthermore, by separating the variables one obtains the following solutions for 

equation (2.3) 

 "��, �, �� = UVW/� ∑ ∑ 4AY,Zcos:μY,Zt< + DY,Zsin:μY,Zt<@sin BY_`a E sin BZ_bc EH7/IH6/I , (3.5) 

 

 

where 56,7 is given by (3.2) and  

 

     d6,7 = JDFeN,O K K �1��, �� + fC� ,��, ���F0D0 9>? B6C�D E 9>? B7C�F E L�L�.             (3.6) 

           

 

In equations (3.5) and (3.6) the values g6,7 are given by 

 

                                      g6,7 = �P�6

D
 + 7


F
 − W

Jf
C
 ,                                              (3.7)                                    

where Q = 1, 2, …   %?L  ? = 1, 2, …   .   
The values g6,7 are called eigenvalues of the rectangular membrane and the functions   

 

 "6,7��, �, �� = UVW/�4AY,Zcos:μY,Zt< + DY,Zsin:μY,Zt<@sin BY_`a E sin BZ_bc E,    (3.8)  

are called eigenfunctions of the rectangular membrane.

  

                               

 

4. The Perturbation Method of Solution 
We have now to determine by how much the solutions of equation (2.1), under the 

boundary and initial conditions stated above, have been changed on account of the 

presence of the disturbing factor ! 	�	 ,  since it is assumed to be small compared to the 

other terms. The change is known as a perturbation. 

    To apply the perturbation method [9] to equation (2.3) we try first to find solutions 

of the form 
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                                                    " = iUjkl
  .                                                          (4.1)                              

Equation (2.3), then, becomes  

                                            ��:i�� + i��< = i − W

J i                                           (4.2) 

with the initial conditions 

                                            i��, �, 0� = ,��, ��, 

i|/0 = 1��, �� + !2 ,��, �� = ℎ��, �� 

                       

  

    To apply the perturbation method to equation (4.2) we rewrite it in the form 

 

                                              ��:i�� + i��< = i − o W

J i,                                    (4.3) 

where o is a parameter introduced to know the order of the approximation and takes 

the value 1 in the final result. Accordingly, the equation representing the case where 

there is no external restorative force is obtained by putting  o = 0  in (4.3)  

 

                                                    ��Bi���0� + i���0�E = i�0�,                                         (4.4)   

where i�0� is the corresponding solution in this case. 

    The second step now is to use the solution i�0���, �, �� of equation (4.4) to derive 

solutions of equation (4.3), satisfying the boundary and initial conditions stated above 

in the following manner. Assume that the solutions of equations (4.3), i��, �, ��, are 

expanded in series in powers of  o, such that 

                        

     

     

                                          i = i�0� + oi�I� + o�i��� + ⋯  .                                    (4.5) 

Thus, in the presence of the perturbation we have for the zero’s order of the 

approximation the same equation (4.4), as expected, with the boundary and initial 

conditions given by 

 

                                        i�0���, �, 0� = ,��, ��,                                                      (4.6) 

 

                                         i�0�|/0 = ℎ��, ��.                                                          (4.7)      

For any order of the approximation, we have the system of inhomogeneous wave 

equations 

 

            ��Bi���q� + i���q�E = i�q� − W

J i�qVI� ,        r = 1, 2, 3, …,                                (4.8)  

with the initial conditions                                                                                          

                                        i�q���, �, 0� = 0,                                                               (4.9) 

                                          i�q�|/0 = 0;                                   j = 1, 2, 3, ... .       (4.10)     

                                                                                                 

The solutions of equations (4.4) – (4.10) are given by 

      i�q���, �, �� = ∑ ∑ t6,7�q�∞7/I ��� sin BC6�D E sin BC7�F E∞6/I   ,     j = 0, 1, 2,… ,    (4.11) 

where           

                                t6,7�0� ��� = 56,7 cos:;6,7�< + u6,7 sin:;6,7�<.                     (4.12) 

 

In equation (4.12) 56,7 is given as before by (3.2) and  
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                   u6,7 = JDFfMN,O K K ℎ��, �� sin BC6�D E 9>? BC7�F E L�L�,D�/0F�/v                (4.13)  

 

                                        ;6,7 = �P�6

D
 + 7


F
 .                                                       (4.14) 

From (4.8) and (4.11) we get 

 

            
w
xN,O�y� ��w
 + :;6,7<�t6,7�q� ��� = z


J t6,7�qVI���� ,     r = 1,2,3, … .                   (4.15) 

 

The solutions of (4.15) can be written in the form: 

 

    t6,7�q� ��� = z

JMN,O K t6,7�qVI��{� sin4;6,7�� − {�@L{0  ,       r = 1, 2, 3, …  .             (4.16) 

 

Hence, the solutions of (2.3) are finally given by 

             "��, �, �� = ∑ ∑ "6,7��, �, ��H7/IH6/I =∑ ∑ ∑ UVkl
 t6,7�q� ���oq sin BC6�D E sin BC7�F E .∞q/0∞7/I∞6/I                                            (4.17) 

 

From (4.12) and (4.16), we have 

 

    t6,7�I� ��� = W

|MN,O }56,7� sin:;6,7�< + u6,7 ~��Z�MNO�MN,O − � cos:;6,7�<��            (4.18)         

 

and 128:;6,7<�
!J × t6,7��� ��� = 56,7 �� sin:;6,7�<;6,7 − �� cos:;6,7�<� 

 

        +u6,7
���
�� �:MN,O<
 sin:;6,7�< − �MN,O �89:;6,7�< − ��9>?:;6,7�<

+ �:MN,O<
 49>?:;6,7�<@� − ���7
:MN,O<fv�:MN,O<MN,O ���
��.                  (4.19)                                               

Accordingly,  i�I���, �, �� and i�����, �, �� are calculated. From which the functions i  

and, hence, " are calculated.  

     

5. Results and Conclusion 
We have applied the perturbation method to the second-order of the approximation, 

which is sufficiently enough since the convergence of the solutions for our choice of 

initial functions and parameters is good.  

    In the numerical computations we have considered a rectangular membrane of sides % = 4 ft and * = 2 ft, the constant tension is 12.5 lb/ft, the density is 2.5 slugs/ft
2
, as 

for light rubber. Moreover, the constants ! and � are given by 

    

                     ! = �P/10   and �� = I��C
 ft
2
 /sec

2 
.  

    For the initial displacement we have tested several functions among which the best 

for producing remarkable vibrations which present the problem very well are  
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                                        ,��, �� = ���%� − ����*� − ���,                                    (5.1) 

                                        ,��, �� = L�%� − ����*� − ���,                                      (5.2)                                       

where L is a constant. All of the tested functions are positive continuous function of � 

and � in the intervals � ∈ �0, %� and � ∈ �0, *�. 
    For the initial velocity we also have 

                                                                 1��, �� = 0,                                              (5.3)                             

                                                              1��, �� = � + �,                                          (5.4) 

                                                             1��, �� = � − �.                                           (5.5)                             

 

    It is very interesting to note that, depending on % and * several functions "6,7, (3.8) 

or (4.17), may correspond to the same eigenvalue. Physically this means that there 

may exist vibrations having the same frequency but entirely different nodal lines 

(curves of points on the membrane that do not move).  

    In our model the eigenvalues are given by 

 

    
�0eN,OCf = √N = √25Q� + 100?� − 1 ,    Q = 1, 2, 3, … and ? = 1, 2, 3, … .       (5.6) 

    Accordingly, different functions "6,7 may correspond to the same value of g6,7. 

For example, we have N = 1999, for m = 4 and n = 4, and also for m = 8 and n = 2. 

Hence,    

                                                    gJ,J = g|,� = fC�0 √1999.       

But for Q = 4 and ? = 4, the corresponding function is 

 "J,J = UVW/� �5J,J�89 B�_�0 √1999tE + dJ,J9>? B�_�0 √1999tE� 9>?�P��9>?�2P��.  (5.7) 

 

And for m = 8 and n = 2, the corresponding function is 

 "|,� = UVW/� �5|,��89 B�_�0 √1999tE + d|,�9>? B�_�0 √1999tE� 9>?�2P��9>?�P��.  (5.8) 

 

These two functions are certainly different and have the nodal lines � = 1, � = 2, � =3, and � = I� , � = 1, � = �� in the first case and � = I� , � = 1, � = �� , � = 2, � = �� , � =3, � = ��  and � = 1, in the second case.                                                                                       

    For the sake of illustrations we present the vibrations obtained by using the initial 

displacement given by (5.1) and the initial velocity given by (5.4). In Figures 1-30 we 

present the displacements "��, �, ��, in ft, for � = 0, 1, 2, … , and 29, respectively.  

    It is seen from the figures that after 5 seconds the displacement is approximately 

equals to zero. The displacement of the membrane starts to be negative after 6 

seconds. 

    After 13 seconds, the displacement starts to be positive again but with too small 

values. After 27 seconds the membrane approximately stopped, so that the considered 

damping force acts for only 27 seconds.   
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Fig. 1 Displacement for t = 0                       Fig. 2 Displacement for t = 1 
 

            
 

Fig. 3 Displacement for t = 3                       Fig. 4 Displacement for t = 4 
 

          
Fig. 5 Displacement for t = 4                       Fig. 6 Displacement for t = 5 

      
Fig. 7 Displacement for t = 6                       Fig. 8 Displacement for t = 7 
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  Fig. 9 Displacement for t = 8                       Fig. 10 Displacement for t = 9 
 

     
 

Fig. 11 Displacement for t = 10                       Fig. 12 Displacement for t = 12 

    
 

Fig. 13 Displacement for t = 12                       Fig. 14 Displacement for t = 13 

         
Fig. 15 Displacement for t = 14                       Fig. 16 Displacement for t = 15 
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Fig. 17 Displacement for t = 16                       Fig. 18 Displacement for t = 17 

     
 
Fig. 19 Displacement for t = 18                       Fig. 20 Displacement for t = 19 

    
Fig. 21 Displacement for t = 20                       Fig. 22 Displacement for t = 21 
 

   
 

Fig. 23 Displacement for t = 22                       Fig. 24 Displacement for t = 23 
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Fig. 25 Displacement for t = 24                       Fig. 26 Displacement for t = 25 
 

   
Fig. 27 Displacement for t = 26                       Fig. 28 Displacement for t = 27 
 

      
 

Fig. 29 Displacement for t = 28                       Fig. 30 Displacement for t = 29 
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