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Abstract 
The Einstein cosmological constant is in fact not cosmological, and a value of it is 

given in terms of the curvature tensor. In the present paper we show that the 

curvature tensor is given in a direct form in terms of the field strength tensor, 

which may give a form of the equations of the field. A certain form of the field 

strength tensor is also introduced. 

 

1. The Einstein Cosmological Constant 
In physical cosmology, the cosmological constant (usually denoted by the Greek 

capital letter lambda: Λ) was proposed by Albert Einstein as a modification of his 

original theory of general relativity to achieve a stationary universe. Einstein 

abandoned the concept after the observation of the Hubble redshift indicated that 

the universe might not be stationary, as he had based his theory on the idea that 

the universe is unchanging [1]. However, the discovery of cosmic acceleration in 

1998 has renewed interest in a cosmological constant. 
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    Consider the Einstein equation 
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where    is the Einstein cosmological constant, R is the scalar curvature, κ is 

the curvature constant, and )(
ij

T  is the energy momentum tensor, and let 
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    Then from (1.1) and the Einstein – Maxwell's equation we can obtain (see e.g. 

[2], [3] Ch. 26) the equation 
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where  is a scalar and .4,...,1, kj  Let  
jk

δ
j

e
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g  . Then putting 

jk   in (1.2), multiplying the resulting equation by 
j

e , and adding for j  from 

1j  to 4j , we then get (loc. cit) 
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Hence, from (1.2) and (1.3) we get the equation 
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From (1.4), we get when putting 0τ 
jk

, i.e, in vacuum 
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    Equation (1.5) is the same as the Einstein equation in vacuum. Now, from (1.4), 

Einstein – Maxwell's equation can be rewritten in the form 

 

 

            






 )ihF

ih
(F

jk
g

4

1
-)ikg

ih
F

jh
(Fκ41 R

jk
g

jk
R              (1.6) 

 

We then get from (1.6) the field equation (loc. cit) 
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where κ  is the curvature constant, )(
jh

g is a metric tensor and )(
ih

F is the 

field strength tensor. So that (1.7) gives directly the curvature tensor )(
jk

R in 

terms of the field strength tensor )(
ih

F and the metric tensor )(
ih

g . 

Moreover, multiplying (1.7) by )(
jk

g  we get 
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     Equation (1.8) shows that the (scalar) curvature is proportional to the (scalar) 

field strength. 

    

2. The Radiant Equation  
Consider the wave equation 
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and the radiant equation introduced by the author ([2], ch. 23) 
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where 0),(ρρ  tx  is a given density function, π,2h  and h is 

Planck's constant. 

    Now let  
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and consider the 4- vector (A,C) where )
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( AAAA  and 

)1(,φ  iic , and φ satisfies the equation (2.1), and the vector A is 

given by the differential equation 
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where ψ  is given by the radiant equation (2.2).  
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    Then a solution of (2.1) can be given by 
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Also a solution of (2.3) can be given in the form 
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3. Particular Metric     

Let ,)(,22222 ctldGldfds  r where f  and G  are functions of 

r only. Then after some manipulations given in ([3] , Ch. 18) we have obtained 

the equations 
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where   is the curvature constant, and 
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Equation (3.1) gives G in terms of the square of the length of the (magnetic) 

vector B, and then (3.2) gives the function f  in terms of the square of the length of 

the (electric) vector E. In view of the smallness of the curvature constant κ   the 

changes in the functions G and f  from their Euclidean value one for each of 

them, may be represented by the equations 
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However, a particular form of the density function ),( tx   is considered, 

namely,   has been taken to be the gravitational density 
2r


 where   is the 

Newtonian gravitational constant ([3] or [4] Ch. 18), /r . Then taking 

into consideration the smallness of the constants   and ħ the function G has been 

obtained in the form (loc.cit.) 
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And the function f  has been also obtained from  (3.4) and (3.5) in the form 
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    So that, if M is small relative to r we may take in view of (3.6), the function f  

to be of the following form  
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Equation (3.7) is essentially different from the corresponding value of f  given in 

the metric of Schwarzchild. 
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