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Abstract  
In this paper, the methodology of fractional calculus is applied to the electric parallel 

RLC circuit. The existence and uniqueness of the solution of the model are proved. 

The mathematical model is solved by both Adomian decomposition and Laplace 

transform methods. A brief comparison between these methods is introduced. 
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1. Introduction 

Fractional derivatives provide excellent instruments for the description of 

memory and hereditary properties of various materials and processes. 

This is the main advantage of fractional derivatives in comparison with 

classical integer-order models, in which such effects are in fact neglected. 

The advantages of fractional derivatives become apparent in modeling 

mechanical and electrical properties of real materials, as well as in the 

description of rheological properties of rocks, and in many other 

applications in the fields of physics, signal processing, fluid mechanics, 

mathematical biology, and bioengineering [1-5]. The other large field 

which requires the use of derivatives of non-integer order is the recently 

elaborated theory of fractals, has opened farther perspectives for the 

theory of fractional derivatives, especially in modeling dynamical 

processes in self-similar and porous structures [6–9] 

    Capacitors and inductors are the main elements in analogue circuits 

and are used comprehensively in many electronic systems. However, the 

ideal capacitor and ideal inductor cannot exist in nature, because the 

impedance of the capacitor of form 1/ ( )j C  and the impedance of the 

inductor of the form ( )j L  would violate the causality. In fact, the 

dielectric materials exhibit a fractional behavior yielding the impedance 

of the real capacitor of the form 1/ [( ) ]j C   and the impedance of the 

real inductor of the form[( ) ]j L  , with ,    [10-14]. 
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2. Fractional Calculus Definitions and Concepts 

This section introduces some basic definitions and properties of fractional 

calculus theory [1], [10] and [11] 

Let 1 1 [ , ]L L a b , 0 ,a b    be class of Lebesgue integralable 

functions on[ , ]a b . 

 

Definition 1 

The Riemann-Liouville integral operator of order 0   of the function 
1( )v t L  is defined by  

                                    

1( ) ( )
( )

( )

t

a

a

t s v s
J v t d s


 


                               (2.1) 

where ( )   is the gamma function. As a special case, when 0a  , we 

write 0J J   
 

Definition 2  

The Riemann-Liouville fractional derivative of ( )v t  of order   
1m m    , is defined by  

                                 
( ) ( )

m
R m

a am

d
D v t J v t

d t

                   (2.2) 

 

Definition 3  

The Caputo fractional derivative of order ( 1, ]m m  , 1, 2, 3, ...m  , of 

the absolutely continuous function ( )v t  is defined by  

             

1
( )( )

( ) ( ) ( )
( )

tm m
m m

a a m

a

d t s
D v t J v t v s d s

dt m


  

 
                (2.3) 

 

When 0a   we can write 0D D  . 

 

Definition 4  

The Laplace transform of the function ( )v t , denoted by ( )V s , is defined 

by the equation 

                      0

( ) [ ( ) ] ( )s tV s v t e v t dt



  L                                          (2.4) 

Laplace transform of Caputo derivative is 

        
 

1
1 ( )

0
0

( ) ( ) (0) ,
n

k k

t
k

s V sD nv vt s


 




     
  L                     (2.5-a) 

 

Laplace transform of the Riemann-Liouville integral 

                              ( ) ( )J v t s V s L                                              (2.5-b) 
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3. Fractional Order Parallel RLC Circuit 

Our aim here is to generalize the model of parallel RLC circuit by using the 

following Caputo derivative: (for more details see [10], [12] and [13]) 

 

                                 ( ) ( ) , 0 1, 0c ci t C D v t t                                (3.1) 

 

                               ( ) ( ) , 0 1, 0lv t L D i t t                                 (3.2) 

Consider the circuit of figure (1) consisting of resistor R, capacitor C and 

inductor L which are connected in parallel, where 0(0) ,li I is the initial 

inductor current, 0(0)cv v  is initial capacitor voltage, 0 ( )u t  is the unit step 

function and ( )si t is the current source [19].  

 

 
Figure (1) 

This circuit can be modeled by the following fractional order integro-

differential equation  

                      
0

1 1
( ) ( ) ( ) ( ), 0t sC D v t J v t v t I i t t

L R

                           (3.3) 

By using equation (3.1), we can transform equation (3.3) to the following 

fractional order integral equation 

 

  
0

1 1 1 1
( ) ( ) ( ) ( (0) (0) ( ))c c c c c si t J i t J i t J v v I i t

LC RC L R

  
              (3.4) 

We write 

2 1 0

1 1
( ) ( , ( ) , ( ) ) ( ) ( ) ( (0) (0) ( ))c c si t f t J i t J i t k J i t k J i t J v v I i t

L R

           

where 1 2

1 1
( ) ( ), , , (0,1] , (0,1]ci t i t k k

R C L C
    

 
 

3.1 The state equation of the circuit 

We can describe parallel RLC circuit by the state equations of the form 

[15] 

             

 

1

1

22

( ) 1
0 0

( )
( )1

1 1 ( )( )
s

d x t

x td t L
i t

x td x t
C

C R Cd t









   
                           

                      (3.5) 
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where 1( ) ( )lx t i t  and 2( ) ( )cx t v t . 

    Assuming that the fractional order for inductor and capacitor are equal, 

i.e. q    the state equation may be described by the following 

equation: 

                          

( )
( ) ( ) , 0 1.

q

sq

d x t
A x t B i t q

d t
                                (3.6) 

The solution of equation (3.6) may be obtained as follows: 

                
0 0 0

0

( ) ( ) ( ) ( ) , (0)sx t t x t s B i s d s x x



                        (3.7) 

where 

                       
0

0

( ) ( )
( 1)

m m q
q

q

m

A t
t E A t

m q





  
 

 ,                                     (3.8) 

                            

( 1) 1

0

( )
( 1) )

m m q

m

A t
t

m q

 



 
 

                                              (3.9) 

and 

                                     ( ) ( ) ( ) ( )c s R li t i t i t i t                                     (3.10) 

where ( )q

qE A t  denotes the Mittage-Leffler matrix function. 

 

3.2 Existence and uniqueness of the solution 

Define the mapping :F E E  where E  is the Banach space , 

the space of all continuous functions on [0, ]T  with the norm    

 
                                                                                                                                                    

Theorem   

Let f satisfies the Lipschitz condition [2] then problem (3.4) has a unique 

solution [0, ]i C T  

Proof  
The mapping :F E E  is defined as 

 

( , , ) , , , [0, ]F i f t J i J i i y z C T    

 

then, ( , , ) ( , , )Fy Fz f t J y J y f t J z J z       

This implies that 

1 2Fy Fz k J y J z k J y J z       
 

1 11 2

0 0

( ) ( )
( ) ( )

t t
k k

Fy Fz t s y z ds t s y z ds       
    
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[0, ]
0
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[0, ]
0

( ) sup
( )

( ) sup
( )

t

t T

t

t T

k
Fy Fz t s y z ds

k
t s y z ds









    
 

 
 





 

11

0

12

0

( )
( )

( )
( )

t

t

k
Fy Fz y z t s ds

k
y z t s ds





    
 

 
  





 

1 11 2

0 0

( ) ( )
( ) ( )

t t
k k

Fy Fz y z t s ds t s ds 
 

      
    

 

1 2

( 1) ( 1)

k T k T
Fy Fz y z

  
    

      

If 1 2 1
( 1) ( 1)

k T k T
k

  
   

    
 we get 

Fy Fz k y z    

Therefore, the mapping F  is a contraction and there exists a unique 

solution [0, ]i C T  to the equation (3.4). 

 

4. Approximate Solution of the Model Using Different Methods 

In this section the Laplace transform and Adomian decomposition methods 

will be used to solve the model. 

 

4.1 Laplace transform method (LTM) 

Applying LTM to both sides of equations (3.3) and (3.4), we get 

              

1 1

0

1 1
(0) ( )

( )
1 1

c s

c

s v s I s I s
C CV s

s s
RC LC

  

 

 



 

                               (4.1) 

         

2 1 1
10(0) ( )

( ) (0)
1 1

c s
c c

C v s s I s I s
I s C v s

s s
RC LC

   


 

 
 

 

          (4.2) 

We then, use FORTRAN code to evaluate the inverse Laplace transform of 

(4.1) and (4.2) to get ( )cv t  and ( )ci t  at different values of and   

numerically. 

 

4.2 Adomian Decomposition Method (ADM) 

By using ADM, the solution is obtained as an infinite series in which 

each term can be easily obtained using the preceding terms that converge 
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rapidly towards the accurate solution. According to ADM, we can deduce 

from (3.4) the following recurrence relation [17, 18]: 

                
0 0

1 1
( ) (0) (0) ( )c c si t J v v I i t

L R

                                     (4.3) 

                      
1

1 1
( ) ( ) ( )n c ci t J i t J i t

LC RC

 

                              (4.4) 

And the solution of equation (3.4) will be 

                       0

1
( ) ( ) , ( ) ( ) (0)c j c c c

j

i t i t v t J i t v
C





                           (4.5) 

 

5. Numerical Examples 
In this section we will introduce three examples to describe the under 

damped, over damped and critical damped response. 

 

Example (1): Circuit under damped response 

In this example, we will use the following data [19]: 

c 0i (0)=0, v (0)=0, R =100 Ω, L=10H, C=1500 F, ( ) 10 ( )l si t u t   

The following figures represent the capacitor current and the capacitor 

voltage at different values of and   

 
Figure (2) the capacitor current ( )ci t  by LTM 
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Figure (3) the capacitor voltage ( )cv t  by LTM 

 
Figure (4) the capacitor current ( )ci t  by ADM 

 

 
Figure (5) the capacitor voltage ( )cv t  by ADM 
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Tables (1) and (2) show a comparison between the absolute error of LTM 

solution and ADM solution at 0.95    

 
Table (1) Absolute error of the capacitor                            Table (2) Absolute error of the capacitor 

                      current
 

( )
c

i t
         

                                                          voltage ( )
c

v t  

 

 

 

 

 

 

 

 

 

 

Example (2): Circuit under critical damped response 

In this example, we will use the following data [19]: 
041 , 10 , 1500 , (0) 0, and (0) 0, ( ) 10 ( ),l c sR L H C F i v i t u t         

The following figures represent the capacitor current and the capacitor 

voltage at different values of and   

 

 
Figures (6) the capacitor current ( )ci t  by LTM 

Error of ADM Error of LTM t 

3.24022×10
-10

 3.00324×10
-7

 .00001 

3.78222×10
-8

 0.0000194378 .09801 

3.94229×10
-8

 0.0000100606 .20301 

4.7104×10
-8

 1.3471×10
-6

 .40601 

1.25948×10
-8

 1.21259×10
-6

 .60201 

1.33746×10
-8

 5.13375×10
-7

 0.8050 

4.00347×10
-8

 1.40035×10
-7

 1.0010 

4.03993×10
-7

 1.96007×10
-7

 1.2040 

7.74968×10
-6

 4.96846×10
-8

 1.4000 

Error of ADM Error of LTM t 

4.61244×10
-9

 1.30124×10
-8

 .00001 

1.97342×10
-8 

0.00041708 .09801 

2.76396×10
-8

 0.000823928 .20301 

8.07493×10
-9

 0.000100992 .40601 

1.27829×10
-8

 0.0000776872 .60201 

8.86489×10
-8

 0.0000385886 0.8050 

5.94488×10
-7

 6.69449×10
-6

 1.0010 

0.0000150533 0.0000122533 1.2040 

0.000414719 1.81089×10
-7

 1.4000 
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Figures (7) the capacitor voltage ( )cv t  by LTM 

 
Figure (8) the capacitor current ( )ci t  by ADM 

 

 
Figure (9) the capacitor voltage ( )cv t  by ADM 
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Tables (3) and (4) show a comparison between the absolute error of LTM 

solution and ADM solution at 0.95    
 
Table (3) Absolute error of the capacitor                                    Table (4) Absolute error of the capacitor  

                    current
 

( )
c

i t                                                                                voltage ( )
c

v t  

 

 

 

 

 

 

 

 

 

Example (3): Circuit under over damped response 

In this example, we will use the following data [19]: 

c 0i (0) = 0,and, v (0)=0, R =30 Ω, L=10H, C = 1500 F , ( ) 10 ( )l si t u t   

The following figures represent the capacitor current and the capacitor 

voltage at different values of and   
 

 
Figures (10) the capacitor current ( )ci t  by LTM 

Error of ADM Error of LTM t 

0.0000703898 0.0000421898 .06 

0.0000422383 0.0000380383 .09 

0.0000265239 0.0000198239 .15 

6.18606×10
-6

 6.18606×10
-6

 .20 

8.60271×10
-6

 8.70271×10
-6

 .30 

0.0000116232 0.0000116232 .40 

9.91911×10
-6

 9.91911×10
-6

 .50 

4.88444×10
-6

 4.78444×10
-6

 .60 

8.76341×10
-6

 2.16341×10
-6

 .70 

0.00602672 8.17929×10
-7

 .80 

Error of ADM Error of LTM t 

0.00166401 0.000973406 .06 

0.000410432 0.000344232 .09 

0.00131311 0.00100491 .15 

0.00173184 0.00175884 .20 

0.00215543 0.00216433 .30 

0.00183661 0.00182901 .40 

0.00135523 0.00134553 .50 

0.000623407 0.000636307 .60 

0.000185037 0.000281337 .70 

0.075318 0.000115598 .80 
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Figures (11) the capacitor voltage ( )cv t  by LTM 

 

 
Figure (12) the capacitor current ( )ci t  by ADM 

 

 
Figure (13) the capacitor voltage ( )cv t  by ADM 
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Tables (5) and (6) show a comparison between the absolute error of LTM 

solution and ADM solution at 0.95    

 
Table (5) Absolute error of the capacitor                                 Table (6) Absolute error of the capacitor  

                           current ( )ci t                                                                   voltage ( )
c

v t    

 

Conclusion 

The fractional calculus is a powerful tool which generalizes the parallel 

RLC circuit. The fractional modeling introduces new parameters which 

provide more accurate representations of real capacitor and real inductor. 

The methods of ADM and LTM are suitable for solving the fractional 

order parallel RLC circuit. 
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