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Abstract 
Our main objective in this paper is to discuss and solve the necessary equations which explains the 

presence of a hydrogen atom in an external strong magnetic field. For this purpose we will discuss first 

the Maxwell’s equations for point charge. After that, we will formulate the Schrödinger’s equation which 

represents the interaction of electromagnetic field with a charged particle. As an example of this case we 

will discuss the solution of the Schrödinger’s equation for a hydrogrn atom which is presenting in an 

external strong magntic field parallel to the z-axis. For this atom we will consider the cases of the ground 

and first two excited states. Variations of the calculated energy eigenvalues with respect to the intensity 

of the field are given.  

 

1. Introduction 

We can consider the point charge as the elementary part of electrodynamics. Now, what 

is a point charge? A point charge can be defined as a term that we use for a charge that 

exist at a single point in space and does not have neither area nor volume; it cannot be 

measured directly since it only exists in theory [1]. What makes it interesting is that, 

even though we may think that nothing major or drastic should happen to a point charge 

since it is just a single point in space, but, as a matter of fact, the point charge do have 

some interactions with its surrounding. Here, by surrounding, we mean the 

electromagnetic field as it concerns electrodynamics. We can specify some limiting 

aspects as we will solely focus on what happens with the point charge. In 

electrodynamics, basically, there ought to be an interaction of charges with an 

electromagnetic field. However, the physical concept of the field in electrodynamics 

differs essentially from the field concept in Newtonian mechanics [2]. Take 

gravitational field as an example, which is the space in which gravitational forces act. 

In Newtonian mechanics, the values of these forces at any point of the field is 

determined by the instantaneous positions of the gravitating bodies no matter how far 

they are from the given point [1]. Such a field representation is not satisfactory in 

electrodynamics: during the time that an electromagnetic disturbance takes to move 

from one charge to another, the latter can move at a very great distance. Often, 

elementary charges (electrons, protons) have velocities close to the velocity of 

propagation of electromagnetic disturbances [2]. 

    In the electrodynamics of elementary charges, the finite velocity of propagation of 

electromagnetic disturbances is of fundamental significance. Considering point charges, 

the action of a field on the charge is always determined only by the field at the point 

where the charge is located, and only at the instant when the charge is at this point. As 

opposed to the action at Newtonian mechanics, such interactions are termed as short-

range [2]. Simply put, the equations of electrodynamics must describe the propagation 

of electromagnetic disturbances in space and the interaction of charges with the field, 

directly. In order to do that, we shall establish the basic equations of electrodynamics, 

starting from certain elementary laws. These laws will be used in the absence of matter 

consisting of atoms or, as usually said in electrodynamics, in the absence of a “material 

medium”. In other words, we can also say: in free space or vacuum. As is well-known, 

the four quantities that are used to describe electromagnetic field are the electric field, 
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the electric induction, the magnetic field and the magnetic induction [2]. The force 

acting on unit electric charge at a given point in space is called the electric field intensity, 

but, instead of the field intensity, we will simply state about the field at given point in 

space. Similarly, we just shorten magnetic field intensity to magnetic field. 

    The basic equations governing the motion of charges and currents in an 

electromagnetic field are the well-known Maxwell’s equations [2]. In dealing with the 

interaction of an atom with external magnetic or electric field, it is necessary to derive 

a Hamiltonian describing the system with a suitably chosen vector and scalar potentials. 

    In the present paper we calculated the energy eigenvalues of the ground and first few 

excited states of the hydrogen atom in an external magnetic field, by solving the 

Schr�̈�dinger equation for these states  

 

2. The Maxwell’s System of Equations 

The Maxwell’s system of equations in Gaussian units in the vacuum are [2]:  

 

                                                 ∇ × 𝑬 = −
1

𝑐

𝜕𝑯

𝜕𝑡
                                                        (2.1) 

 

                                                      ∇. 𝑩 = 0                                                              (2.2) 

 

                                             ∇ × 𝑩 =
1

𝑐

𝜕𝑬

𝜕𝑡
+

4𝜋

𝑐
𝒋                                                      (2.3) 

 

                                                    ∇. 𝑬 = 4𝜋𝜌                                                            (2.4)    

The conservation equation 

                                                    ∇. 𝑱 +
𝜕𝜌

𝜕𝑡
= 0                                                      

is satisfied automatically.  

 

In these equations, we consider 𝜌  and 𝒋  to be known. The unknowns, to be 

determined, are the fields 𝑬 and 𝑩. In order to satisfy equations (2.1) and (2.2), it is 

enough to put 

                                                  𝑯 = ∇ × 𝑨                                                             (2.5) 

and  

                                                 𝑬 = −
1

𝑐

𝜕𝑨

𝜕𝑡
− ∇𝜙                                                        (2.6) 

 

From equation (2.5) if we add the gradient of an arbitrary function to the vector potential, 

the magnetic field will not change, so that 

 

                                            𝑨 = 𝑨′ + ∇𝑓(𝑥, 𝑦, 𝑧, 𝑡)                                                    (2.7) 

 

In order that the addition of ∇𝑓 should not affect the electric field, we must also change 

the scalar potential: 

                                                   𝜙 = 𝜙′ −
1

𝑐

𝜕𝑓

𝜕𝑡
                                                         (2.8) 

 

Then, for the electric field, we obtain 

 

                              𝑬 = −
1

𝑐

𝜕𝑨

𝜕𝑡
− ∇𝜙 = −

1

𝑐

𝜕𝑨′

𝜕𝑡
− ∇𝜙′                                          (2.9) 
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The transformation equations (2.7), (2.8) are called the Gauge transformations [2]. 

Substituting (2.5) and (2.6) in (2.3) gives 

                         ∇ × ∇ × 𝑨 = −
1

𝑐2

𝜕2𝑨

𝜕𝑡2 −
1

𝑐

𝜕

𝜕𝑡
∇𝜙 +

4𝜋

𝑐
𝒋                                      (2.10) 

 

Since ∇ × ∇ × 𝑨 = ∇(∇. 𝑨) − ∇2𝑨, then, (2.9) is reduced to the following form: 

 

                             −∇2𝑨 +
1

𝑐2

𝜕2𝑨

𝜕𝑡2 + ∇ (∇. 𝑨 +
1

𝑐

𝜕𝜙

𝜕𝑡
) =

4𝜋

𝑐
𝒋                                   (2.11) 

 

Putting 𝑎 = ∇. 𝑨 +
1

𝑐

𝜕𝜙

𝜕𝑡
 and applying the transformations (2.7) and (2.8) on the 

potentials, we have 

 

                          𝑎 = ∇. 𝑨 +
1

𝑐

𝜕𝜙

𝜕𝑡
= ∇. 𝑨′ +

1

𝑐

𝜕𝜙′

𝜕𝑡
+ ∇2𝑓 −

1

𝑐2

𝜕2𝑓

𝜕𝑡2                            (2.12) 

 

If the arbitrary function 𝑓 has been chosen to satisfy the equation 

 

                                                ∇2𝑓 −
1

𝑐2

𝜕2𝑓

𝜕𝑡2 = 𝑎                                                     (2.13) 

 

Then, from (2.12), it is obvious that the potentials will be subject to the condition 

 

                                                 ∇. 𝑨′ +
1

𝑐

𝜕𝜙′

𝜕𝑡
= 0                                                      (2.14) 

 

This is called the Lorentz condition [2]. If we consider that the transformation (2.7) and 

(2.8) are performed so that the Lorentz condition is satisfied; the primes in the potentials 

can then be omitted, by setting 𝑎 equals to zero. 

    From the Lorentz condition and (2.11), we obtain the equation for a vector potential: 

 

                                           ∇2𝑨 −
1

𝑐2

𝜕2𝑨

𝜕𝑡2 = −
4𝜋

𝑐
𝒋                                                    (2.15) 

 

From (2.4) and (2.6), we have 

 

∇. 𝑬 = −
1

𝑐

𝜕

𝜕𝑡
∇. 𝑨 − ∇2𝜙 = 4𝜋𝜌 

 

Substituting ∇. 𝑨 from the Lorentz condition (2.14), we obtain 

 

                                        ∇2𝜙 −
1

𝑐2

𝜕2𝜙

𝜕𝑡2 = −4𝜋𝜌                                                (2.16) 

Equations (2.15) and (2.16) each contains only one unknown. Therefore, each equation 

for potential does not depend on the rest and can be solved separately. The equations 

for potentials are second order with respect to coordinate and time derivatives. For a 

solution, it is necessary to give not only the initial values of the potentials, but also the 

initial values of their time derivatives. 

 

3. The Schrödinger Equation for an Electron in an Electromagnetic Field  

In the absence of interaction with the electromagnetic field, it is easily seen that the 

Hamilton equations [3] 
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𝑑𝑥𝑖

𝑑𝑡
=

𝜕𝐻

𝜕𝑝𝑖
  ,   

𝑑𝑝𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥𝑖
                                                    (3.1) 

with 

                                         𝐻 =
𝑷2

2𝜇
+ 𝑉(𝒓)                                                             (3.2) 

yield 

                                       𝜇
𝜕2𝑥𝑖

𝜕𝑡2 = −
𝜕𝑉

𝜕𝑥𝑖
= 𝐹𝑖                                                         (3.3) 

 

    The Hamiltonian for the interaction of an electron with an external electromagnetic 

field, represented by the potentials 𝑨(𝒓, 𝑡), ∅(𝒓, 𝑡) is given by [3] 

   

                                 𝐻 =
(𝑷+

𝑒

𝑐
𝑨(𝒓,𝑡))2

2𝜇
− 𝑒 ∅(𝒓, 𝑡)                                                  (3.4) 

The Hamilton equations of motion are 

 

                                          
𝑑𝑥𝑖

𝑑𝑡
=

𝜕𝐻

𝜕𝑝𝑖
=

𝑝𝑖+
𝑒

𝑐
𝐴𝑖

𝜇
                                                        (3.5) 

and 

 

                           
𝑑𝑝𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥𝑖
= −

𝑒

𝜇𝑐
(𝑝𝑘 +

𝑒

𝑐
𝐴𝑘)

𝜕𝐴𝑘

𝜕𝑥𝑖
+ 𝑒

𝜕∅

𝜕𝑥𝑖
                               (3.6)  

 

Thus, from (3.1)   

                                    𝜇
𝑑2𝑥𝑖

𝑑𝑡2 =
𝑑

𝑑𝑡
(𝑝𝑖 +

𝑒

𝑐
𝐴𝑖) 

 

  =
𝑑𝑝𝑖

𝑑𝑡
+

𝑒

𝑐
(

𝜕𝐴𝑖

𝜕𝑡
+

𝜕𝐴𝑖

𝜕𝑥𝑘

𝑑𝑥𝑘

𝑑𝑡
) = 𝑒

𝜕∅

𝜕𝑥𝑖
+

𝑒

𝑐

𝜕𝐴𝑖

𝜕𝑡
−

𝑒

𝑐

𝜕𝐴𝑘

𝜕𝑥𝑘

𝑑𝑥𝑘

𝑑𝑡
+

𝑒

𝑐

𝜕𝐴𝑖

𝜕𝑥𝑘

𝑑𝑥𝑘

𝑑𝑡
                        (3.7) 

 

The first two terms are seen to be equal to –e𝐸𝑖   and the second two terms can be 

checked to equal - 
𝑒

𝑐
𝒗 ∧ 𝑩. Thus H given by (3.4) is the correct choice of Hamiltonian. 

 

The Schr�̈�dinger equation for an electron in an electromagnetic field  takes the form 

[3]  

  

                      [
(

ℏ

𝑖
∇+

𝑒

𝑐
𝑨(𝒓,𝑡))2

2𝜇
− 𝑒∅(𝒓, 𝑡)] 𝜓(𝒓, 𝑡) = 𝑖ℏ

𝜕𝜓(𝒓,𝑡)

𝜕𝑡
                                  (3.8) 

 

where we have replaced the operator 𝑷 by 
ℏ

𝑖
∇. Before proceeding with the solution of 

the energy eigenvalue equation, we need to ask what happens to gauge invariance. If 

we write the equation in terms of 𝑨′ and ∅′, defined in (2.7) and (2.8), the preceding 

equation takes the form  

 

         [  
(

ℏ

𝑖
∇+

𝑒

𝑐
𝑨(𝒓,𝑡)+

𝑒

𝑐
∇f(𝒓,t))2

2𝜇
− 𝑒∅′(𝒓, 𝑡) +

𝑒

𝑐

𝜕𝑓(𝒓,𝑡)

𝜕𝑡
  ] 𝜓(𝒓, 𝑡) =  𝑖ℏ

𝜕𝜓(𝒓,𝑡)

𝜕𝑡
              (3.9)  
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which looks like a different equation. It is easy to see that if the transformations (2.7) 

and (2.8) are accompanied by a phase change with a wave function 𝜓(𝒓, 𝑡) to 𝜓′(𝒓, 𝑡) 

where [3] 

                                                                  

                                      𝜓′(𝒓, 𝑡) = 𝑒𝑖∧(𝒓,𝑡)𝜓(𝒓, 𝑡)                                              (3.10) 

then, since 

 

                                       
𝜕𝜓

𝜕𝑡
=  −𝑖

𝜕∧

𝜕𝑡
𝜓 + 𝑒−𝑖∧ 𝜕𝜓′

𝜕𝑡
                                              (3.11) 

and 

                                      
ℏ

𝑖
∇ 𝜓 = −ℏ(∇ ∧)𝜓 − 𝑒−𝑖∧ ℏ

𝑖
∇𝜓′                                  (3.12) 

 

we get the original equation in terms of 𝑨′, ∅′ and 𝜓′ provided  

 

                                         ∧ (𝒓, 𝑡) =
𝑒

ℏ𝑐
𝑓(𝒓, 𝑡)                                                    (3.13) 

 

Let us return to Schr�̈�dinger equation, we shall specialize to time-independent field so 

that 𝑨 = 𝑨(𝒓) and ∅ = ∅(𝒓). In that case we can write 

  

                                        𝜓(𝒓, 𝑡) = 𝑒−𝑖
𝐸𝑡

ℏ 𝜓(𝒓)                                                   (3.14) 

and 

 

              [
1

2𝜇
(

ℏ

𝑖
∇ +

𝑒

𝑐
𝑨) . (

ℏ

𝑖
∇ +

𝑒

𝑐
𝑨) − 𝑒∅(𝐫)] 𝜓(𝒓) = 𝐸𝜓(𝒓)                         (3.15)  

 

Equation (3.15) can be written in the form  

       

     −
ℏ2

2μ
∇2𝜓 −

ieℏ

μc
𝑨. ∇𝜓 −

ieℏ

2μc
(∇. 𝑨)𝜓 +

e2

2μc2 A2𝜓 − e∅(𝐫)𝜓 = 𝐸𝜓                    (3.16) 

  

We now make use of the freedom to choose a gauge function 𝑓(𝒓)  such that                            

  ∇. 𝐀(𝐫) = 0  to get  

 

            −
ℏ2

2μ
∇2𝜓 −

ieℏ

μc
𝑨. ∇𝜓 +

e2

2μc2 A2𝜓 − e∅(𝒓)𝜓 = 𝐸𝜓.                               (3.17) 

 

4. The Small B-field and the Normal Zeeman Effect 

For a constant uniform magnetic field, 𝑩, we may take [3] 

  

                                          𝑨 =
−1

2
 𝒓 ∧ 𝑩                                                              (4.1) 

 

This means that the three components of 𝑨 are  

 

                𝑨 =
−1

2
 (𝑦 𝐵𝑧 − 𝑧 𝐵𝑦 , 𝑧𝐵𝑥 − 𝑥𝐵𝑧  , 𝑥𝐵𝑦 − 𝑦𝐵𝑥  ).                                 (4.2)  

 

and consequently ∇ ∧ 𝑨 =  𝑩. Hence the second term in (3.17) becomes  

 

              −
ieℏ

2μc
(𝑩 ∧ 𝒓 ). ∇𝜓 =

e

2μc 
𝑩. 𝒓 ∧

ℏ

 i 
∇𝜓 = 

e

2μc 
𝐁. 𝐋ψ                                 (4.3) 
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If the B-field is small and parallel to the 𝑧-axis, equation (3.17) after neglecting the 

term 
e2

2μc2 A2𝜓 and setting  ∅(𝒓) = 0, is solved by the perturbation theory with 

 

                               𝐻′ =
𝑒

2𝜇𝑐
𝑩. 𝑳 =

𝑒

2𝜇𝑐
𝐵𝐿𝑧 = 𝜔𝐿𝐿𝑧                                                   (4.4)                  

 

where 𝜔𝐿  is known as the Larmor frequency [3]. 

    If the unperturbed Hamiltonian has spherical symmetry, the eigenstates are given by 

𝑢𝑛ℓ𝑚 such that the perturbation energy for such a state is given by 

 

                                                𝐸′ = ℏ𝜔𝐿𝑚                                                              (4.5)  

 

where 𝑚 is the 𝑧-component of the angular momentum eigenvalue, with 

 

                                       𝑚 = −ℓ, − ℓ + 1, −ℓ + 2, … , ℓ.  

 

This result is called the normal Zeeman effect [3], the spliting of the energy levels into 

components (as 𝑚 varies) due to the application of the constant weak magnetic field on 

the atom. Note that in the current model, we have not included the spin of the electron.  

 

5. Large Magnetic Field  

If we take into account the quadratic term in 𝑩, the Schr�̈�dinger equation (3.17), with 

∅ = 0, takes the form   

 

                  −
ℏ2

2μ
∇2𝜓 +

e𝐵

2μc 
  L𝑧ψ +

e2B2

8μc2
(x2 + y2)𝜓 = 𝐸𝜓                                (5.1)                     

  

The presence of the potential (x2 + y2) suggests the use of cylindrical coordinates for 

the separation of the variables. Writing 

 

                                 x =  𝜌 cos 𝜑 , y =  𝜌 sin 𝜑                                                  (5.2) 

 

the Laplacian operator is then given by 

  

                         ∇2=
𝜕2

𝜕𝑧2 +
𝜕2

𝜕 𝜌2 +  
1

 𝜌
 

𝜕

𝜕 𝜌 
 +  

1

 𝜌2  
𝜕2

𝜕 𝜑2.                                              

 

We now write [3] 

  

                                 𝜓( 𝒓) = 𝑢𝑚 (𝜌) 𝑒𝑖𝑚𝜑 𝑒𝑖𝑘𝑧                                                    (5.3) 

 

The differential equation satisfied by 𝑢𝑚 (𝜌) is then given by 

 

      
𝑑2𝑢

𝑑𝜌2 +
1

 𝜌
 

𝑑𝑢

𝑑𝜌 
−

𝑚2

𝜌2  𝑢 −
e2B2

4ℏ2c2  𝜌2 𝑢 + ( 
2𝜇 𝐸

ℏ2 −  
𝑒𝐵ℏ𝑚

ℏ2𝑐
− 𝑘2)  𝑢 = 0                 (5.4) 

 

If we introduce the dimensionless variable  

 

                                               𝑥 =  √
𝑒𝐵

 2ℏ 𝑐
  𝜌                                                          (5.5) 
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we can rewrite (5.4) in the form  

 

                        
𝑑2𝑢

𝑑𝑥2 +
1

 𝑥
 

𝑑𝑢

𝑑𝑥 
−

𝑚2

𝑥2 𝑢 −  𝑥2𝑢 + 𝜆𝑢 = 0                                           (5.6) 

where 

  

                             𝜆 =  
4𝜇 𝑐

𝑒𝐵ℏ
(E − 

ℏ2k2

2μ
) − 2m                                                       (5.7) 

 

The assymptotic behaviours of (5.6) require that we assume that the solution of (5.6) 

can be given by  

  

                            𝑢(𝑥) =  x| 𝑚| e− 
𝑥2

2  𝐺(𝑥)                                                           (5.8)   

where 𝐺(𝑥) satisfies the following differential equation 

  

                       
𝑑2𝐺

𝑑 𝑥2 + ( 
2|𝑚|+1

 𝑥
− 2𝑥 )

𝑑𝐺

𝑑𝑥 
+ ( 𝜆 − 2 − 2|𝑚|)𝐺 =0                       (5.9) 

 

If we change the variable to   𝑦 =  𝑥2, we get  

 

                              
𝑑2𝐺

𝑑 𝑦2 + ( 
|𝑚|+1

𝑦
− 1 )

𝑑𝐺

𝑑 𝑦 
+

( 𝜆−2−2|𝑚|)

4𝑦
𝐺 = 0                         (5.10)  

 

Solving this equation in series 

  

                                          G(y) = ∑ 𝑎𝑛  𝑦
𝑛∞

0                                                      (5.11) 

 

we get the following requerrence relation for the coefficients 𝑎𝑛     

 

                              𝑎𝑛+1  =  
𝑛+

|𝑚|

2
+

1

2
−

 𝜆

4

{( 𝑛+1) (𝑛+|𝑚|+1 )}    
 𝑎𝑛                                              (5.12)  

 

In order that the eigenfunction 𝜓( 𝒓), and so is G(y), is a well-behaved function, it must 

be finite as its variables tend to ±∞ and accordingly it must terminates. Let the last 

term in (5.11) is  𝑎𝑛𝑟   then 

 

          𝑛𝑟  =
𝜆

4
−

|𝑚|+1

2
  ,  𝑛𝑟  = 0,1,2, … 

 

and we finaly obtain 

 

 

                   𝜆 =  
4𝜇 𝑐

𝑒𝐵ℏ
(E − 

ℏ2k2

2μ
) − 2m = 4 𝑛𝑟  + 2(|𝑚| + 1)                          (5.13) 

 

where 
ℏ2k2

2μ
 is the energy with the kinetic energy of the free motion in the 𝑧-direction. 

Accordingly, the perturbed energy due to the presence of the magnetic field is then 

given by 

 

                E =  
ℏ2k2

2μ
+  

𝑒𝐵ℏ

2𝜇 𝑐
 ( 2 𝑛𝑟  + (|𝑚| + 1) +m )                                        (5.14) 

http://www.mathematics.alexjournals.org/


ALEXANDRIA JORNAL OF MATHEMATICS (ISSN 2090-4320) 

AVAILABLE ONLINE AT www.mathematics.alexjournals.org 
 

 

 

Volume 5 - No.1 - March 2015 

 Volume 5 - No.1 - March 2015 

 

50 

The function G(y) defined as given by (5.11) and (5.12) is the associated Laguerre 

polynomial [4] 

 

                                                 𝐺(𝑦) = 𝐿𝑛𝑟

|𝑚|(𝑦)                                                      (5.15) 

 

If we compare the magnitudes of the quadratic term in 𝐵 to that of the linear one in 

equation (5.1) we see that the ratio is of the order of [3]  

 

                                       [
quadratic term

linear term
] ≈

𝐵

9×109  gauss 

 

Thus, in atomic systems, with the kind of fields available in the Laboratory, that is 𝐵 ≤
105 gauss, the quadratic term is certainly negligible. 

 

6. The Hydrogen Atom in the Presence of Magnetic Field 

6.1 The Groud State (1s) 

Since the pricipal quantum number 𝑛 = 𝑛𝑟 + ℓ + 1, where 𝑛𝑟  is the radial quantum 

number, ℓ  is the orbital angular momentum quantum number and 𝑚  is the 𝑧 -

component of ℓ, the ground state of the hydrogen atom [5]: (1s) has, 𝑛𝑟 = 𝑚 = 0 and 

𝑛 = 1, 𝑘 = 0. Taking into account the potential energy due to the interaction between 

the nucleus and the electron of mass 𝑚𝑒 and charge −𝑒, the total energy in the presence 

of the field is then obtained.  

  

    In Table-1 we present the values of the ground state energy of the hydrogen atom in 

the presence of the magnetic field as function of the field intensity 𝐵.  

 

Table-1 Variation of the ground state energy (𝐸) of the hydrogen atom in the presence 

of the magnetic field as function of the field intensity (𝐵).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐵 in gauss  𝐸 in atomic units  

0.0 -0.4997300 

10 -0.4632100 

20 -0.4267000 

30 -0.3901800 

40 -0.3536600 

50 -0.3171500 

60 -0.2806300 

70 -0.2441200 

80 -0.2076000 

90 -0.1710800 

100 -0.1345700  

102.64 -0.1249325 

136.85 0.0000039 
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In Table-1, the value of 𝐵 which equals 102.64 corresponds to the first excited state 

energy of the hydrogen atom in free space, while the value 136.85 corresponds to the 

ionization energy. 

 

6.2 Excited States of Hydrogen 

The first excited state of hydrogen [5] has 𝑛 = 2, so that 𝑛𝑟 + ℓ = 1. Hence, 𝑛𝑟 = 0 

and ℓ = 1, 𝑚 = 1, 0, −1. This state is known as the 2p-state. Also, 𝑛𝑟 = 1, ℓ = 0, 𝑚 =
 0. This state is known as the 2s-state. So that, we have the states: 2p, 𝑚 = 0, 2p, 𝑚 =
1, 2p, 𝑚 = −1, 2s, 𝑚 = 0. The next excited states have 𝑛 = 3. Hence, we have the 

states: 3d, 𝑚 = 2, 1, 0, −1, −2. Also, the states: 3p, 𝑚 = 1, 0, −1, and the state: 3s, 

𝑚 = 0. And so on for the other excited states.      

 

In Table-2 we present the energy eigenvalues of the first excited state 2p, 𝑚 = 0 of the 

hydrogen atom in the presence of the magnetic field as function of the field intensity 𝐵. 

 

Table-2 Variation of the energy of the first excited state 2p, 𝑚 = 0 of the hydrogen 

atom in the presence of the magnetic field as function of the field intensity 𝐵. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The last value in Table-2 corresponds to the excited state 3s of hydrogen in free space. 

 

6.3 The Second Excited State (2s, 𝑚 = 0): (Same as (2p, 𝑚 = 1). 

For this state we have 𝑛 = 2, 𝑛𝑟 = 1, ℓ = 0, 𝑚 = 0 

In Table-3 we present the energy eigenvalues of the excited state 2s, 𝑚 = 0 of the 

hydrogen atom in the presence of the magnetic field as functions of the field intensity 

𝐵. These values are the same for the excited state (2p, 𝑚 = 1).   

 

 

 

 

 

 

 

𝐵 in gauss  𝐸 in atomic units  

0 -0.1249325 

2 -0.1176300 

4 -0.1103300 

6 -0.1030200 

8 -0.0957190 

10 -0.0884160 

12 -0.0811130 

14 -0.0738100 

16 -0.0665060 

18 -0.0592030 

19.007 -0.055526 
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Table-3 Variations of the energies of the excited state (2p, 𝑚 = 1) of the hydrogen atom 

in the presence of the magnetic field as functions of the field intensity 𝐵.  

  

 

 

    

 

 

 

 

 

 

 

  

 

 

The last value in Table-3 corresponds to the excited state 3s of hydrogen in free space. 
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Appendix I 

 

1) Hydrogen atom reduced mass is μ =
𝑚𝑒𝑀

𝑚𝑒+𝑀
=

1

1+
𝑚𝑒
𝑀

=
1

1+
0.00054858

1.007276

=  0.99946. 

2) Atomic units 

(ℏ = 𝑒 = 𝑚𝑒 = 𝑎0 = 1, 𝑐 = 137.036).  

 

3) Ground state energy eigenvalue of hydrogen in free space (𝑛 = 1) 

− 
μ𝑒4

2ℏ2𝑛2 = −
μ

2
= −

0.99946 

2
= −0.49973 (a.u.) 

 

4) Energy of the hydrogen atom in external magnetic field: 

 

            E =  − 
μ𝑒4

2ℏ2𝑛2 +  
𝑒𝐵ℏ

2𝜇 𝑐
 ( 2 𝑛𝑟  +  (|𝑚| + 1) + m ) = −

μ

2𝑛2 +
𝐵

2μ×137
(2 𝑛𝑟  +

               (|m| + 1) + m ) = −
0.99946

2𝑛2 +
𝐵

2×0.99946×137
(2 𝑛𝑟  +  (|𝑚| + 1) + m ) =

               −
0.49973

𝑛2 +
𝐵

 273.85
(2𝑛𝑟 + |𝑚| + 𝑚 + 1). 

 

𝐵 in gauss  𝐸 in atomic units 

0 -0.1249325 

1 -0.1139800 

2 -0.1030200 

3 -0.0920680 

4 -0.0811130 

5 -0.0701580 

6 -0.0592030 

6.3357 -0.0555260 
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5) Ground state energy of the hydrogen atom in external magnetic field: 

        

            E = −
0.49973

𝑛2 +
𝐵

 273.85
= −0.49973 +

𝐵

 273.85
. 

 

6) First excited state energy of the hydrogen atom (2p, 𝑚 = 0 ) in external 

magnetic field: 

 

        E = −
0.49973

4
+

𝐵

 273.85
= −0.1249325 +

𝐵

 273.85
  

 

7) Excited state energy of the hydrogen atom (2p, 𝑚 = 1) in external magnetic 

field  

 

 𝐸 = −
0.49973

4
+

3𝐵

 273.85
= −0.1249325 +

3𝐵

 273.85
. 

 

8) Excited State energy of the hydrogen atom (2p, 𝑚 = −1) in external magnetic 

field  

 

E = −
0.49973

4
+

𝐵

 273.85
= −0.1249325 +

𝐵

 273.85
. The same as (2p, 𝑚 = 0 ). 

This is because we did not used the effect of the electron spin.   

  

9) Second excited state of the hydrogen atom (2s): 𝑛 = 2, 𝑛𝑟 = 1, ℓ = 0, 𝑚 = 0 

 

𝐸 = −
0.49973

4
+

3𝐵

 273.85
= −0.1249325 +

3𝐵

 273.85
 . The same as (2p, 𝑚 = 1 ). 

This is because we did not used the effect of the electron spin.   

 

10) If the spin of the electron is taken into account, then equation (5.1) is 

replaced by [6]              

 

        −
ℏ2

2μ
∇2𝜓 +

e𝐵

2μc 
 (L𝑧 + 2𝑠𝑧) ψ +

e2B2

8μc2
(x2 + y2)𝜓 = 𝐸𝜓                           (A.1)                          

 

        where 𝑠𝑧 is the 𝑧-component of the electron spin. 𝑠 =
1

2
, 𝑠𝑧 = ±

1

2
.   
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