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Abstract. Linear partition Arihant (LPA) codes [2] have been in-
troduced by the author in [2] and a study of error correcting/detecting
capabilities of these code was made with respect to the random block
errors. Also, the concept of P -burst errors has been formulated by
the author in [4] to study clustered block errors that occur during
the process of communication. In this paper, we take up the prob-
lem of simultaneous correction of random block errors and P -burst
errors in LPA spaces and obtain a construction upper bound on the
number of parity check digits required for the same.
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1. Introduction

P -burst error correcting/detecting codes [4] are suitable for correct-
ing/detecting block errors which do not occur independently but are clus-
tered over a particular block length. These type of errors occur in many
situations. One important and practical situation is in which the mes-
sage is disturbed over a particular block length together with occasional
disturbances, thus, creating simultaneously P -bursts as well as random
block errors. Such a situation arise, e.g., in semiconductor memory sys-
tems where the memory is highly vulnerable to clustered block errors due
to bombardment of strong radioactive particles such as cosmic particles on
RAM chips and occasional/random block errors result from decay of RAM
chips. Therefore, in actual communication/storage while it is important
to consider correction of P -bursts, care must be taken to correct random
block errors of upto a specified Arihant weight irrespective of the block
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position where they occur. Keeping this in view, in this paper, we obtain
a construction upper bound on the number of parity check digits required
for LPA codes correcting simultaneously random and P -burst block errors.

2. Preliminaries

Let q, n be positive integers with q > 1. Let Zq be the ring of integers
modulo q. Let Zn

q be the set of all n-tuples over Zq. Then Zn
q is a module

over Zq. For q prime, Zq becomes a field and Zn
q becomes a vector space

over Zq. A partition P of the positive integer n is defined as

P : n = n1 + n2 · · ·+ ns where

1 ≤ n1 ≤ n2 ≤ · · · ≤ ns, s ≥ 1.

The partition P is denoted as

P : n = [n1][n2] · · · [ns].

In the case, when

P : n = [m1] · · · [m1]︸ ︷︷ ︸
l1- copies

[m2] · · · [m2]︸ ︷︷ ︸
l2- copies

· · · [mr] · · · [mr]︸ ︷︷ ︸
lr- copies

,

we write
P : n = [m1]

l1 [m2]
l2 · · · [mr]

lr ,

where m1 < m2 < · · · < mr.

Given a partition P : n = [n1][n2] · · · [ns] of the positive integer n, the
module space Zn

q over Zq can be viewed as a direct sum

Zn
q = Zn1

q ⊕ Zn2
q ⊕ · · · ⊕ Zns

q ,

or

V = V1 ⊕ V2 ⊕ · · ·Vs,

where V = Zn
q and Vi = Zn1

q for all 1 ≤ i ≤ s.

Consequently, each vector v ∈ Zn
q can be uniquely written as v = (v1, v2, · · · , vs)

where vi ∈ Vi = Zni
q for all 1 ≤ i ≤ s.
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Here vi(1 ≤ i ≤ s) is called the ith block of block size ni of the vector v.

Further, we define the modular value |a| of an element a ∈ Zq by

|a| =

{
a if 0 ≤ a ≤ q/2
q − a if q/2 < a ≤ q − 1.

We note that non-zero modular value |a| can be obtained by two different
elements viz. a and q − a of Zq provided {q is odd} or {q is even and a 6=
[q/2]} i.e.

|a| = |q − a| if





q is odd
or
q is even and a 6= q/2.

If q is even and a = [q/2] or if a = 0, then |a| is obtained in only one
way viz. |a| = a. Thus there may be one or two equivalent values of |a|
which we shall refer to as repetitive equivalent values of a. The number of
repetitive equivalent values of a will be denoted by ea where

ea =

{
1 if { q is even and a = [q/2]} or {a = 0}
2 if { q is odd and a 6= 0} or {q is even, a 6= 0 and a 6= [q/2]}.

3. Definitions and notations

We begin with the discussion of LPA codes [2]:

Let n, q be positive integers with q > 1. Let P : n = [n1][n2] · · · [ns]
be a partition of n. We define Arihant metric on Zn

q corresponding to the
partition P as follows:

Let v = (v1, v2, · · · , vs) ∈ Zn
q = Zn1

q ⊕ Zn2
q ⊕ · · · ⊕ Zns

q . The Arihant
weight of the ith block vi ∈ Zni

q (1 ≤ i ≤ s) of the vector v corresponding
to the partition P of n is defined as

wP
A(vi) =

ni
max
j=1

|v(i)
j |

where

vi = (v
(i)
1 , v

(i)
2 , · · · , v(i)

ni
) ∈ Zni

q .
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Thus the Arihant weight of a block is the maximum modular value amongst
all its components. Then the Arihant weight of the vector v = (v1, v2, · · · , vs) ∈
Zn1

q ⊕ Zn2
q ⊕ · · · ⊕ Zns

q corresponding to the partition P is defined as the
sum of Arihant weights of all its blocks i.e.

W P
A (v) =

s∑

i=1

wP
A(vi).

For any u = (u1, u2, · · · , us) and v = (v1, v2, · · · , vs) ∈ Zn
q = Zn1

q ⊕Zn2
q ⊕· · ·⊕

Zns
q , we define the Arihant distance (or Arihant metric) dP

A(u, v) between
u and v as

dP
A(u, v) = wP

A(u − v).

Then dP
A is a metric on Zn

q = Zn1
q ⊕ · · · ⊕ Zns

q .

If the partition P is clear from the context, we shall denote Arihant
weight by wA and Arihant metric by dA only.

Definition 3.1 [2]. A linear partition Arihant (LPA) code corresponding
to the partition P : n = [n1] · · · [ns] is a Zq-submodule of Zn

q = Zn1
q ⊕Zn2

q ⊕
· · · ⊕ Zns

q equipped with the Arihant metric and is denoted as [n, k, dA; P ]
or [n, k; P ] code where

k = rankZq(V ),

and

dA = dA(V )

= minimum Arihant distance

of V

= min{dA(u, u′) | u, u′ ∈ V,

u 6= u′}.

Remark 3.2.

1. For P : n = [1]n, the linear partition Arihant codes reduce to the
classical Lee weight codes [6,7]. For this partition, the Arihant dis-
tance and Arihant weight reduce to classical Lee distance and Lee
weight respectively.
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2. For q = 2, 3, the linear partition Arihant codes reduce to the linear
error-block codes [1] and the Arihant metric reduces to the π-metric
introduced by Feng et al. [1].

3. In general, we have

π-metric ≤ Arihant metric

≤ Lee metric,

or equivalently

π-weight ≤ Arihant weight

≤ Lee weight.

We now define P -burst in Zn
q = Zn1

q ⊕ Zn2
q ⊕ · · · ⊕ Zns

q as follows [4].

Definition 3.3 [4]. Let n be a positive integers and P : n = [n1][n2] · · · [ns],
1 ≤ n1 ≤ n2 ≤ · · · ≤ ns be a partition of n. A P -burst of block length

b (1 ≤ b ≤ s) is a vector v = (v1, v2, · · · , vs) ∈ Zn
q =

s⊕

i=1

Zni
q such that all

the non-zero blocks in v are confined to some b consecutive block positions,
the first and last of which are non-zero.

Definition 3.4 [4]. A P -burst of block length b or less (1 ≤ b ≤ s) is a
P -burst of block length t where 1 ≤ t ≤ b ≤ s.

Throughout this paper, we shall use the following notations:

1. [x] = The largest integer less than or equal to x.

2. dxe = The smallest integer greater than or equal to x.

3. Qi=The sum of repetitive equivalent values up to i i.e.,

Qi = e0 + e1 + · · ·+ ei

where ei denotes the repetitive equivalent value of i.
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4. Construction upper bound for LPA codes correct-
ing simultaneously random and P -burst block er-
rors

In this section, we obtain a sufficient bound on the number of parity
checks required for an LPA code that correct all random block errors of
Arihant weight t or less (t ≥ 1) simultaneously with all P burst errors of
block length b or less (b ≥ 1) with Arihant weight w or less (w ≥ t).

To prove the result, we need the following.

Let A
(n1,n2,···,ns)
t,q [5] denote the number of all n-vectors corresponding

to the partition P : n = [n1][n2] · · · [ns] with 1 ≤ n1 ≤ n2 ≤ · · · ≤ ns

having Arihant weight t over Zq. Then A
(n1,n2,···,ns)
t,q is given by :

A
(n1,n2,···,ns)
t,q =

∑

r=(rij)

( s∏

i=1

[q/2]∏

j=0

((Qj)
ni − (Qj−1)

ni)rij

)
, (1)

where r = (rij)(1 ≤ i ≤ s, 0 ≤ j ≤ [q/2] satisfies

(i) for a fixed i(1 ≤ i ≤ s), rij = 1 for exactly one value of j(0 ≤ j ≤
[q/2]) and 0 elsewhere; and

(ii)

s∑

i=1

[q/2]∑

j=0

jrij = t. (2)

Again if V
(n1,n2,···,ns)
t,q denote the number of all n-vector corresponding to

the partition P : n = [n1][n2] · · · [ns], 1 ≤ n1 ≤ n2 ≤ · · · ≤ ns having

Arihant weight t or less over Zq. Then V
(n1,n2,···,ns)
t,q is given by

V
(n1,n2,···,ns)
t,q =

t∑

j=0

A
(n1,n2,···,ns)
t,q (3)

We now give a definition for linear combination of vectors having
Arihant weight w.
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Definition 4.1. A linear combination of vectors u1, u2, · · · , ur given by

λ1.u1 + λ2.u2 + · · · + λr.ur,

where λi = (λ
(i)
1 , λ

(i)
2 · · ·λ(i)

ni
), ui = (u

(i)
1 , u

(i)
2 , · · · , u(i)

ni
) ∈ Zni

q for all 1 ≤
i ≤ r and (.) denote the usual dot product of vectors, is called a linear
combination of Arihant weight w if

n1
max
a=1

|λ(1)
a | + n2

max
b=1

+ |λ(2)
b | + · · ·+ nr

max
l=1

|λ(r)
l | = w.

The following lemma enumerates the number of Arihant weighted P -
bursts in block coding:

Lemma 4.2. The number of P bursts of block length b or less with
Arihant weight g ≥ 1 in the space of all (n1 +n2 + · · ·+nj−1)-block vectors
over the ring Zq is given by

Cq(b,
j−1∑

i=1

ni, g) = Cq(1,
j−1∑

i=1

ni, g) +
b∑

m=2

j−m∑

r=1

( ∑

2≤λ1+λ2≤g
λ1,λ2≥1

((Qλ1)
nr − (Qλ1−1)

nr) ×

((Qλ2)
nr+m−1 − (Qλ2−1)

nr+m−1)A
(nr+1,nr+2,···,nr+m−2)
g−λ1−λ2,q

)
, (4)

where

Cq(1,
j−1∑

i=1

ni, g) =





j−1∑

i=1

((Qg)
ni − (Qg−1)

ni) if g ≤ [q/2],

0 if g > [q/2],

and A
(nr+1,nr+2,···,nr+m−2)
g−λ1−λ2,q is given by (1) satisfying (2).

Proof. There are two cases:

Case 1. When b = 1.

In this case, the number of P -bursts of block length 1 with Arihant weight
g in the space of all n1 + n2 + · · ·+ nj−1-tuples over Zq is given by

Cq(1,
j−1∑

i=1

ni, g) =





j−1∑

i=1

((Qg)
ni − (Qg−1)

ni) if g ≤ [q/2],

0 if g > [q/2].

(5)
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Case 2. When b ≥ 2.

Consider a P -burst of block length m and Arihant weight g where 2 ≤ m ≤
b ≤ j − 1 and g ≥ 1. Such a P -burst can have first (j −m) block positions
as the starting block positions. Suppose the P -burst starts at the rth block
(1 ≤ r ≤ j −m) and suppose that the Arihant weights of the starting and
ending blocks are λ1(6= 0) and λ2(6= 0) resp. Then the number of choices
for the starting rth block and ending (r + m − 1)th block together is given
by

((Qλ1)
nr − (Qλ1−1)

nr)((Qλ2)
nr+m−1 − (Qλ2−1)

nr+m−1). (6)

The remaining (m−2) blocks viz (r+1)th, (r+2)th, · · · , (r+m−2)th blocks
of the P -burst should make up a sum of Arihant weight g−λ1−λ2 so that
the total Arihant weight of the P -burst becomes equal to g. The number
of ways in which these (m − 2) blocks can be filled is given by

A
(nr+1,nr+2,···,nr+m−2)
g−λ1−λ2,q , (7)

where A
(nr+1,nr+2,···,nr+m−2)
g−λ1−λ2,q is given by (1) satisfying (2).

The total number of P -bursts of Arihant weight g and block length m
starting from the rth block is obtained by multiplying (6) and (7) and then
summing the resulting product for different values of λ′

1s and λ′
2s satisfying

λ1 ≥ 1, λ2 ≥ 1, 2 ≤ λ1 + λ2 ≤ g and is given by
∑

2≤λ1+λ2≤g
λ1,λ2≥1

((Qλ1)
nr − (Qλ1−1)

nr)((Qλ2)
nr+m−1 − (Qλ2−1)

nr+m−1) ×

A
(nr+1,nr+2,···,nr+m−2)
g−λ1−λ2,q . (8)

Since r can take values from 1 to j −m and m can take values from 2 to b,
therefore, summing (8) for different values for m and r gives the number
of P -bursts of block length varying from 2 to b and having Arihant weight
g and is given by

b∑

m=2

j−m∑

r=1

( ∑

2≤λ1+λ2≤g
λ1,λ2≥1

((Qλ1)
nr − (Qnr

λ1−1
) ×

((Qλ2)
nr+m−1 − (Qλ2−1)

nr+m−1)A
(nr+1,nr+2,···,nr+m−2)
g−λ1−λ2,q

)
. (9)
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The result now follows by adding (5) and (9). 2

Remark 4.3.(i) The number of all P -bursts in Zn
q =

s⊕

i=1

Zni
q of block length

b or less (b ≤ s) with Arihant weight w or less is given by

C∗
q (b,

s∑

i=1

ni, w) = 1 +
w∑

g=1

Cq(b,
s∑

i=1

ni, g).

(ii) The number of all P -bursts in Zn
q =

s⊕

1=1

Zni
q of block length b or less

(b ≤ s) having Arihant weight lying between w1 and w2 is given by

C∗
q (b,

s∑

i=1

ni, w1, w2) =
w2∑

g=w1

Cq(b,
s∑

i=1

ni, g).

We now prove the sufficient bound which is infact a construction up-
per bound on the number of parity check digits required for LPA codes
correcting simultaneously random and P -burst block errors.

Theorem 4.4. Let n be a positive integer and P : n = [n1][n2] · · · [ns], 1 ≤
n1 ≤ n2 ≤ · · · ≤ ns be a partition of n. Let t, w and b be positive integers
such that 1 ≤ t ≤ w ≤ b[q/2] and 2 ≤ b ≤ s. Then a sufficient condition
for the existence of an [n, k; P ] LPA code over Zq (q prime) that correct
all random block errors of Arihant weight t or less and all P -burst of block
length b or less with Arihant weight w or less is given by

qn−k ≥ V
(n1,n2,···,ns)
2t,q +

[q/2]∑

λ=1

(
(Qλ)

ns − (Qλ)
ns

)
× D, (10)

where

D =




t+w−λ∑
p1,p2:

p1+p2=2t+1−λ

Cq(b,
s−1∑

i=1

ni, p1)A
(n1,n2,···,ns−1)
p2,q


+

(
V

(ns−b+1,ns−b+2,···,ns−1)
w−λ,q − V

(ns−b+1,ns−b+2,···,ns−1)
t−λ,q

)
×

A
(n1,n2,···,ns−b)
t,q +

(
C∗

q (b,
s−b∑

i=1

ni, t + 1, w)

)
×
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(
V

(ns−b+1,ns−b+2,···,ns−1)
w−λ,q − (V

(ns−b+1,ns−b+2,···,ns−1)
t−λ,q

)
+


C∗

q (b − 1,
s−1∑

s−b+1

ni, 2t + 2 − λ, 2w − λ)


+

b−1∑

k=1

(min[q/2],w−1)∑

θ=0

∑

r1θ ,r2θ ,r3θ

(
(Q

ns−2b+k+1

θ − (Qθ−1)
ns−2b+k+1

)
×

A
(ns−2b+k+1,···,ns−b)

r1θ,q A
(ns−b+1,···,ns−b+k)

r2θ,q A
(ns−b+k+1,···,ns−1)

r3θ,q ,

and

2 ≤ p1 ≤ w; 0 ≤ p2 ≤ t − λ; 1 ≤ θ + r1θ ≤ w − 1;

1 ≤ +r2θ ≤ 2w − 1 − λ; 2t + 2 − λ ≤ θ + r1θ + r2θ + r3θ ≤ 2w − λ;

0 ≤ r3θ ≤ w − λ; r2θ + r3θ ≥ t + 1 − λ;

θ + r1θ + r2θ ≥ t + 1.

(Note. The functions Cq and C∗
q are defined in Lemma 4.2. and Remark

4.3 respectively.)

Proof. The existence of such a code will be proved by constructing an
appropriate (n − k) × n parity check matrix H for the desired LPA code.
Suppose we have chosen first (j − 1) blocks viz. H1, H2, · · · , Hj−1 of block
sizes n1, n2, · · · , nj−1 resp. The jth block Hj of size nj can be added to
the parity check matrix H if the conditions in the following three cases are
fulfilled:

Case 1. Since the LPA code is to correct all combinations of Arihant
weight t or less, therefore, the minimum Arihant distance of the code must
be at least 2t + 1. Thus, the block Hj = (h

(j)
1 , h

(j)
2 · · ·h(j)

nj ) to be added to
the parity check matrix H can be any set of nj column vectors of length
n − k satisfying

λ1.H1 + λ2.H2 + · · ·+ λj.Hj 6= 0,

where λi = (λ
(i)
1 , λ

(i)
2 , · · · , λ(i)

ni
) ∈ Zni

q for all 1 ≤ i ≤ j and 1 ≤ wA(λ1) +

wA(λ2) + · · ·+ wA(λj) =
n1

max
a=1

|λ(1)
a | + n2

max
b=1

|λ(2)
b | + · · · +

nj
max
l=1

|λ(j)
l | ≤ 2t.

The number of such linear combinations including the vector of all-zeros is
given by

V
(n1,n2,···,nj)
2t,q (11)
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where V
(n1,n2,···,nj)
2t,q is given by (3).

Case 2. Secondly, since the code is required to correct random block errors
of Arihant weight t or less simultaneously with all P -burst errors of block
length b or less with Arihant weight w or less, therefore, the syndrome of
any two error patterns, one random of Arihant weight t or less, another a
P -burst of block length b or less with Arihant weight w or less must not be
the same except when both error patterns are same. This will imply that
no codeword is the sum or difference of a random block error of Arihant
weight t or less and a P -burst of block length b or less with Arihant weight
w or less (except when the two errors are same), i.e. any random block
error of Arihant weight t or less is not in the same coset of the standard
array as that of any P -burst error pattern of block length b or less with
Arihant weight w or less.

For this condition to be satisfied, again we have two subcases:

Subcase (i) When jth block is included in the random block error
of Arihant weight t or less.

In this case. we have

(λ1.H1 + λ2.H2 + · · · + λj.Hj) + (βc.Hc + βd.Hd + · · · + βl.Hl) 6= 0, (12)

where βc.Hc + βd.Hd + · · · + βl.Hl(βi ∈ Zni
q for all 1 ≤ i ≤ l) is any

linear combination of Arihant weight w or less from b or fewer consecutive
blocks taken from previous chosen j − 1 blocks viz. H1, H2, · · · , Hj−1 and
λ1.H1 + λ2.H2 + · · · + λj.Hj(λi ∈ Zni

q for all 1 ≤ i ≤ j − 1, λj ∈ Z
nj
q /0}

is any linear combination of Arihant weight t or less of the first previously
chosen (j − 1) blocks viz. H1, H2, · · · , Hj−1 and the jth block Hj to be
added. Equivalently, we can say that λ1.H1 + λ2.H2 + · · · + λj−1.Hj−1 is
any linear combination of Arihant weight t − λ or less of the previously

chosen first (j − 1) blocks where 1 ≤ λ = wA(λj) =
nj

max
i=1

|λ(j)
i | ≤ [q/2].

The condition (12) assures that the syndrome of any block error pattern of
Arihant weight t or less is not equal to that of any P -burst of block length
b or less with Arihant weight w or less in all cases except when subcase (ii)
occurs.

Subcase (ii). When jth block is included in the P -burst of block
length b or less and the patterns of Arihant weight exactly equal
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to “t” are selected from the first j − b blocks.

In this case, we have

(αj.Hj + αj−1.Hj−1 + · · · + αj−b+1.Hj−b+1) +

(γ1.H1 + γ2.H2 + · · ·+ γj−b.Hj−b) 6= 0, (13)

where αi ∈ Zni
q for all j − b + 1 ≤ i ≤ j, αj 6= (0, 0, · · · , 0); γl ∈ Znl

q for all
1 ≤ l ≤ j − b and 1 ≤ wA(γ1) + wA(γ2) + · · · + wA(γj−b) = t.

Here γ1.H1 + γ2.H2 + · · ·+ γj−b.Hj−b is any linear combination of Arihant
weight exactly equal to “t” from the first j − b blocks viz H1, H2, · · · , Hj−b

and αj.Hj + αj−1.Hj−1 + · · · + αj−b+1.Hj−b+1is any linear combination of
Arihant weight w or less of the jth block to be added and the immediately
preceding b − 1 blocks viz. Hj−1, Hj−2, · · · , Hj−b+1. Equivalently, we can
say αj−1.H1 + · · · + αj−b+1.Hj−b+1 is any linear combination of Arihant
weight w − λ or less of the immediately preceding (b − 1) blocks where

1 ≤ λ = wA(αj) = wA(λj) =
nj

max
i=1

|λ(j)
i | ≤ [q/2].

We now enumerate all possible linear combinations occuring in (12) and
(13). Since all possible linear combinations of Arihant weight 2t or less
(including the weight of the jth block) are included in (11), therfore we
choose coefficients in (12) such that

2t + 1 ≤ λ +
j−1∑

i=1

ni
max
u=1

|λ(i)
u | +

l∑

v=c

nv
max
y=1

|β(v)
y | ≤ t + w

⇒ 2t + 1 − λ ≤
j−1∑

i=1

ni
max
u=1

|λ(i)
u | +

l∑

v=c

nv
max
y=1

|β(v)
y | ≤ t + w − λ, (14)

where 1 ≤ λ =
nj

max
i=1

|λ(j)
i | ≤ [q/2].

Also,

t + 1 − λ ≤ wA(αj−1) + · · ·+ wA(αj−b+1) ≤ w − λ. (15)

In order to do so, let

wA(βc) + wA(βd) + · · ·+ wA(βl) =
l∑

v=c

nv
max
y=1

|β(v)
y | = p1,
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and

wA(λ1) + wA(λ2) + · · · + wA(λj−1) =
j−1∑

i=1

ni
max
u=1

|λ(i)
u | = p2,

then we have

2t + 1 − λ ≤ p1 + p2 ≤ t + w − λ, (16)

where 2 ≤ p1 ≤ w, 0 ≤ p2 ≤ t − λ.

Now, β ′
is (c ≤ i ≤ l) which form a P -burst of block length b or less with

Arihant weight p1 in a block vector of size n1 + n2 + · · · + nj−1 can be
selected (using Lemma 4.2) in

Cq(b,
j−1∑

i=1

ni, p1) ways. (17)

Also, the λ′
ms (1 ≤ m ≤ j − 1) can be selected in

A(n1,n2,···,nj−1)
p2,q ways. (18)

Thus the total number of linear combinations occuring in in (12) is given
by

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj)
t+w−λ∑
p1,p2:

p1+p2=2t+1−λ

Cq(b,
j−1∑

i=1

ni, p1)A
(n1,n2,···,nj−1)
p2,q , (19)

where p1, p2 satisfy (16).

Further the α′
is (j − b + 1 ≤ i ≤ j − 1) satisfying (15) can be chosen in

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj) ×
(
V

(nj−b+1,nj−b+2,···,nj−1)
w−λ,q − V

(nj−b+1,nj−b+2,···,nj−1)
t−λ,q

)
ways. (20)

Finally, γe(1 ≤ e ≤ j − b) can be chosen in

A
(n1,n2,···,nj−b)
t,q ways. (21)
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Thus, the total number of linear combinations occuring in (13) are given
by

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj) ×
(
V

(nj−b+1,nj−b+2,···,nj−1)
w−λ,q − V

(nj−b+1,nj−b+2,···,nj−1)
t−λ,q

)
×

A
(n,n2,···,nj−b)
t,q ways. (22)

Therefore, the total number of linear combination arising out of case (2) is
obtained by adding (20) and (22) and is given by

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj)
(( t+w−λ∑

p1,p2:
p1+p2=2t+1−λ

Cq(b,
j−1∑

i=1

ni, p1) ×

A(n1,n2,···,nj−1)
p2,q

)
+
(
V

(nj−b+1,nj−b+2,···,nj−1)
w−λ,q − V

(nj−b+1,nj−b+2,···,nj−1)
t−λ,q

)
×

A
(n1,n2,···,nj−1)
t,q

)
, (23)

where p1, p2 satisfy the inequality (16).

Case 3. Lastly, we are to exclude the possibility of the same syndrome of
any block error pattern each of which is a P -burst of block length b or less
with Arihant weight w or less. For this case, the sum of any two linear com-
binations each of Arihant weight w or less, the one involving jth block Hj

and the immediately preceding (b − 1) blocks viz. Hj−1, Hj−2, · · · , Hj−b+1

and the second involving b (or fewer) consecutive blocks amongst the first
(j − 1) blcoks chosen so far should not to be zero i.e.

(ηj.Hj + ηj−1.Hj−1 + · · · + ηj−b+1.Hj−b+1)

+(δi1.Hi1 + δi2 .Hi2 + · · ·+ δib .Hib) 6= 0, (24)

where

{Hi1 , Hi2, · · · , Hib} ⊆ {H1, H2, · · · , Hj−1};
ηi ∈ Zni

q for all j − b + 1 ≤ i ≤ j, ηj 6= (0, 0, · · · , 0);

δil ∈ Zni
q for all 1 ≤ l ≤ b; (25)

t + 1 ≤ wA(ηj) + wA(nj−1) + · · ·+ wA(nj−b+1) ≤ w;

t + 1 ≤ wA(ηi1) + wA(δi2) + · · ·+ wA(δib) ≤ w.
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To compute the number of all possible linear combinations occuring in
(24) for all possible choices of ηi (j − b + 1 ≤ i ≤ j; ηj 6= (0, 0, · · · , 0) and
δil (1 ≤ l ≤ b), we analyze the situation in three different subcases:

Subcase (i). When δil(1 ≤ l ≤ b) in (24) are taken from the first
(j − b) blocks.

It ic clear from (25) that

t + 1 ≤
b∑

l=1

wA(δil) ≤ w, (26)

and

t + 1 − λ ≤
j−1∑

l=j−b+1

wA(ηi) ≤ w − λ, (27)

where 1 ≤ λ = wA(ηj) ≤ [q/2].

The number of ηi(j − b + 1 ≤ i ≤ j − 1) satisfying (27) is given in (20)
whereas δil(1 ≤ l ≤ b) which form a P -burst of block length b or less with
Arihant weight lying between (t+1) and w in an (n1+n2+· · ·+nj−b)-block
vector can be chosen in

C∗
q (b,

j−b∑

i=1

ni, t + 1, w) =
w∑

g=t+1

Cq(b,
j−b∑

i=1

ni, g) ways, (28)

where Cq(b,
j−b∑

i=1

ni, g) is given in (4) in Lemma 4.2.

Subcase (ii). When δil(1 ≤ l ≤ b) in (24) are taken from the
immediately preceding (b − 1) blocks.

In this case, the number of additional ways in which ηi (j−b+1 ≤ i ≤ j−1),
ηj 6= (0, o, · · · , 0) and δil(1 ≤ l ≤ b) can be selected is given by

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj)(C∗
q (b − 1,

j−1∑

i=j−b+1

ni, 2t + 2 − λ, 2w − λ). (29)

Subcase (iii). When δil(1 ≤ l ≤ b) in (24) are neither completly
confined to first (j − b) blocks nor to the last (b − 1) blocks.
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In this case, the δil(1 ≤ l ≤ b) are selcetd from the blocks Hj−2b+2, Hj−2b+3,
· · · , Hj−1 in such a way that not all are taken either from Hj−2b+2, Hj−2b+3, · · · , Hj−b

or from Hj−b+1, Hj−b+2, · · · , Hj−1. Let us suppose that the P -burst starts
from the (j−2b+k+1)th block position which may continue upto (j−b+k)th

block position (1 ≤ k ≤ b − 1). Also, let the Arihant weight of the
(j − 2b + k + 1)th block be θ where 1 ≤ θ ≤ min([q/2], w − 1). The
total number of choices for selecting the components of (j − 2b + k + 1)th

block is given by
(Qθ)

nj−2b+k+1 − (Qθ−1)
nj−2b+k+1.

Our objective is to select non-zero blcoks from the (j − 2b + k + 1)th, (j −
2b + k + 2)th, · · · , (j − b)th, (j − b + 1)th, · · · , (j − b + k)th, (j − b + k +
1)th, · · · , (j − b)th blocks having sum of their Arihant weight w or less. or
this, let us have linear combinations of Arihant weight r1θ of blocks of
columns from the (j−2b+k+2)th, · · · , (j− b)th blocks; linear combination
of Arihant weight r2θ of columns from the (j − b + 1)th · · · , (j − b + k)th

blocks and lienar combinations of Arihant weight r3θ of columns from the
(j − b + k + 1)th, · · · , (j−)th blocks. The total number of choices of the
linear combinations occuring in (24) arising out of subcase (iii) turns out
to be

[q/2]∑

λ=1

(
(Qλ)

nj − (Qλ−1)
nj
)

(b−1∑

k=1

(min[q/2],w−1)∑

θ=1

∑

r1θ ,r2θ ,r3θ

((Qθ)
nj−2b+k+1 − (Qθ−1)

nj−2b+k+1)A
(nj−2b+k+1,···,nj−b)

r1θ,q × (30)

A(nj−b+1,···,nj−b+k)
r2θ,q

A(nj−b+k+1,···,nj−1)
r3θ,q

,

where

1 ≤ θ + r1θ ≤ w − 1;

1 ≤ +r2θ ≤ 2w − 1 − λ;

0 ≤ +r3θ ≤ w − λ;

r2θ + r3θ ≥ t + 1 − λ;

θ + r1θ + r2θ ≥ t + 1

2t + 2 − λ ≤ θ + r1θ + r2θ + r3θ ≤ 2w − λ.
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Thus the total number of possible distinct linear combinations arising out
of Case 3 are given by

(20) × (28) + (29) + (30)

=


C∗

q (b,
j−b∑

i=1

ni, t + 1, w)



([q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj) ×
(
V

(nj−b+1,nj−b+2,···,nj−1)
w−λ,q − (V

(nj−b+1,nj−b+2,···,nj−1)
t−λ,q

))
+

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj)


C∗

q (b − 1,
j−1∑

i=j−b+1

ni, 2t + 2 − λ, 2w − λ)


+

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj)
(b−1∑

k=1

(min[q/2],w−1)∑

θ=1

∑

r1θ ,r2θ,r3θ

((Qθ)
nj−2b+k+1 − (Qθ−1)

nj−2b+k+1) A
(nj−2b+k+1,···,nj−b)

r1θ,q ×
A(nj−b+1,···,nj−b+k)

r2θ,q
A(nj−b+k+1,···,nj−1)

r3θ,q
. (31)

Therefore, the total number of possible distinct linear combinations arising
out of all the three cases including the pattern of all zeros is given by

(11) + (23) + (31)

= V
(n1,n2,···,nj)
2t,q +

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj )
(( t+w−λ∑

p1,p2:
p1+p2=2t+1−λ

Cq(b,
j−1∑

i=1

ni, p1) ×

A(n1,n2,···,nj−1)
p2,q

)
+
(
V

(nj−b+1,nj−b+2,···,nj−1)
w−λ,q − V

(nj−b+1,nj−b+2,···,nj−1)
t−λ,q

)
×

A
(n1,n2,···,nj−1)
t,q

)
+


C∗

q (b,
j−b∑

i=1

ni, t + 1, w)



([q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj) ×
(
V

(nj−b+1,nj−b+2,···,nj−1)
w−λ,q − (V

(nj−b+1,nj−b+2,···,nj−1)
t−λ,q

))
+

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj)


C∗

q (b − 1,
j−1∑

i=j−b+1

ni, 2t + 2 − λ, 2w − λ)


+

[q/2]∑

λ=1

((Qλ)
nj − (Qλ−1)

nj)
(b−1∑

k=1

(min[q/2],w−1)∑

θ=1

∑

r1θ ,r2θ,r3θ
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((Qθ)
nj−2b+k+1 − (Qθ−1)

nj−2b+k+1)A
(nj−2b+k+1,···,nj−b)

r1θ,q ×
A(nj−b+1,···,nj−b+k)

r2θ,q
A(nj−b+k+1,···,nj−1)

r3θ,q

= L (say).

Hence the jth block Hj of block size nj can be added to H if the number
of (n − k)-tuples i.e. qn−k is at least as large as L i.e. if

qn−k ≥ L. (32)

For the existence of an [n, k; P ] LPA code where n = n1 + n2 = · · · + ns,
the inequality (32) must hold for j = s so that it is possible to add upto
sth block Hs to form an (n − k) × n block matrix and we get (10).

6. Conclusion

In this paper, we have obtained a construction upper bound for LPA
codes over Zq correcting random block errors and P -burst errors simulta-
neously. The bound has been obtained by an algorithmic procedure by
way of constructing a suitable parity check matrix for the code.
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