Code design of i-spotty-byte error correcting codes

Sapna Jain
Department of Mathematics
University of Delhi
Delhi 110007
India
E-mail: sapnajain@gmx.com

Abstract

Irregular-spotty-byte error control codes over the finite field \mathbf{F}_{q} devised by the author [2] are matrix codes which generalizes the usual spotty-byte-codes [5]. Here a word is divided into irregular bytes of different lengths and distance between distinct words is measured in terms of newly defined i-spotty-byte metric function $[2,3]$. In this paper, we present the code construction methods of the i-spotty-byte error correcting codes in terms of their parity check matrix.

AMS Subject Classification (2000): 94B05
Keywords: Irregular-spotty-byte errors, i-spotty-byte distance, i-spotty-byte weight

1. Introduction

Spotty-byte error control codes devised by Suzuki et.al.[5,6,7] are matrix codes suitable for semi-conductor memories in which a word is divided into regular bytes of equal length " b ". However, a more general and practical situation is when bytes are not regular i.e. when a word is divided into irregular bytes of different lengths. In a different setting, Feng et al [1] called such irregular bytes as "blocks" and studied error control codes endowed with the π-metric. In [2], the author introduced the notion of irregular-spotty-byte (or i-spotty-byte) error control codes generalizing the concept of both spotty-byte error control codes [5] and π-codes [1]. In [3], the author studied various weight enumerator polynomials of i-spotty-byte code viz. exact weight enumerator, complete weight enumerator, i-byte weight enumerator, i-spotty-byte weight enumerator and obtained the duality relations for them. In this paper, we present the code design methods of i-spotty-byte error correcting codes in terms of their parity check matrix.

We begin with the basic definitions and notations for i-spotty-byte error control codes [2].

2. Definitions and Notations

Let q be a prime or power of prime number. Let \mathbf{F}_{q} be the finite field with q elements. A partition, P, of a positive integer N is defined as

$$
P: N=n_{1}+n_{2}+\cdots+n_{s}, 1 \leq n_{1} \leq n_{2} \cdots \leq n_{s} \quad s \geq 1 .
$$

and is denoted as

$$
P=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right]=\left[m_{1}\right]^{l_{1}}\left[m_{2}\right]^{l_{2}} \cdots\left[m_{r}\right]^{l_{r}},
$$

if

$$
\begin{aligned}
& n_{1}=n_{2}=\cdots=n_{l_{1}}=m_{1} \\
& n_{l_{1}+1}=n_{l_{1}+2}=\cdots=n_{l_{1}+l_{2}}=m_{2} \\
& \vdots \\
& \vdots \\
& \vdots \\
& n_{l_{1}+l_{2}+\cdots+l_{r-1}+1}=n_{l_{1}+l_{2}+\cdots+l_{r-1}+2}=\cdots=n_{l_{1}+l_{2}+\cdots+l_{r}}=m_{r} .
\end{aligned}
$$

Then we can write the field \mathbf{F}_{q}^{N} as

$$
\mathbf{F}_{q}^{N}=\mathbf{F}_{q}^{n_{1}} \oplus \mathbf{F}_{q}^{n_{2}} \oplus \cdots \oplus \mathbf{F}_{q}^{n_{s}} .
$$

Each vector $v \in \mathbf{F}_{q}^{N}$ can be uniquely written as $v=\left(v_{1}, v_{2}, \cdots, v_{s}\right)$ where $v_{i} \in V_{i}=\mathbf{F}_{q}^{n_{i}}$ for all $1 \leq i \leq s$ and is called the $i^{t h}$ irregular-byte or simply $i^{\text {th }} i$-byte of v. We call the partition P as primary partition or irregular-byte partition. Further, let $1 \leq T \leq N$ be a positive integer and let $P^{\prime}: T=\left[t_{1}\right]\left[t_{2}\right] \cdots\left[t_{s}\right]$ be a partition of T where $1 \leq t_{i} \leq n_{i}$ for all $1 \leq i \leq s$. Then P^{\prime} is called as "secondary partition" or "error partition". Note that the secondary partition depends upon primary partition. The number N is called the primary number and T is called the secondary number.

Definition 2.1 [2]. Let N and T be the positive integers with $1 \leq T \leq N$. Let P and P^{\prime} be the primary and secondary partitions corresponding to N
and T respectively given by

$$
\begin{aligned}
& P: N=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right], \\
& \text { and } \\
& P^{\prime}: T=\left[t_{1}\right]\left[t_{2}\right] \cdots\left[t_{s}\right],
\end{aligned}
$$

where $1 \leq t_{i} \leq n_{i}$ for all $1 \leq i \leq s$.
Let u be a vector in $\mathbf{F}_{q}^{N}=\oplus_{i=1} \mathbf{F}_{q}^{n_{i}}$ given by $u=\left(u_{1}, u_{2}, \cdots, u_{s}\right)$ where $u_{i} \in \mathbf{F}_{q}^{n_{i}}$ for all i is the $i^{\text {th }}$ i-byte of u of size n_{i}. We define the irregularspotty weight (or simply i-spotty weight) $w_{\beta}^{\left(P, P^{\prime}\right)}(u)$ of u corresponding to the primary-partition P and secondary-partition P^{\prime} as

$$
w_{\beta}^{\left(P, P^{\prime}\right)}(u)=\sum_{i=1}^{s}\left\lceil\frac{w_{H}\left(u_{i}\right)}{t_{i}}\right\rceil,
$$

where $w_{H}\left(u_{i}\right)$ is the Hamming weight of the $i^{\text {th }} \mathrm{i}$-byte u_{i} of size n_{i} and $\lceil x\rceil$ denotes the smallest integer greater than or equal to x.

Definition 2.2 [2]. The irregular-spotty distance (or simply i-spotty distance) between two vectors $u=\left(u_{1}, u_{2}, \cdots, u_{s}\right)$ and $v=\left(v_{1}, v_{2}, \cdots v_{s}\right)$ in $\mathbf{F}_{q}^{N}=\oplus_{i=1}^{S} \mathbf{F}_{q}^{n_{i}}$ is given by

$$
\begin{aligned}
d_{\beta}^{\left(P, P^{\prime}\right)}(u, v) & =w_{\beta}^{\left(P, P^{\prime}\right)}(u-v) \\
& =\sum_{i=1}^{s}\left\lceil\frac{d_{H}\left(u_{i}, v_{i}\right)}{t_{i}}\right\rceil
\end{aligned}
$$

where $d_{H}\left(u_{i}, v_{i}\right)$ is the Hamming distance between the $i^{\text {th }}$ i-bytes u_{i} and v_{i} of u and v respectively. Then i-spotty distance is a metric function on $\mathbf{F}_{q}^{N}=\oplus_{i=1}^{s} \mathbf{F}_{q}^{n_{i}}$.
Note. We also call i-spotty weight and i-spotty distance as " t_{i} / n_{i}-weight" and " t_{i} / n_{i}-distance" respectively. Moreover, we simply denote the i-spotty weight $w_{\beta}^{\left(P, P^{\prime}\right)}$ and i-spotty distance $d_{\beta}^{\left(P, P^{\prime}\right)}$ by w_{β} and d_{β} respectively when the primary partition P and secondary partition P^{\prime} are clear from the context.

Observations.

(i) Let t, s and b be positive integers with $1 \leq t \leq b$. Taking $N=$ $b s, T=t s, n_{i}=b$ and $t_{i}=t$ for all i, then i-spotty distance (weight) reduces to the spotty-distance (weight) introduced by Suzuki et al. [5].
(ii) If $t_{i}=1$ for all $1 \leq i \leq s$, then $w_{\beta}(x)$ where $x=\left(x_{1}, x_{2}, \cdots, x_{s}\right) \in$ $\mathbf{F}_{q}^{N}=\oplus_{i=1}^{s} \mathbf{F}_{q}^{n_{i}}$ is expressed as

$$
\begin{aligned}
w_{\beta}(x) & =\sum_{i=1}^{s}\left\lceil\frac{w_{H}\left(x_{i}\right)}{1}\right\rceil \\
& =\sum_{i=1}^{s} w_{H}\left(x_{i}\right) \\
& =\text { Hamming weight of } x .
\end{aligned}
$$

(iii) If $t_{i}=n_{i}$ for all $1 \leq i \leq s$ i.e. when secondary partition P^{\prime} is equal to the primary partition P, then $w_{\beta}(x)$ for $x=\left(x_{1}, \cdots, x_{s}\right) \in \mathbf{F}_{q}^{N}=$ $\oplus_{i=1}^{s} \mathbf{F}_{q}^{n_{i}}$ is expressed as

$$
w_{\beta}(x)=\sum_{i=1}^{s}\left\lceil\frac{w_{H}\left(x_{i}\right)}{n_{i}}\right\rceil .
$$

Here

$$
\left\lceil\frac{w_{H}\left(x_{i}\right)}{n_{i}}\right\rceil=\left\{\begin{array}{cc}
0 & \text { if } \quad w_{H}\left(x_{i}\right)=0 \\
1 & \text { if } \quad w_{H}\left(x_{i}\right) \neq 0
\end{array}\right.
$$

Thus

$$
\begin{aligned}
w_{\beta}(x) & =\#\left\{i \mid i \leq i \leq s, x_{i} \neq 0\right\} \\
& =\pi \text {-weight of } x
\end{aligned}
$$

(iv) Let $x=\left(x_{1}, x_{2}, \cdots, x_{s}\right) \in \mathbf{F}_{q}^{N}=\oplus_{i=1}^{s} \mathbf{F}_{q}^{n_{i}}$. If $w_{\beta}(x)=\sum_{i=1}^{s}\left\lceil\frac{w_{H}\left(x_{i}\right)}{t_{i}}\right\rceil=$ μ then we say that i-spotty weight or i-spotty measure of x is μ. Equivalently, we also say that t_{i} / n_{i}-measure of x is μ.
(v) Let $b_{i}=\left\lceil\frac{n_{i}}{t_{i}}\right\rceil$ for all $1 \leq i \leq s$. Then b_{i} is the maximum number of t_{i} / n_{i}-errors (or i-spotty errors) that can occur in the $i^{\text {th }}$ i-byte of size n_{i}. Let $\hat{b}=\sum_{i=1}^{s} b_{i}$. Then \hat{b} is the maximum number of t_{i} / n_{i}-errors (or i-spotty errors) that can occur in a word $x=\left(x_{1}, x_{2}, \cdots x_{s}\right) \in$ $\oplus_{i=1}^{s} \mathbf{F}_{q}^{n_{i}}=\mathbf{F}_{q}^{N}$.
(vi) Let $\theta_{Z}(x)$ be the total number of (erroneous) i-bytes in a word $x \in \oplus_{i=1}^{s} \mathbf{F}_{q}^{n_{i}}=\mathbf{F}_{q}^{N}$ having Z number of t_{i} / n_{i}-errors where $Z=$ $0,1,2, \cdots, b ; b=\max _{i=1}^{s}\left\{b_{i}\right\}$ and $b_{i}^{\prime} s$ are as given in (v).

Let

$$
\begin{aligned}
\sigma= & \theta_{1}(x)+\theta_{2}(x) \cdots+\theta_{b}(x) \\
= & \text { total number of erroneous } \\
& \text { i-bytes in } x .
\end{aligned}
$$

Then the total number of i-bytes in the word x is expressed as

$$
\begin{aligned}
s & =\sigma+\theta_{0}(x) \\
& =\theta_{0}(x)+\theta_{1}(x)+\cdots+\theta_{b}(x) .
\end{aligned}
$$

Using these functions $\theta_{Z}^{\prime} s$, the i-spotty weight (or i-spotty measure) of $x \in \oplus_{i=1}^{s} \mathbf{F}_{q}^{n_{i}}=\mathbf{F}_{q}^{N}$ is expressed as

$$
w_{\beta}(x)=\theta_{1}(x)+2 \theta_{2}(x)+\cdots+b \theta_{b}(x),
$$

where

$$
b=\max _{i=1}^{s}\left\{b_{i}\right\}=\max _{i=1}^{s}\left\{\left\lceil\frac{n_{i}}{t_{i}}\right\rceil\right\} .
$$

Definition 2.3 [2]. Let T and N be positive integers with $1 \leq T \leq N$. Let $V \subseteq \mathbf{F}_{q}^{N}=\oplus_{i=1}^{s} \mathbf{F}_{q}^{n_{i}}$ be an \mathbf{F}_{q}-subspace of $\mathbf{F}_{q}^{N}=\oplus_{i=1}^{s} \mathbf{F}_{q}^{n_{i}}$ equipped with the i-spotty metric d_{β} corresponding to the primary partition P of N and secondary partition P^{\prime} of T. Then V is called an irregular-spotty-byte (or simply i-spotty-byte) error control code and is denoted by
$\left[N, k, d_{\beta} ; P, P^{\prime}\right]$ where $P: N=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right]$ is the irregular-byte partition, $P^{\prime}: T=\left[t_{1}\right]\left[t_{2}\right] \cdots\left[t_{s}\right], 1 \leq t_{i} \leq n_{i}$ is the error partition, $k=\operatorname{dim}_{\mathbf{F}_{q}} V$ and $d_{\beta}=$ minimum i-spotty distance of $V=\min _{\substack{x, y \in V \\ x \neq y}} d_{\beta}(x, y)$.

3. Code design of i-spotty-byte error correcting codes

In this section, we first give the code construction method of i-spottybyte codes correcting all i-spotty-byte errors of measure 1 and then generalize the method for the construction of codes correcting all i-spotty-byte errors of measure μ or less $(\mu \geq 1)$.

We begin with few definitions:
Definition 3.1 [5]. Given a monic primitive polynomial $g(x)$ of degree r over \mathbf{F}_{q}, the $r \times r$ companion matrix M corresponding to $g(x)$ is defined as follows:

$$
\begin{aligned}
g(x) & =g_{0}+g_{1} x+g_{2} x^{2}+\cdots \cdots+g_{r-2} x^{r-2}+g_{r-1} x^{r-1}+x^{r}, \\
M & =\left(\begin{array}{cccccc}
0 & 0 & \cdots & 0 & 0 & -g_{0} \\
1 & 0 & \cdots & 0 & 0 & -g_{1} \\
0 & 1 & \cdots & 0 & 0 & -g_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & -g_{r-2} \\
0 & 0 & \cdots & 0 & 1 & -g_{r-1}
\end{array}\right)_{r \times r}
\end{aligned}
$$

Observations.

(i) Let α be a primitive element of \mathbf{F}_{q}^{r} and a root of $g(x)$. Its companion matrix M has its columns $\left(\begin{array}{c}\vdots \\ \vdots \\ \alpha^{i} \\ \vdots \\ \vdots\end{array}\right)$ for $i=1$ to r where $\left(\begin{array}{c}\vdots \\ \vdots \\ \alpha^{i} \\ \vdots \\ \vdots\end{array}\right)$ is the coefficient vector of $x^{i}(\bmod g(x))$.
The companion matrix of α^{j} is M^{j} and its column vectors are expressed as follows:

$$
M^{j}=\left(\begin{array}{cccc}
\vdots & \vdots & \cdots & \vdots \\
\vdots & \vdots & \cdots & \vdots \\
\alpha^{j} & \alpha^{j+1} & \cdots & \alpha^{j+r-1} \\
\vdots & \vdots & \cdots & \vdots \\
\vdots & \vdots & \cdots & \vdots
\end{array}\right)_{r \times r}
$$

Let e be the exponent of $g(x)$, that is, $y=e$ is the least positive solution of $x^{y} \equiv(\bmod g(x))$. The companion matrix M has the following properties [5]:
(a) M is non singular.
(b) $M^{0}=M^{e}=I_{r}$.
(c) $M^{i}=M^{j}$ if and only if $i \equiv j(\bmod e)$.

Definition 3.2. Let $1 \leq n_{1} \leq n_{2} \cdots \leq n_{s}$ and $1 \leq t_{1} \leq t_{2} \cdots t_{2}$ be positive integer with $1 \leq t_{i} \leq n_{i}$ for all $1 \leq i \leq s, s \geq 1$. Let l and r be positive integers such that

$$
l \geq 2\left(\max _{i=1}^{s}\left\{t_{i}\right\}\right) \text { and } \quad r \geq \max _{i=i}^{s}\left\{t_{i}\right\} .
$$

Further, for $i=$ to s, let
(i) $H_{i}^{\prime}=\left[h_{i, 1}^{\prime}, h_{i, 2}^{\prime}, \cdots, h_{i, n_{i}}^{\prime}\right], h_{i, k}^{\prime} \in \mathbf{F}_{q}{ }^{l}$ for all $1 \leq k \leq n_{i}$, be $l \times n_{i}$ matrices over \mathbf{F}_{q} satisfying the following two properties:
(a) Every set of $2 t_{i}$ (or fewer) columns of H_{i}^{\prime} are linearly independent over \mathbf{F}_{q}; and
(b) Every set of $\left(t_{i}+t_{j}\right)$ (or fewer) columns with t_{i} (or fewer) columns taken from H_{i}^{\prime} and t_{j} (or fewer) columns taken from $H_{j}^{\prime}(i \neq j)$ are linearly independent over \mathbf{F}_{q}.
(ii) $H_{i}^{\prime \prime}=\left[h_{i, 1}^{\prime \prime}, h_{i, 2}^{\prime \prime}, \cdots, h_{i, n_{i}}^{\prime \prime}\right], h_{i, k}^{\prime \prime} \in \mathbf{F}_{q}{ }^{r}$ for all $1 \leq k \leq n_{i}$, be $r \times n_{i}$ matrices over \mathbf{F}_{q} such that every set of t_{i} (or fewer) columns of $H_{i}^{\prime \prime}$ are linearly independent over \mathbf{F}_{q}.

Theorem 3.3. Using the notations as given in Definition 3.2, let M be an $r \times r$ companion matrix over \mathbf{F}_{q}. Let $m=q^{r}-1$. The null space of $H=\left[H_{1}, H_{2}, \cdots, H_{s}\right]$ where each $H_{i}(1 \leq i \leq s)$ is a $(l+r) \times m n_{i}$ submatrix given by

$$
H_{i}=\left(\begin{array}{cccc}
H_{i}^{\prime} & H_{i}^{\prime} & \cdots & H_{i}^{\prime} \\
M^{0} H_{i}^{\prime \prime} & M^{1} H_{i}^{\prime \prime} & \cdots & M^{(m-1)} H_{i}^{\prime \prime}
\end{array}\right)_{(l+r) \times m n_{i}} .
$$

is a single t_{i} / n_{i}-error correcting code $\left(S_{t_{i} / n_{i}} E C\right)$ with check bit length $R=$ $l+r$ and code length $N=m n=\left(q^{r}-1\right) n$ where $n=n_{1}+n_{2}+\cdots n_{s}$. The parameters of the resulting i-spotty-byte code will be

$$
\left[\left(q^{r}-1\right) n,\left(q^{r}-1\right) n-(l+r), 3 ; P, P^{\prime}\right]
$$

where

$$
\begin{aligned}
P: N=\left(q^{r}-1\right) n & =\left[n_{1}\right]^{m}\left[n_{2}\right]^{m} \cdots\left[n_{s}\right]^{m} \\
& =\left[n_{1}\right]^{\left(q^{r-1}\right)}\left[n_{2}\right]^{\left(q^{r-1}\right)} \cdots\left[n_{s}\right]^{\left(q^{r-1}\right)},
\end{aligned}
$$

and

$$
\begin{aligned}
P^{\prime}: T=\left(q^{r}-1\right) t & =\left[t_{1}\right]^{m}\left[t_{2}\right]^{m} \cdots\left[t_{s}\right]^{m} \\
& =\left[t_{1}\right]^{\left(q^{r-1}\right)}\left[t_{2}\right]^{\left(q^{r-1}\right)} \cdots\left[t_{s}\right]^{\left(q^{r-1}\right)},
\end{aligned}
$$

and

$$
t=t_{1}+t_{2}+\cdots+t_{s}
$$

Proof. For each $i=1$ to s, let

$$
\begin{aligned}
E_{t_{i} / n_{i}}= & \left\{e=\left(e_{1}^{0}, e_{1}^{1}, \cdots, e_{1}^{m-1}, \cdots \cdots, e_{s}^{0}, e_{s}^{1}, \cdots, e_{s}^{m-1} \mid e_{p}^{u} \in \mathbf{F}_{q}^{n_{p}}\right.\right. \\
& \text { for all } 0 \leq u \leq m-1,1 \leq p \leq s \text { and } 1 \leq w_{H}\left(e_{p}^{u}\right) \leq t_{i} \\
& \text { for } p=i \text { and for exactly one value of } u \text { and } w_{H}\left(e_{p}^{u}\right)=0 \\
& \text { otherwise }\} \\
= & \text { set of all single } t_{i} / n_{i}-\text { errors occuring in the } i^{\text {th }} \text { i-byte. } .
\end{aligned}
$$

Let $E=\cup_{1=1}^{s} E_{t_{i} / n_{i}}=$ collection of all single t_{i} / n_{i}-errors.

Given $H=\left[H_{1}, H_{2}, \cdots, H_{s}\right]$ where each $H_{i}(1 \leq i \leq s)$ contains m i-bytes each of size n_{i}. We call H_{i} as the $i^{t h}$ sector of H of size $m n_{i}$. The $j^{\text {th }} \mathrm{i}$-byte $(0 \leq j \leq m-1)$ in the $i^{t h}$ sector H_{i} is given by

$$
\binom{H_{i}^{\prime}}{M^{j} H_{i}^{\prime \prime}}
$$

To prove the theorem, it suffices to show that
(i) $e H^{T} \neq 0$ for all $e \in E$, and
(ii) $e H^{T} \neq e^{\prime} H^{T}$ for all $e, e^{\prime} \in E, e \neq e^{\prime}$.

Proof of (i). Let $e \in E$. Then $e \in E_{t_{i} / n_{i}}$ for some i. This means that e is of the form

$$
e=\left(0, \cdots, 0, e_{i}^{j}, 0, \cdots 0\right)
$$

where $e_{i}^{j} \in \mathbf{F}_{q}^{n_{i}}, 0 \leq j \leq m-1$ and $1 \leq w_{H}\left(e_{i}^{j}\right) \leq t_{i}$.
Let if possible $e H^{T}=0$. Then we have,

$$
\begin{aligned}
e_{i}^{j}\binom{H_{i}^{\prime}}{M^{j} H_{i}^{\prime \prime}}^{T} & =0 \\
\Rightarrow e_{i}^{j} H_{i}^{T^{T}} & =0
\end{aligned}
$$

The above equation gives $e_{i}^{j}=(0,0, \cdots, 0)$ as every set of $2 t_{i}$ (or fewer) columns of H_{i}^{\prime} are linearly independent over \mathbf{F}_{q}. A contradiction, Hence $e H^{T} \neq 0$ for all $e \in E$.

Proof of (ii).Let $e, e^{\prime} \in E$ with $e \neq e^{\prime}$. Then $e \in E_{t_{i} / n_{i}}$ and $e^{\prime} \in E_{t_{k} / n_{k}}$ for some i and k. Let

$$
e=\left(0, \cdots, 0, e_{i}^{j}, 0, \cdots 0\right)
$$

where $e_{i}^{j} \in \mathbf{F}_{q}^{n_{i}}, 0 \leq j \leq m-1$ and $1 \leq w_{H}\left(e_{i}^{j}\right) \leq t_{i}$, and

$$
e^{\prime}=\left(0, \cdots, 0, f_{k}^{p}, 0 \cdots 0\right)
$$

where $f_{k}^{p} \in \mathbf{F}_{q}^{n_{k}}, 0 \leq p \leq m-1$ and $1 \leq w_{H}\left(f_{k}^{p}\right) \leq t_{k}$.
Let if possible $e H^{T}=e^{\prime} H^{T}$. There are two cases to consider depending on i and k :

Case 1. When $i=k$.
In this case e and e^{\prime} are of the form

$$
e=\left(0, \cdots, 0, e_{i}^{j}, 0, \cdots 0\right)
$$

and

$$
e^{\prime}=\left(0, \cdots, 0, f_{i}^{p}, 0 \cdots 0\right)
$$

where $e_{i}^{j}, f_{i}^{p} \in \mathbf{F}_{q}^{n_{i}}, 0 \leq j, p \leq m-1$ and $1 \leq w_{H}\left(e_{i}^{j}\right), w_{H}\left(f_{i}^{p}\right) \leq t_{i}$.
In this case, there are two subcases to consider:
Subcase 1. When $j=p$.
In this subcase, e and e^{\prime} are of the form

$$
e=\left(0, \cdots, 0, e_{i}^{j}, 0, \cdots 0\right)
$$

and

$$
e^{\prime}=\left(0, \cdots, 0, f_{i}^{j}, 0 \cdots 0\right)
$$

Also, $e H^{T}=e^{\prime} H^{T}$ gives

$$
e_{i}^{j}\binom{H_{i}^{\prime}}{M^{j} H_{i}^{\prime \prime}}^{T}=f_{i}^{j}\binom{H_{i}^{\prime}}{M^{j} H_{i}^{\prime \prime}}^{T}
$$

which implies

$$
\left(e_{i}^{j}-f_{i}^{j}\right) H_{i}^{\prime^{T}}=0
$$

The above equation gives $\left(e_{i}^{j}-f_{i}^{j}\right)=0$ because every set of $2 t_{i}$ (or fewer) columns of H_{i}^{\prime} are linearly independently over \mathbf{F}_{q} and $1 \leq w_{H}\left(e_{i}^{j}\right), w_{H}\left(f_{i}^{j}\right) \leq$ t_{i}. Thus, we have $e_{i}^{j}=f_{i}^{j}$ which means $e=e^{\prime}$. A contradiction.
Subcase 2. When $j \neq p$.
Then $e H^{T}=e^{\prime} H^{T}$ gives

$$
\begin{aligned}
& e_{i}^{j}\binom{H_{i}^{\prime}}{M^{j} H_{i}^{\prime \prime}}^{T}=f_{i}^{p}\binom{H_{i}^{\prime}}{M^{p} H_{i}^{\prime \prime}}^{T} \\
& \Rightarrow\left(e_{i}^{j}-f_{i}^{p}\right) H_{i}^{\prime^{T}}=0 \\
& \Rightarrow\left(e_{i}^{j}-f_{i}^{p}\right)=0
\end{aligned}
$$

as every set of $2 t_{i}$ or fewer columns of H_{i}^{\prime} are linearly independent over \mathbf{F}_{q}. This gives $e_{i}^{j}=f_{i}^{p}$ and hence $e=e^{\prime}$. A contradiction.

Case 2. When $i \neq k$.

In this case, again we have two subcases to consider:
Subcase 1. When $j=p$.
In this subcase $e H^{T}=e^{\prime} H^{T}$ gives

$$
\begin{aligned}
& e_{i}^{j}\binom{H_{i}^{\prime}}{M^{j} H_{i}^{\prime \prime}}^{T}=f_{k}^{j}\binom{H_{k}^{\prime}}{M^{j} H_{k}^{\prime \prime}}^{T} \\
& \Rightarrow e_{i}^{j} H_{i}^{\prime^{T}}-f_{k}^{j} H_{k}^{\prime^{T}}=0
\end{aligned}
$$

The above equation gives $e_{i}^{j}=(0, \cdots 0)_{1 \times n_{i}}$ and $f_{k}^{j}=(0, \cdots, 0)_{1 \times n_{k}}$ as by assumption every set of $\left(t_{i}+t_{k}\right)$ (or fewer) columns with t_{i} (or fewer) columns taken from H_{i}^{\prime} and t_{k} (or fewer) columns taken from H_{k}^{\prime} are linearly independent over \mathbf{F}_{q}. Thus we have

$$
e=e^{\prime}=(0, \cdots, 0) . \text { A contradiction }
$$

Subcase 2. When $j \neq p$.
In this subcase again $e H^{T}=e^{\prime} H^{T}$ gives

$$
e_{i}^{j}\binom{H_{i}^{\prime}}{M^{j} H_{i}^{\prime \prime}}^{T}=f_{k}^{p}\binom{H_{k}^{\prime}}{M^{p} H_{k}^{\prime \prime}}^{T}
$$

This implies that

$$
e_{i}^{j} H_{i}^{\prime^{T}}-f_{k}^{p} H_{k}^{\prime^{T}}=0
$$

where

$$
\begin{aligned}
& 1 \leq w_{H}\left(e_{i}^{j}\right) \leq t_{i} \\
& \left.1 \leq w_{H}\left(f_{k}^{p}\right)\right] \leq t_{k}
\end{aligned}
$$

which again gives

$$
e_{i}^{j}=(0, \cdots, 0)_{1 \times n_{i}} \quad \text { and } f_{k}^{p}=(0, \cdots, 0)_{1 \times n_{k}}
$$

by the same argument as given in Subcase 1. A contradiction again.

Combining the two cases, we get

$$
e H^{T} \neq e^{\prime} H^{T} \text { for all } e, e^{\prime} \in E, e \neq e^{\prime}
$$

Hence the theorem.
Remark 3.4. We may also construct the shortened version of the i-spotty code constructed in Theorem 3.3 by taking $P: N^{\prime}=\left[n_{1}\right]^{m_{1}}\left[n_{2}\right]^{m_{2}} \cdots\left[n_{s}\right]^{m_{s}}$ and $P^{\prime}: T^{\prime}=\left[t_{1}\right]^{m_{1}}\left[t_{2}\right]^{m_{2}} \cdots\left[t_{s}\right]^{m_{s}}$ where $m_{i} \leq m=q^{r}-1$ for all $1 \leq i \leq s$ and keeping only the first m_{i} i-bytes in the $i^{\text {th }}$ sector H_{i} of the parity check matrix H. For example, if $m_{1}=1, m_{2}=2, \cdots, m_{s}=s$ where $s \leq q^{r}-1$, then we can take the parity check matrix of the single i-spotty-byte error correcting code as

$$
H=\left(\begin{array}{cccccccccc}
H_{1}^{\prime} & \vdots & H_{2}^{\prime} & H_{2}^{\prime} & \vdots & \cdots & \vdots & H_{s}^{\prime} & \cdots & H_{s}^{\prime} \\
M^{0} H_{1}^{\prime} & \vdots & M^{0} H_{2}^{\prime \prime} & M^{\prime} H_{2}^{\prime \prime} & \vdots & \cdots & \vdots & M^{0} H_{s}^{\prime \prime} & \cdots & M^{s-1} H_{s}^{\prime \prime}
\end{array}\right)
$$

We can generalize the result of Theorem 3.3 for the design of i-spotty-byte code correcting all t_{i} / n_{i}-errors of measure μ or less ($\mu \geq 1$). For this, we begin with the following definitions:
Definition 3.5. Let $\mu, 1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{s}$ and $1 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{s}$ be positive integers with $1 \leq t_{i} \leq n_{i}$ for all $1 \leq i \leq s$. Let l and r be the positive integers such that

$$
l \geq \max _{i=1}^{s}\left\{2 \mu t_{i}\right\} \quad \text { and } r \geq \operatorname{mixima}_{i=1}^{s}\left\{\mu t_{i}\right\} .
$$

Further, for $i=1$ to s, let
(i) $H_{i}^{\prime}=\left[h_{i, 1}^{\prime}, h_{i, 2}^{\prime} \cdots h_{i, n_{i}}^{\prime}\right], h_{i, k}^{\prime} \in \mathbf{F}_{q}^{l}$ for all $1 \leq k \leq n_{i}$, be $l \times n_{i}$ matrices over \mathbf{F}_{q} satisfying the following two properties:
(a) Every set of $2 \mu t_{i}$ (or fewer) columns of H_{i}^{\prime} are linearly independent over \mathbf{F}_{q}.
(b) If $j_{1}, j_{2}, \cdots, j_{s}$ are nonnegative integers such that $0 \leq j_{i} \leq n_{i}$ for all $i=1$ to s satisfying

$$
\left\lceil\frac{j_{1}}{t_{1}}\right\rceil+\left\lceil\frac{j_{2}}{t_{2}}\right\rceil+\cdots \cdots+\left\lceil\frac{j_{s}}{t_{s}}\right\rceil \leq 2 \mu
$$

then every set of $\left(j_{1}+j_{2}+\cdots+j_{s}\right)$ (or fewer) columns with j_{i} columns taken from $H_{i}^{\prime}(i=1$ to $s)$ are linearly independent over \mathbf{F}_{q}. Here the symbol $\lceil x\rceil$ denotes the smallest integer greater than or equal to x.
(ii) $H_{i}^{\prime \prime}=\left[h_{i, 1}^{\prime \prime}, h_{i, 2}^{\prime \prime} \cdots h_{i, n_{i}}^{\prime \prime}\right], h_{i, j}^{\prime \prime} \in \mathbf{F}_{q}^{r}$ for all $1 \leq j \leq n_{i}$, be $r \times n_{i}$ matrices over \mathbf{F}_{q} such that every set of μt_{i} (or fewer) columns of $H_{i}^{\prime \prime}$ are linearly independent over \mathbf{F}_{q}.

Theorem 3.6. Using the notations as given in Definitions 3.5, let M be an $r \times r$ companion matrix over \mathbf{F}_{q}. Let $m=q^{r}-1$. The null space of $H=\left[H_{1}, H_{2}, \cdots, H_{s}\right]$, where each $H_{i}(1 \leq i \leq s)$ is a $(l+(2 \mu-1) r) \times m n_{i}$ submatrix given by
$H_{i}=\left(\begin{array}{ccccc}H_{i}^{\prime} & H_{i}^{\prime} & H_{i}^{\prime} & \cdots & H_{i}^{\prime} \\ M^{0} H_{i}^{\prime \prime} & M^{1} H_{i}^{\prime \prime} & M^{2} H_{i}^{\prime \prime} & \vdots & M^{(m-1)} H_{i}^{\prime \prime} \\ M^{0} H_{i}^{\prime \prime} & M^{2} H_{i}^{\prime \prime} & M^{4} H_{i}^{\prime \prime} & \vdots & M^{2(m-1)} H_{i}^{\prime \prime} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ M^{0} H_{i}^{\prime \prime} & M^{(2 \mu-1)} H_{i}^{\prime \prime} & M^{2(2 \mu-1)} H_{i}^{\prime \prime} & \cdots & M^{(2 \mu-1)(m-1)} H_{i}^{\prime \prime}\end{array}\right)_{(l+(2 \mu-1) r) \times m n_{i}}$
is an i-spotty-byte error control code V correcting all t_{i} / n_{i}-errors of measure μ (or less) and having check but length $R=l+(2 \mu-1) r$ and code length $N=m n=\left(q^{r}-1\right) n$ where $n=n_{1}+n_{2}+\cdots n_{s}$. The parameters of the resulting code will be

$$
\left[m n, m n-(l+(2 \mu-1) r),(2 \mu+1) ; P, P^{\prime}\right],
$$

where $P: N=m n=\left[n_{1}\right]^{m}\left[n_{2}\right]^{m} \cdots\left[n_{s}\right]^{m}$ and $P^{\prime}: T=m t=\left[t_{1}\right]^{m}\left[t_{2}\right]^{m} \cdots$ $\cdots\left[t_{s}\right]^{m}, t=t_{1}+t_{2}+\cdots+t_{s}$.

Proof. It suffices to prove that the code V which is the null space of H detects all i-spotty-byte errors of measure 2μ or less meaning thereby that the minimum i-spotty distance of the code is atleast $2 \mu+1$.

Let $e \in \mathbf{F}_{q}^{N}=\mathbf{F}_{q}^{m\left(n_{1}+\cdots+n_{s}\right)}$ with $w_{\beta}(e) \leq 2 \mu$.
Then e is of the form

$$
e=\left(e_{1} \cdots e_{s}\right)=\left(e_{1}^{0}, e_{1}^{1}, \cdots, e_{1}^{m-1}, \cdots, e_{s}^{0}, e_{s}^{1}, \cdots e_{s}^{m-1}\right)
$$

where e_{j} is the $j^{\text {th }}$ sector of e and $e_{p}^{u} \in \mathbf{F}_{q}^{n_{p}}$ for all $0 \leq u \leq m-1,1 \leq p \leq s$, and

$$
\sum_{p=1}^{s} \sum_{u=0}^{m-1}\left\lceil\frac{w_{H}\left(e_{p}^{u}\right)}{t_{p}}\right\rceil \leq 2 \mu
$$

We claim that $e H^{T} \neq 0$.
Let σ be the total number of erroneous sectors in e. There are two cases to consider:

Case 1. When $\sigma=1$.
Let $j^{\text {th }}$ sector in e is in error having erroneous i-bytes say $e_{j}^{u_{1}}, e_{j}^{u_{2}}, \cdots, e_{j}^{u_{j^{*}}}$ with

$$
\sum_{k=1}^{u_{j^{*}}}\left\lceil\frac{w_{H}\left(e_{j}^{u_{k}}\right)}{t_{j}}\right\rceil \leq 2 \mu
$$

Then the Hamming weight of the $j^{\text {th }}$ sector $e_{j}=\left(e_{j}^{0}, e_{j}^{1}, \cdots e_{j}^{m-1}\right)$ in e is les than or equal to $2 \mu t_{j}$. Since H_{j}^{\prime} is an $l \times n_{j} q$-ary matrix whose every set of $2 \mu t_{j}$ (or fewer) columns are linearly independent over \mathbf{F}_{q}. Therefore, we must have $e H^{T} \neq 0$.
Case 2. When $\sigma \geq 2$.
Let if possible $e H^{T}=0$. Let us assume that $e_{j}, e_{k}, \cdots, e_{y}$ be the erroneous sectors in e such that $e_{j}^{u_{1}}, e_{j}^{u_{2}}, \cdots, e_{j}^{u_{j}{ }^{*}}$ be the erroneous i-bytes in $e_{j} ; e_{k}^{v_{1}}, e_{k}^{v_{2}}, \cdots, e_{k}^{v_{k^{*}}}$ be the erroneous i-bytes in $e_{k} ; \cdots \cdots e_{y}^{\theta_{1}}, e_{y}^{\theta_{2}}, \cdots, e_{y}^{\theta_{y^{*}}}$ be the erroneous i-bytes in e_{y}; where

$$
\left.\sum_{\pi=j, k, \cdots, y} \sum_{\lambda=u_{1} \cdots u_{j^{*}}, v_{1} \cdots v_{k^{*}} \cdots \theta_{1}, \cdots, \theta_{y^{*}}}\left\lceil\frac{w_{H}\left(e_{\pi}^{\lambda}\right.}{t_{\pi}}\right)\right\rceil \leq 2 \mu
$$

and

$$
0 \leq u_{1}, u_{2}, \cdots, u_{j^{*}}, v_{1}, \cdots, v_{k^{*}}, \cdots, \theta_{1}, \cdots, \theta_{y^{*}} \leq m-1
$$

Then $e H^{T}=0$ gives the following relation:

$$
\begin{aligned}
& e_{j}^{u_{1}}\left[\begin{array}{lll}
H_{j}^{\prime^{T}} & \left(M^{u_{1}} H_{j}^{\prime \prime}\right)^{T} & \left(M^{2 u_{1}} H_{j}^{\prime \prime}\right)^{T} \cdots\left(M^{(2 \mu-1) u_{1}} H_{j}^{\prime \prime}\right)^{T}
\end{array}\right] \\
& +e_{j}^{u_{2}}\left[\begin{array}{lll}
H_{j}^{\prime T} & \left(M^{u_{2}} H_{j}^{\prime \prime}\right)^{T} & \left(M^{2 u_{2}} H_{j}^{\prime \prime}\right)^{T} \cdots\left(M^{(2 \mu-1) u_{2}} H_{j}^{\prime \prime}\right)^{T}
\end{array}\right] \\
& +\cdots \cdots \cdots
\end{aligned}
$$

$$
\left.\begin{array}{l}
+e_{j}^{u_{j^{*}}} \quad\left[\begin{array}{lll}
H_{j}^{\prime T}\left(M_{j^{*}}^{u} H_{j}^{\prime \prime}\right)^{T} \quad\left(M^{(2 \mu-1) u_{1}} H_{j}^{\prime \prime}\right)^{T} \cdots\left(M^{(2 \mu-1) u_{j}} H_{j}^{\prime \prime}\right)^{T}
\end{array}\right] \\
+e_{k}^{v_{1}}\left[\begin{array}{lll}
H_{k}^{\prime^{T}} & \left(M^{v_{1}} H_{k}^{\prime \prime}\right)^{T} & \left(M^{2 v_{1}} H_{k}^{\prime \prime}\right)^{T} \cdots\left(M^{(2 \mu-1) v_{1}} H_{k}^{\prime \prime}\right)^{T}
\end{array}\right] \\
+\cdots \cdots \cdots
\end{array}\right]
$$

where O_{l} and O_{r} are the $1 \times l$ and $1 \times r$ null matrices over \mathbf{F}_{q} respectively. The relation

$$
\left(\sum_{\rho=u_{1}}^{u_{j^{*}}} e_{j}^{\rho}\right) H_{j}^{\prime^{T}}+\left(\sum_{w=v_{1}}^{v_{k}^{*}} e_{k}^{w}\right) H_{k}^{\prime^{T}}+\cdots+\left(\sum_{f=\theta_{1}}^{\theta_{y^{*}}} e_{y}^{f}\right) H_{y}^{\prime^{T}}=O_{l}
$$

leads to

$$
\sum_{\rho=u_{1}}^{u_{j^{*}}} e_{j}^{\rho}=O_{n_{j}}, \quad \sum_{w=v_{1}}^{v_{k^{*}}} e_{k}^{w}=O_{n_{k}}, \cdots, \cdots \sum_{f=\theta_{1}}^{\theta_{y^{*}}} e_{y}^{f}=O_{n_{y}}
$$

because of property (i) (b) of Matrix H_{i}^{\prime} given in Definition 3.5.
Multiplying the equation $\sum_{\rho=u_{1}}^{u_{j^{*}}} e_{j}^{\rho}=O_{n_{j}}$ by $\left(H_{j}^{\prime \prime}\right)^{T}, \sum_{w=v_{1}}^{v_{k^{*}}} e_{k}^{w}=O_{n_{k}}$ by $\left(H_{k}^{\prime \prime}\right)^{T}, \ldots$
$\cdots \sum_{f=\theta_{1}}^{\theta_{y^{*}}} e_{y}^{f}=O_{n_{y}}$ by $\left(H_{y}^{\prime \prime}\right)^{T}$ from right gives

$$
\begin{aligned}
& \left(\sum_{\rho=u_{1}}^{u_{j^{*}}} e_{j}^{\rho}\right) H_{j}^{\prime \prime^{T}}=O_{r} \\
& \left(\sum_{w=v_{1}}^{v_{k^{*}}} e_{k}^{w}\right) H_{k}^{\prime \prime^{T}}=O_{r}
\end{aligned}
$$

$$
\left(\sum_{f=\theta_{1}}^{\theta_{y^{*}}} e_{y}^{f}\right) H_{y}^{\prime \prime T}=O_{r}
$$

The following equation from (1) is obtained:

$$
\begin{aligned}
& {\left[\left(e_{j}^{u_{1}} H_{j}^{\prime \prime I^{T}}\right)\left(M^{u_{1}}\right)^{T} \cdots \cdots\left(e_{j}^{u_{1}} H_{j}^{\prime{ }^{T}}\right)\left(M^{(2 \mu-1) u_{1}}\right)^{T}\right]} \\
& +\left[\left(e_{j}^{u_{2}} H_{j}^{\prime \prime T}\right)\left(M^{u_{2}}\right)^{T} \cdots \cdots\left(e_{j}^{u_{2}} H_{j}^{\prime{ }^{T}}\right)\left(M^{(2 \mu-1) u_{2}}\right)^{T}\right]
\end{aligned}
$$

$$
\begin{align*}
& \text { +... } \tag{2}\\
& \text { +.. } \\
& +\left[\left(e_{y}^{\theta_{1}} H_{y}^{\prime \prime^{T}}\right)\left(M^{\theta_{1}}\right)^{T} \cdots \cdots\left(e_{y}^{\theta_{1}} H_{y}^{\prime{ }^{T}}\left(M^{(2 \mu-1) \theta_{1}}\right)^{T}\right]\right.
\end{align*}
$$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
O_{r} & O_{r} & \cdots \\
O_{r}
\end{array}\right] .
\end{aligned}
$$

Let $e_{j}^{u_{1}} H_{j}^{\prime T^{T}}, e_{j}^{u_{2}} H_{j}^{\prime{ }^{T}} \cdots e_{j}^{u_{j}{ }^{*}} H_{j}^{\prime \prime^{T}}$ be denoted by $r_{u_{1}}, r_{u_{2}} \cdots r_{u_{j^{*}}}$ resp; $e_{k}^{v_{1}} H_{k}^{\prime{ }^{T}}$, $e_{k}^{v_{2}} H_{k}^{\prime \prime T} \cdots e_{k}^{v_{k^{*}}} H_{k}^{\prime{ }^{\prime T}}$ be denoted by $r_{v_{1}}, r_{v_{2}}, \cdots, r_{v_{k^{*}}}$ resp; $\cdots \cdots e_{y}^{\theta_{1}} H_{y}^{\prime{ }^{\prime T}}, e_{y}^{\theta_{2}} H_{y}^{\prime \prime T}$, $\cdots, e_{y}^{\theta_{y^{*}}} H_{y}^{\prime \prime^{T}}$ be denoted by $r_{\theta_{1}}, r_{\theta_{2}}, \cdots, r_{\theta_{y^{*}}}$ resp. Then (2) can be rewritten as

$$
\begin{align*}
& r_{u_{1}}+\cdots+r_{u_{j^{*}}}+r_{v_{1}}+\cdots+r_{v_{k^{*}}}+\cdots \cdots+r_{\theta_{1}}+\cdots+r_{\theta_{y^{*}}}=O_{r} \\
& r_{u_{1}}\left(M^{u_{1}}\right)^{T}+\cdots+r_{u_{j^{*}}}\left(M^{u_{j^{*}}}\right)^{T}+\cdots \cdots+r_{\theta_{1}}\left(M^{\theta_{1}}\right)^{T}+\cdots \cdots \cdot \\
& +r_{\theta_{y^{*}}}\left(M^{\theta_{y^{*}}}\right)^{T}=O_{r} \\
& \text {... } \tag{3}\\
& r_{u_{1}}\left(M^{(2 \mu-1) u_{1}}\right)^{T}+\cdots+r_{u_{j^{*}}}\left(M^{(2 \mu-1) u_{j^{*}}}\right)^{T}+\cdots \cdots+r_{\theta_{1}}\left(M^{(2 \mu-1) \theta_{1}}\right)^{T} \\
& +\cdots+r_{\theta_{y^{*}}}\left(M^{(2 \mu-1) \theta_{y^{*}}}\right)^{T}=O_{r} .
\end{align*}
$$

Writing the above equation in the matrix form gives

$$
\left.\begin{array}{l}
\left(r_{u_{1}}, \cdots, r_{u_{j^{*}}}, \cdots, r_{\theta_{1}}, \cdots, r_{\theta_{y^{*}}}\right) \times \\
\times\left(\begin{array}{cccc}
1 & \left(M^{u_{1}}\right)^{T} & \cdots & \left(M^{(2 \mu-1) u_{1}}\right)^{T} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \left(M^{u_{j^{*}}}\right)^{T} & \cdots & \left(M^{(2 \mu-1)\left(u_{j^{*}}\right.}\right)^{T} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \left(M^{\theta_{1}}\right)^{T} & \cdots & \left(M^{(2 \mu-1) \theta_{1}}\right)^{T} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \left(M^{\theta_{y^{*}}}\right)^{T} & \cdots & \left(M^{(2 \mu-1) \theta_{y^{*}}}\right)^{T}
\end{array}\right) \\
=\left(\begin{array}{lll}
O_{r} & O_{r} & \cdots
\end{array}\right) O_{r}
\end{array}\right), ~ l
$$

or

$$
\begin{aligned}
& \left(r_{u_{1}}, \cdots, r_{u_{j^{*}}}, \cdots, r_{\theta_{1}}, \cdots, r_{\theta_{y^{*}}}\right) \times \\
& \times\left(\begin{array}{ccccccc}
1 & \cdots & 1 & \cdots & 1 & \cdots & 1 \\
M^{u_{1}} & \cdots & M^{u_{j^{*}}} & \cdots & M^{\theta_{1}} & \cdots & M_{\theta_{y^{*}}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
M^{(2 \mu-1) u_{1}} & \cdots & M^{(2 \mu-1) u_{j^{*}}} & \cdots & M^{(2 \mu-1) \theta_{1}} & \cdots & M^{(2 \mu-1) \theta_{y^{*}}}
\end{array}\right)^{T} \\
& =\left(\begin{array}{llll}
O_{r} & O_{r} & \cdots & O_{r}
\end{array}\right) .
\end{aligned}
$$

Since the total numbers of erroneous i-bytes in all the erroneous sectors is $j^{*}+k^{*}+\cdots y^{*}=p+1$ (say) which is less than or equal to 2μ. therfore, writing the above matrix equation for the top $p+1(\leq 2 \mu)$ relations, we get

$$
\begin{aligned}
& \left(r_{u_{1}}, \cdots, r_{u_{j^{*}}}, \cdots, r_{\theta_{1}}, \cdots, r_{\theta_{y^{*}}}\right) \times \\
& \times\left(\begin{array}{ccccccc}
1 & \cdots & 1 & \cdots & 1 & \cdots & 1 \\
M^{u_{1}} & \cdots & M^{u_{j^{*}}} & \cdots & M^{\theta_{1}} & \cdots & M_{\theta_{y^{*}}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
M^{p u_{1}} & \cdots & M^{p u_{j^{*}}} & \cdots & M^{p \theta_{1}} & \cdots & M^{p \theta_{y^{*}}}
\end{array}\right)^{T} \\
& =\left(\begin{array}{llll}
O_{r} & O_{r} & \cdots & O_{r}
\end{array}\right) .
\end{aligned}
$$

The coefficient matrix in the above equation being Vandermonde's matrix is nonsingular. Therefore, relations (3) have a solution given by $r_{u_{1}}=\cdots=$ $r_{u_{j^{*}}}=\cdots \cdots=r_{\theta_{1}}=\cdots=r_{\theta_{y^{*}}}=O_{r}$.
This implies that

$$
e_{j}^{u_{1}} H_{j}^{\prime \prime T}=e_{j}^{u_{2}} H_{j}^{\prime{ }^{T}}=e_{j}^{u_{j^{*}}} H_{j}^{\prime T^{T}}=\cdots e_{y}^{\theta_{1}} H_{y}^{\prime{ }^{T}}=\cdots=e_{y}^{\theta_{y^{*}}} H_{y}^{\prime \prime T}=O_{r}
$$

which further gives

$$
e_{j}^{u_{1}}=e_{j}^{u_{j}{ }^{*}}=O_{n_{j}} ; \cdots ; e_{y}^{\theta_{1}}=\cdots=e_{y}^{\theta_{y^{*}}}=O_{n_{y}},
$$

as every μt_{i} columns of $H_{i}^{\prime \prime}$ are linearly independent over \mathbf{F}_{q} for all $1 \leq i \leq$ s. A contradiction. Hence $e H^{T} \neq 0$.
Note. It is to be noted that there can exist atmost one erroneous i-byte in e having more than μ i-spotty errors. The fact is justified because if there are two or more i-bytes with more than μ i-spotty errors, then the total number of i-spotty errors in the error vector e will exceed 2μ which is a contradiction. In fact, if the i-spotty weight of an erroneous i-byte in e is more than μ, then any other erroneous i-byte will have i-spotty weight less than μ. That is why we need the condition that every set of μt_{i} (or fewer) columns of $H_{i}^{\prime \prime}$ are linearly independent over \mathbf{F}_{q} in contrast to the condition of linear independence of $2 \mu t_{i}$ columns as required in the case of matrices $H_{i}^{\prime}(1 \leq i \leq s)$.
In the following example, we construct a single t_{i} / n_{i}-error correcting code.
Example 3.7. Let $q=2, s=3$ and $n_{1}=n_{2}=n_{3}=t_{1}=t_{2}=t_{3}=2$.
Let $l=r=4$. Then l and r satisfy

$$
l \geq \max _{i=1}^{3}\left\{2 t_{i}\right\} \text { and } r \geq \max _{i=1}^{3}\left\{t_{i}\right\}
$$

Here $m=q^{r}-1=2^{4}-1=15$. The code to be constructed as described in Theorem 3.3 will be a $\left[15 \times 6,(15 \times 6)-8,3 ; P, P^{\prime}\right]=\left[90,82,3 ; P, P^{\prime}\right]$ i-spotty-byte code correcting all single t_{i} / n_{i}-errors where

$$
P=P^{\prime}: 90=[2]^{15}[2]^{15}[2]^{15} .
$$

However, we construct a shortend code of length 24 as discussed in Remark 3.4 by taking $m_{1}=m_{2}=m_{3}=4$ and

$$
P=P^{\prime}: 24=[2]^{4}[2]^{4}[2]^{4} .
$$

For this, let α be a root of $x^{4}+x+1 \in \mathbf{F}_{2}[x]$. Let M be the companion matrix of order 4×4 over \mathbf{F}_{2} corresponding to α. Then

$$
\begin{aligned}
& M^{0}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{4 \times 4}, \quad M^{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)_{4 \times 4}, \\
& M^{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)_{4 \times 4}, \quad M^{3}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)_{4 \times 4} .
\end{aligned}
$$

Let

$$
H_{1}^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)_{4 \times 2} \quad H_{2}^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right)_{4 \times 2} \quad H_{3}^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)_{4 \times 2}
$$

and

$$
H_{1}^{\prime \prime}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 0
\end{array}\right)_{4 \times 2} \quad H_{2}^{\prime \prime}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right)_{4 \times 2} \quad H_{3}^{\prime \prime}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)_{4 \times 2}
$$

Then
$H=\left(\begin{array}{cccccccccccccc}H_{1}^{\prime} & H_{1}^{\prime} & H_{1}^{\prime} & H_{1}^{\prime} & \vdots & H_{2}^{\prime} & H_{2}^{\prime} & H_{2}^{\prime} & H_{2}^{\prime} & \vdots & H_{3}^{\prime} & H_{3}^{\prime} & H_{3}^{\prime} & H_{3}^{\prime} \\ M^{0} H_{1}^{\prime \prime} & M^{1} H_{1}^{\prime \prime} & M^{2} H_{1}^{\prime \prime} & M^{3} H_{1}^{\prime \prime} & \vdots & M^{0} H_{2}^{\prime \prime} & M^{1} H_{2}^{\prime \prime} & M^{2} H_{2}^{\prime \prime} & M^{3} H_{2}^{\prime \prime} & \vdots & M^{0} H_{3}^{\prime \prime} & M^{1} H_{3}^{\prime \prime} & M^{2} H_{3}^{\prime \prime} & M^{3} H_{3}^{\prime \prime}\end{array}\right)$

$$
=\left(\begin{array}{cccccccccccccc}
01 & 01 & 01 & 01 & \vdots & 10 & 10 & 10 & 10 & \vdots & 01 & 01 & 01 & 01 \\
00 & 00 & 00 & 00 & \vdots & 01 & 01 & 01 & 01 & \vdots & 01 & 01 & 01 & 01 \\
10 & 10 & 10 & 10 & \vdots & 00 & 00 & 00 & 00 & \vdots & 01 & 01 & 01 & 01 \\
01 & 01 & 01 & 01 & \vdots & 00 & 00 & 00 & 00 & \vdots & 11 & 11 & 11 & 11 \\
\cdots & \cdots \\
11 & 00 & 10 & 10 & \vdots & 01 & 00 & 01 & 01 & \vdots & 00 & 01 & 00 & 10 \\
10 & 01 & 00 & 00 & \vdots & 01 & 11 & 01 & 00 & \vdots & 10 & 01 & 01 & 10 \\
10 & 00 & 01 & 00 & \vdots & 01 & 01 & 11 & 01 & \vdots & 00 & 10 & 01 & 01 \\
10 & 10 & 10 & 01 & \vdots & 00 & 01 & 01 & 11 & \vdots & 01 & 00 & 10 & 01
\end{array}\right)_{8 \times 24}
$$

is the parity check matrix of an $\left[N, N-R ; P, P^{\prime}\right]$ single t_{i} / n_{i}-error correcting code where $N=24$ and $R=8$. The fact that the code which is the null space of H is a single t_{i} / n_{i}-error correcting code is justified by Table 3.1 which shows that syndrome of all single t_{i} / n_{i}-errors are all distinct.

Table 3.1

Error Patterns of i-spotty-byte measure 1	Syndromes
(10:00:00:00:00:00:00:00:00:00:00:00)	(0010:1111)
(01:00:00:00:00:00:00:00:00:00:00:00)	(1001:1000)
(11:00:00:00:00:00:00:00:00:00:00:00)	(1011:0111)
(00:10:00:00:00:00:00:00:00:00:00:00)	(0010:0001)
(00:01:00:00:00:00:00:00:00:00:00:00)	(1001:0100)
(00:11:00:00:00:00:00:00:00:00:00:00)	(1011:0101)
(00:00:10:00:00:00:00:00:00:00:00:00)	(0010:1001)
(00:00:01:00:00:00:00:00:00:00:00:00)	(1001:0010)
(00:00:11:00:00:00:00:00:00:00:00:00)	(1011:1011)
(00:00:00:10:00:00:00:00:00:00:00:00)	(0010:1000)
(00:00:00:01:00:00:00:00:00:00:00:00)	(1001:0001)
(00:00:00:11:00:00:00:00:00:00:00:00)	(1011:1001)
(00:00:00:00:10:00:00:00:00:00:00:00)	(1000:1000)
(00:00:00:00:01:00:00:00:00:00:00:00)	(0100:1110)
(00:00:00:00:11:00:00:00:00:00:00:00)	(1100:0110)
(00:00:00:00:00:10:00:00:00:00:00:00)	(1000:0100)
(00:00:00:00:00:01:00:00:00:00:00:00)	(0100:0111)
(00:00:00:00:00:11:00:00:00:00:00:00)	(1100:0011)
(00:00:00:00:00:00:10:00:00:00:00:00)	(1000:0010)
(00:00:00:00:00:00:01:00:00:00:00:00)	(0100:1111)
(00:00:00:00:00:00:11:00:00:00:00:00)	(1100:1101)
(00:00:00:00:00:00:00:10:00:00:00:00)	(1000:0001)

Table contd.

Error Patterns of i-spotty-byte measure 1	Syndromes
$(00: 00: 00: 00: 00: 00: 00: 01: 00: 00: 00: 00)$	$(0100: 1011)$
$(00: 00: 00: 00: 00: 00: 00: 11: 00: 00: 00: 00)$	$(1100: 1010)$
$(00: 00: 00: 00: 00: 00: 00: 00: 10: 00: 00: 00)$	$(1000: 0100)$
$(00: 00: 00: 00: 00: 00: 00: 00: 01: 00: 00: 00)$	$(0100: 0001)$
$(00: 00: 00: 00: 00: 00: 00: 00: 11: 00: 00: 00)$	$(1100: 0101)$
$(00: 00: 00: 00: 00: 00: 00: 00: 00: 10: 00: 00)$	$(0001 \vdots 0010)$
$(00: 00: 00: 00: 00: 00: 00: 00: 00: 01: 00: 00)$	$(1111: 1100)$
$(00: 00: 00: 00: 00: 00: 00: 00: 00: 11: 00: 00)$	$(1110: 1110)$
$(00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 10: 00)$	$(0001 \vdots 0001)$
$(00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 01: 00)$	$(1111: 0110)$
$(00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 11: 00)$	$(1110: 0111)$
$(00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 10)$	$(0001: 1100)$
$(00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 01)$	$(1111: 0011)$
$(00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 11)$	$(1110: 1111)$

Note. Single i-spotty-byte errors considered in Example 3.1 can also be corrected by using double error correcting BCH code of length 90. But for a BCH code of length $N=90 \leq 2^{7}-1$, we require atmost $2 \times 7=14$ parity check digits while here i-spotty-byte code of the same length $N=90$ requires only 8 check bits.

Conclusion. In this paper, we have discussed the code construction method of i-spotty-byte error correcting codes in terms of their parity check matrix. The method has also been illustrated with the help of an example.

Acknowledgment. The author would like to thank her spouse Dr. Arihant Jain for his constant support and encouragement for pursuing research.

References

[1] K. Feng, L. Xu and F.J. Hickernell, Linear Error-Block codes, Finite Fields and Applications, 12(2006), 638-652.
[2] S. Jain, Irregular-spotty-byte error control codes, World Applied Sciences Journal, 30 (2014), 1993-1999.
[3] S. Jain, On weight enumerators of i-spotty-byte codes, World Applied Sciences Journal, 30 (2014), 1985-1992.
[4] F.J. MacWilliams and N.J.A. Sloane, The Theory of error Correcting Codes, North Holland Publishing Co., 1977.
[5] K. Suzuki, T. Kashiyama and E. Fujiwara, A General class of Mspotty Byte Error Control Codes, IEICE Trans. Fundamentals, Vol.-E90-A, No.7, July (2007).
[6] K. Suzuki, T. Kashiyama and E. Fujiwara, Complex m-spotty Byte Error Control Codes, Pro. IEEE Inform. Theory Workshop:211-215, 2005.
[7] K. Suzuki, M. Shimizu, T. Kashiyama and E. Fujiwara, A Class of Error Control Codes for m-spotty Byte Errors occured in a limited number of Bytes, Proc. IEEE Int. Symp. on Information Theory:2109-2113, 2005.

