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Abstract 

The cranking Nilsson model is discussed, and its formulas are derived. Accordingly, we calculated the 

electric quadrupole moments of some deformed nuclei in the p-shell, namely: 6Li, 7Li, 9Be, 10B, 11B, 12B, 
13B, 11C, and 14N. Good results are obtained in comparison with the well-known experimental findings.    

Keywords 

Deformed nuclei; electric quadrupole moment; Cranked Nilsson model; p-shell nuclei.     

 

1. Introduction 

The nuclear collective rotation [1] is a topic of the nuclear structure theory, which has 

grown steadily, both in the sophistication of its theory and in the range of data to which 

it relates. The large values of the quadrupole moments observed in some nuclei, far 

away from closed shells, implied a collective deformation and thereby a rotational 

degree of freedom. The most central parameters of collective rotation are the moments 

of inertia [2-8] and the quadrupole moments [9-15] of deformed nuclei. Consequently, 

the study of the nuclear moments of inertia and the quadrupole moments of deformed 

nuclei are sensitive checks for the validity of the nuclear structure theories. 

Furthermore, it is well known that nearly all fully microscopic theories of nuclear 

rotation are based on or related in some way to the cranking model, which was 

introduced by Inglis [16] in a semi classical way, but it can be derived fully quantum 

mechanically, at least in the limit of large deformations, and not too strong 𝐾-

admixtures (𝐾 <<  𝐼). The cranking model has the following advantages [17]: 

(I) In principle, it provides a fully microscopic description of the rotating nucleus. There 

is no introduction of redundant variables, therefore, we can calculate the parameters of 

the rotational inertia microscopically within this model and get a deeper insight into the 

dynamics of rotational motion.  

(II) It describes the collective angular momentum as a sum of single-particle angular 

momenta. Therefore, collective rotation as well as single-particle rotation, and all 

transitions in between such as decoupling processes, are handled on the same footing. 

(III) It is correct for very large angular momenta, where classical arguments apply. 

    A simple and widely used way to describe the change of the single-particle structure 

with rotation is given by the cranked Nilsson model (CNM) [17-25]. It is the method 
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of calculating the shell correction energy that made it possible to do large-scale 

calculations where the nuclear potential-energy surface was explored in detail as a 

function of different deformation degrees of freedom. Important achievements in this 

field include the prediction of Super deformed high-spin states and terminating bands. 

The collective mode is more evident when one considers the excitation levels of the 

even-even nuclei. The excitations of even-even nuclei indicated that these nuclei have 

ground-state spin and parity 0+ and the first excited state 2+.  

    The quadrupole moment of an axially deformed nucleus is connected directly with 

its deformation parameter 𝛽 and therefore with its moment of inertia. The quadrupole 

moments of these axially deformed nuclei are obtained as functions of their moments 

of inertia. Variations of the moments of inertia and the quadrupole moments of these 

nuclei in terms of the deformation parameters of these nuclei are also given. The 

obtained numerical results in the case of the cranking-model moments of inertia for all 

the considered nuclei and the rigid body-model moments of inertia, for some nuclei, 

are in good agreement with the corresponding experimental values, which showed that 

the assumption that these nuclei are deformed and have axes of symmetry is more 

reliable.  

    In the present paper we applied the CNM to the nuclear collective motion and to the 

calculations of the electric quadrupole moments of some deformed nuclei. Accordingly, 

the electric quadrupole moments of the deformed nuclei in the p-shell, namely the 

nuclei: 6Li, 7Li, 9Be, 10B, 11B, 12B, 13B, 11C, and 14N are calculated.  

 

2. Single Nucleon in a Deformed Nucleus and the Cranked Nilsson Model 

The single particle Hamiltonian in the Cranked Nilsson model assumes the form [17-

25]  

                                              𝐻 = 𝐻(0) + 𝐻(1) − 𝜔𝑗𝑥,                                                            (2.1) 

where 

                                   𝐻(0) =
𝑝2

2𝑚
+

1

2
𝑚{𝜔𝑥

2𝑥2 + 𝜔𝑦
2𝑦2 + 𝜔𝑧

2𝑧2}.                                     (2.2) 

Here, the oscillator parameters 𝜔𝑥 , 𝜔𝑦  and  𝜔𝑧  assume the form [17] 

                                     𝜔𝑥 = 𝜔0(𝛽, 𝛾) [1 − (√
5

4𝜋
𝛽) 𝑐𝑜𝑠 (𝛾 −

2𝜋

3
)], 

                                    𝜔𝑦 = 𝜔0(𝛽, 𝛾) [1 − (√
5

4𝜋
𝛽) 𝑐𝑜𝑠 (𝛾 +

2𝜋

3
)],                            (2.3)  

                                     𝜔𝑧 = 𝜔0(𝛽, 𝛾) [1 − (√
5

4𝜋
𝛽) 𝑐𝑜𝑠(𝛾)], 

where 𝛽 and γ are the quadrupole deformation degrees of freedom. The second term in 

the right-hand side of equation (2.1) is given by 
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                                                𝐻(1) = 2ℏ𝜔0√
4𝜋

9
𝜌2휀4𝑉4 + 𝑉′,                                      (2.4) 

where the stretched square radius  𝜌2 is defined by   

                                                𝜌2 =
𝑚

ℏ
{𝜔𝑥

2𝑥2 + 𝜔𝑦
2𝑦2 + 𝜔𝑧

2𝑧2},                                       (2.5)    

     The hexadecapole potential is defined to obtain a smooth variation [17-25] in the 𝛾-

plane so that the axial symmetry is not broken for  𝛾 = −120𝑜 , −60𝑜 , 0𝑜 and 60𝑜. It is 

of the form [17] 

                           𝑉4 = 𝑎40𝑌4,0 + 𝑎42(𝑌4,2 + 𝑌4,−2) + 𝑎44(𝑌4,4 + 𝑌4,−4),                      (2.6) 

where the  𝑎4𝑖  parameters are chosen as 

               𝑎40 =
1

6
(5 𝑐𝑜𝑠2 𝛾 + 1),           𝑎42 = −

1

12
√30 𝑠𝑖𝑛 2𝛾,      𝑎44 =

1

12
√70 𝑠𝑖𝑛2𝛾.      

and 

                             𝑉′ = −𝜅(𝑁)ℏ𝜔0
𝑜{2ℓ𝑡 . 𝑠 + 𝜇(𝑁)(ℓ2

𝑡 − 〈ℓ2
𝑡〉𝑁)}.                              (2.7) 

In equation (2.7) t refers to the stretched coordinates 𝜉 = 𝑥√𝑀𝜔𝑥 ℏ⁄  etc., and 4  in 

equation (2.4) refers to the hexadecapole deformations degree of freedom. 𝑗𝑥 in 

equation (2.1) is the 𝑥-component of the total angular momentum 𝐽. 

 

3. Derivations 

3.1 The Hamiltonian  𝐻(0) 

The angular frequencies, equations (2.3), can be simplified to  

                                       𝜔𝑥 = 𝜔0 [1 +
3

( 𝑐𝑜𝑠 𝛾 − √3 𝑠𝑖𝑛 𝛾)],                                       (3.1) 

                                     𝜔𝑦 = 𝜔0 [1 +
3

( 𝑐𝑜𝑠 𝛾 + √3 𝑠𝑖𝑛 𝛾)],                                            (3.2) 

                                     𝜔𝑧 = 𝜔0 [1 −
2

3
휀  𝑐𝑜𝑠 𝛾].                                                           (3.3) 

Hence 

   𝜔𝑥
2𝑥2 + 𝜔𝑦

2𝑦2+𝜔𝑧
2𝑧2 = 𝜔0

2𝑟2 +
2

3
휀 𝑐𝑜𝑠 𝛾𝜔0

2𝑟2(1 − 3 𝑐𝑜𝑠2𝜃)   

            −
2

3
휀√3 𝑠𝑖𝑛 𝛾 𝜔0

2𝑟2𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠 2𝜑 +
2

9
𝑐𝑜𝑠2𝛾 𝜔0

2𝑟2(1 + 3 𝑐𝑜𝑠2𝜃)  

          −
2

9
√3 𝑠𝑖𝑛22𝛾 𝜔0

2𝑟2𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠 2𝜑 +
2

9
 3 𝑠𝑖𝑛2𝛾 𝜔0

2𝑟2(1 −  𝑐𝑜𝑠2𝜃).            (3.4)  

Accordingly, the Hamiltonian 𝐻(0)  takes the form 

𝐻(0) = −
ℏ2

2𝑚
𝛻2 +

1

2
𝑚 𝜔0

2𝑟2 −
𝑚

2
(

2

3
휀 𝑐𝑜𝑠 𝛾𝜔0

2𝑟2√
16𝜋

5
 𝑌2,0)  
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 −
𝑚

2
(

2

3
휀√3 𝑠𝑖𝑛 𝛾 𝜔0

2𝑟2√
8𝜋

15
 (𝑌2,2 + 𝑌2,−2)) +

𝑚

2
(

2

9
𝑐𝑜𝑠2𝛾 𝜔0

2𝑟2 (√
16𝜋

5
 𝑌2,0 + 2))   

−
𝑚

2
(

2

9
√3 𝑠𝑖𝑛22𝛾 𝜔0

2𝑟2√
8𝜋

15
 (𝑌2,2 + 𝑌2,−2)) +

𝑚

2
(

2

9
 3 𝑠𝑖𝑛2𝛾 𝜔0

2𝑟2 (√
16𝜋

5
 𝑌2,0 − 2)). (3.5)                                                                                  

    The two deformation parameters 휀 and 𝛿 are equal and they are related to the well-

known deformation parameter 𝛽  by the following relation [17]  

                                                         휀 = 𝛿 =
3

2
√

5

4𝜋
 𝛽.                                                   (3.6)  

The Hamiltonian 𝐻(0), then, takes the form 

      𝐻(0) = −
ℏ2

2𝑚
𝛻2 +

1

2
𝑚 𝜔0

2𝑟2 − 𝛽𝑚 𝜔0
2𝑟2 𝑌2,0𝑐𝑜𝑠 𝛾 −

√2

2
𝛽𝑚  𝜔0

2𝑟2  (𝑌2,2 +

𝑌2,−2) 𝑠𝑖𝑛 𝛾 

           +
5

32𝜋
𝛽2𝑚 𝜔0

2𝑟2 (√
16𝜋

5
 𝑌2,0 + 2 𝑐𝑜𝑠 𝛾 − √

8𝜋

5
 (𝑌2,2 + 𝑌2,−2) 𝑠𝑖𝑛 2𝛾).              (3.7)   

Hence, to the first order in 𝛽 the Hamiltonian 𝐻(0) takes the form 

𝐻(0) = −
ℏ2

2𝑚
𝛻2 +

1

2
𝑚 𝜔0

2𝑟2 − 𝛽𝑚 𝜔0
2𝑟2 𝑌2,0𝑐𝑜𝑠 𝛾 −

√2

2
𝛽𝑚  𝜔0

2𝑟2  (𝑌2,2 + 𝑌2,−2) 𝑠𝑖𝑛 𝛾.  (3.8) 

 

3.2 The Hamiltonian 𝐻(1)  

Direct substitution for the different quantities in the operator 𝜌2 gives 

         𝜌2 =
𝑚𝜔0

ℏ
𝑟2 [1 −

3
𝑐𝑜𝑠 𝛾√

16𝜋

5
𝑌2,0 −

3
√3 𝑠𝑖𝑛 𝛾 √

8𝜋

15
(𝑌2,2 + 𝑌2,−2)].                (3.9) 

 

3.3 The term 2ℏ𝜔0√
4𝜋

9
𝜌2휀4𝑉4  

It is not difficult to show that  

        2ℏ𝜔0√
4𝜋

9
𝜌2휀4𝑉4 =

√
16𝜋

9
𝑚 𝜔0

2휀4𝑟2 [

1

6
(5 𝑐𝑜𝑠2 𝛾 + 1)𝑌4,0 ±

1

12
√30 𝑠𝑖𝑛 2𝛾 (𝑌4,2 + 𝑌4,−2)

+
1

12
√70 𝑠𝑖𝑛2𝛾(𝑌4,4 + 𝑌4,−4)

]  

 

      × [−
3

𝑐𝑜𝑠 𝛾√
16𝜋

5
𝑌2,0 × [

1

6
(5 𝑐𝑜𝑠2 𝛾 + 1)𝑌4,0 ±

1

12
√30 𝑠𝑖𝑛 2𝛾 (𝑌4,2 + 𝑌4,−2)

+
1

12
√70 𝑠𝑖𝑛2𝛾(𝑌4,4 + 𝑌4,−4)

]]  
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−
3

√3 𝑠𝑖𝑛 𝛾 √
8𝜋

15
(𝑌2,2 + 𝑌2,−2) [

1

6
(5 𝑐𝑜𝑠2 𝛾 + 1)𝑌4,0 ±

1

12
√30 𝑠𝑖𝑛 2𝛾 (𝑌4,2 + 𝑌4,−2)

+
1

12
√70 𝑠𝑖𝑛2𝛾(𝑌4,4 + 𝑌4,−4)

]     (3.10) 

 

    In the above equations, the oscillator frequency 𝜔0
 = 𝜔0

 (𝛿) is given in terms of the 

nondeformed parameter 𝜔0
0 by the following relation [26]   

                                    𝜔0
 (𝛿) = 𝜔0

0 (1 −
4

3
𝛿2 −

16

27
𝛿3)

−
1

6
.                                       (3.11) 

 

For the non-deformed oscillator parameter ℏ𝜔0
0 we used the one which is given in terms 

of the mass number 𝐴, the number of neutrons 𝑁 and the number of protons 𝑍 by [27] 

                      ℏ𝜔0
0 = 38.6 𝐴−

1

3 − 127.0 𝐴−
4

3 + 14.75 𝐴−
4

3(𝑁 − 𝑍).                           (3.12) 

 

4. The Single Particle Energy Eigenvalues and Eigenfunctions 

The method of finding the energy eigenvalues and eigenfunctions of the Hamiltonian 

H  can be illustrated as follows. Solve the Schrödinger’s equation 

                                                     𝐻0
(0)

𝜓𝑖
(0)

= 𝐸𝑖
(0)

𝜓𝑖
(0)

,                                               (4.1)                                                      

exactly to find the unperturbed energy eigenvalues 𝐸𝑖
(0)

 and eigenfunctions 𝜓𝑖
(0)

. Then 

modify the functions 𝜓𝑖
(0)

 to become eigenfunctions for the solutions of the 

corresponding equation for  𝐻0
(0)

+ 𝑉′. Hence, use the functions obtained in the last 

step to construct the complete function 𝜓, the eigenfunction of the Hamiltonian 𝐻, in 

the form of linear combinations of the above functions, as basis functions, with given 

total angular momentum 𝑗 and parity  𝜋. Finally, construct the Hamiltonian matrix 𝐻 

by calculating its matrix elements with respect to the basis functions defined in the last 

step. Diagonalizing the Hamiltonian matrix 𝐻 one finds the energy eigenvalues 𝐸𝑛 and 

eigenfunctions 𝜓𝑛 as functions of the non-deformed oscillator parameter ℏ𝜔0
0 and the 

parameters of the potentials. These methods can be explained in the following steps. 

    The solutions of the equation  𝐻0
(0)

𝜓𝑖
(0)

= 𝐸𝑖
(0)

𝜓𝑖
(0)

,  are given, with the usual 

notations, by [2,4] 

                                           𝜓𝑖
(0)

≡ |𝑁ℓ𝛬〉 = 𝑅𝑁ℓ(𝑟)𝑌ℓ𝛬(𝜃, 𝜑),                                     (4.2) 

                                               𝐸𝑖
(0)

= 휀𝑁
0 = (𝑁 +

3

2
) ℏ𝜔0(𝛿),                                       (4.3)                                                        

where 𝑌ℓ𝛬(𝜃, 𝜑) are the normalized spherical harmonics with 𝛬 = −ℓ, −ℓ +
1, … , 0, … , ℓ − 1, ℓ and ℓ is the nucleon orbital angular momentum quantum number.   

The normalized radial wave functions 𝑅𝑁ℓ(𝑟) are given by 
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                    𝑅𝑁ℓ(𝑟) = 𝑎0

−
3

2√
2Г(

𝑁−ℓ+2

2
)

Г(
𝑁+ℓ+3

2
)

𝑒− 
𝜌2

2 𝜌ℓ𝐿𝑁−ℓ

2

ℓ+
1

2 (𝜌2),                                               (4.4) 

where 𝜌 =
𝑟

𝑎0
, 𝑎0 = √

ℏ

𝑚𝜔0(𝛿)
  and the number of quanta of excitation 𝑁 is related to the 

orbital angular momentum quantum number ℓ by  ℓ = 𝑁, 𝑁 − 2, … , 0 or 1. 

    The last function in the right-hand side of equation (4.4) is the associated Laguerre 

polynomial. Since the nucleon has spin 
1

2
 and intrinsic spin wave functions 𝜒𝑠𝛴, where  

𝛴 = ±
1

2
, the single particle wave functions of the Hamiltonian 𝐻(0) are, then, given by 

                                         𝜓𝑖
(0)

≡ |𝑁ℓ𝛬𝛴〉 = 𝑅𝑁ℓ(𝑟)𝑌ℓ𝛬(𝜃, 𝜑)𝜒𝑠𝛴 .                              (4.5) 

 

    Wave functions with given values of the number of quanta of excitations N , the 

orbital angular momentum quantum number ℓ, the total angular momentum J and the 

parity 𝜋 can be constructed from the functions (4.5), in the usual manner [2,4,13-15], 

as follows  

                                        |𝑁ℓ𝛬𝛴〉 = ∑ (ℓ𝛬,
1

2
𝛴|𝐽𝛺) |𝑁ℓ𝛬𝛴〉𝛬+𝛴=𝛺 .                            (4.6) 

The functions |𝑁ℓ𝐽𝜋〉 are used as basis functions for the construction of the single 

particle nuclear wave functions with given total angular momentum 𝐽 and parity 𝜋, in 

the usual manner, as follows 

                                 |𝑁ℓ𝐽𝜋〉 = ∑ ∑ 𝐶𝑁ℓ𝛬+𝛴=𝛺𝑁ℓ (ℓ𝛬,
1

2
𝛴|𝐽𝛺) |𝑁ℓ𝛬𝛴〉.                        (4.7) 

Accordingly, we obtain 15 wave functions, states, namely 

|
1

2

+
〉 , |

3

2

+
〉 , |

5

2

+
〉 , |

7

2

+
〉 , |

9

2

+
〉 , |

11

2

+
〉 ,  |

13

2

+
〉 ,  |

1

2

−
〉 , |

3

2

−
〉 , |

5

2

−
〉 , |

7

2

−
〉 , |

9

2

−
〉 , |

11

2

−
〉 ,  |

13

2

−
〉    

and |
15

2

−
〉 . 

    The matrix elements of the Hamiltonian 𝐻0
(0)

+ 𝑉′ with respect to the functions (4.7) 

are given by 

⟨𝐽𝜋|𝐻0
(0)

+ 𝑉′|𝐽𝜋⟩ = ∑ (ℓ𝛬,
1

2
𝛴|𝐽𝛺)𝑁ℓ𝑁′𝛬,𝛴,𝛬′ ,𝛴′ (ℓ𝛬′,

1

2
𝛴′|𝐽𝛺′)  

× 𝐶𝑁ℓ𝐶𝑁′ℓ [(𝑁 +
3

2
) ℏ𝜔0(𝛿)𝛿𝑁,𝑁′𝛿𝛬, 𝛬′𝛿𝛴,𝛴′𝛿𝛺,𝛺′ − 𝜒ℏ𝜔0

0 [(2𝛬𝛴 + 𝜇ℓ(ℓ +

1))𝛿𝛬, 𝛬′𝛿𝛴,𝛴′ + √(ℓ − 𝛬)(ℓ + 𝛬 + 1)𝛿𝛬+1, 𝛬′𝛿𝛴−1,𝛴′ +

√(ℓ + 𝛬)(ℓ − 𝛬 + 1)𝛿𝛬−1, 𝛬′𝛿𝛴+1,𝛴′] 𝛿𝑁,𝑁′ 𝛿𝛺,𝛺′  ].                                                   (4.8) 

    The matrix elements of the operator 𝑟2 with respect to the basis functions  |𝑁ℓ𝛬𝛴〉 
are given, with the usual notations [2,4], by 
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⟨𝑁ℓ𝛬𝛴|𝑟2|𝑁′ℓ𝛬′𝛴′⟩ = 𝑎0
2 [(𝑁 +

3

2
) 𝛿𝑁,𝑁′ + √𝑛 (𝑛 + ℓ +

1

2
) 𝛿𝑁−𝑍,𝑁′ +

√(𝑛 + 1) (𝑛 + ℓ +
3

2
) 𝛿𝑁+𝑍,𝑁′] 𝛿𝛬, 𝛬′𝛿𝛴,𝛴′  ,                                                              (4.9) 

 where  𝑎0
2 =

ℏ

𝑚𝜔0(𝛿)
 and  𝑁 = 2𝑛 + ℓ. 

    The matrix elements of the spherical harmonics 𝑌𝐿𝑀(𝜃, 𝜑) with respect to the basis 

functions |𝑁ℓ𝛬𝛴〉 are given by [2,4]  

     ⟨𝑁ℓ𝛬𝛴|𝑌𝐿𝑀|𝑁′ℓ𝛬′𝛴′⟩ = (−1)2ℓ+1√
2𝐿+1

4𝜋
(

ℓ 𝐿 ℓ
0 0 0

) (
ℓ 𝐿 ℓ

−𝛬 𝑀 𝛬′) 𝛿𝛴,𝛴′.     (4.10) 

     

5. Total Nuclear Quantities 

We define the following total nuclear quantities [17] 

                                    𝐸𝑠𝑝 = ∑ 𝑒𝑖 = ∑ 𝑒𝑖
𝜔

𝑜𝑐𝑐 + ℏ𝜔 ∑ 𝑚𝑖𝑜𝑐𝑐𝑜𝑐𝑐 ,                                  (5.1) 

                                                                 𝐼 = ∑ 𝑚𝑖𝑜𝑐𝑐 ,                                                 (5.2) 

where the summation is carried out over the occupied orbitals in a specific configuration 

of the nucleus. The shell energy is now calculated from [17] 

                                               𝐸𝑠ℎ𝑒𝑙𝑙 (𝐼) = 𝐸𝑠𝑝(𝐼) − 〈𝐸𝑠𝑝(𝐼)〉,                                      (5.3) 

where 〈𝐸𝑠𝑝(𝐼)〉 is the smoothed single-particle sum evaluated according to the 

Strutinsky prescription [28-29]. The detailed formulas for  〈𝐸𝑠𝑝(𝐼)〉  are discussed in 

[17,28] for  𝐼 = 0, and in [28-29] for 𝐼 ≠ 0. 

    The pairing energy is an important correction that should decrease with increasing 

spin and become essentially unimportant at very high spins. To obtain an (𝐼 = 0) 

average pairing gap ∆, which varies as 𝐴−
1

2, the pairing strength G is chosen as [17-25] 

                                              𝐺𝑝,𝑛 =
1

𝐴
(𝑔0 ± 𝑔1

𝑁−𝑍

𝐴
)   (MeV),                                      (5.4) 

with 
𝑔1

𝑔0
~

1

3
. Furthermore, the number of orbitals included in the pairing calculation 

should vary as √𝑍 and √𝑁 for protons (p) and neutrons (n), respectively. 

    The total nuclear energy is now calculated by replacing the smoothed single-particle 

sum by the rotating-liquid-drop energy and adding the pairing correction 

                              𝐸𝑡𝑜𝑡 (휀,̅ 𝐼) = 𝐸𝑠ℎ𝑒𝑙𝑙(휀,̅ 𝐼) + 𝐸𝑅𝐿𝐷(휀,̅ 𝐼) + 𝐸𝑝𝑎𝑖𝑟(휀,̅ 𝐼),                      (5.5) 

or                          

                                    𝐸𝑡𝑜𝑡(휀,̅ 𝐼) = 𝐸𝑠𝑝 − 𝐴 + 𝐸𝐿𝐷 − 𝐵𝐼2 +
ℏ2

2ℑ𝑟𝑖𝑔
                                (5.6) 
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where 휀̅ = (휀, 𝛾, 휀4), 𝐸𝐿𝐷  is liquid drop energy, 𝐴 = 〈𝐸𝑠𝑝(𝐼)〉 and  𝐵 is the smooth 

moment of inertia factor, 𝐵 =
ℏ2

2ℑ𝑆𝑡𝑟𝑢𝑡
. The shell and pairing energies are evaluated 

separately for protons and neutrons at  𝐼 = 0, while the renormalization of the moment 

of inertia introduces a coupling when evaluating 𝐸𝑠ℎ𝑒𝑙𝑙  for  𝐼 > 0. In the computer 

program, 𝐸𝑝𝑎𝑖𝑟 is included only for 𝐼 = 0. The protons and neutrons are also coupled 

through the requirement that the shape of the respective potentials and the rotational 

frequencies are identical. 

     In the liquid drop model [17-25], the nuclear mass is given by 

        𝐸𝐿.𝐷. = −𝑎𝑉 (1 − 𝜅𝑉 (
𝑁−𝑍

𝐴
)

2

) 𝐴 +
3

5

𝑒2𝑍2

𝑅𝑐
[𝐵𝑐(휀)̅ −

5𝜋2

6
(

𝑑

𝑅𝑐
)

2

] 

     +𝑎𝑠 (1 − 𝜅𝑠 (
𝑁−𝑍

𝐴
)

2

) 𝐴2 3⁄ 𝐵𝑠(휀)̅ + {
+ 12 √𝐴     𝑜𝑑𝑑 − 𝑜𝑑𝑑 𝑛𝑢𝑐𝑙𝑒𝑖⁄

        0                   𝑜𝑑𝑑 − 𝑒𝑣𝑒𝑛 𝑛𝑢𝑐𝑙𝑒𝑖       

     − 12 √𝐴⁄    𝑒𝑣𝑒𝑛 − 𝑒𝑣𝑒𝑛 𝑛𝑢𝑐𝑙𝑒𝑖 .

   (5.7) 

 

In this formula, 𝐵𝑐(휀)̅ = 𝐵𝑐𝑜𝑢𝑙(휀)̅/𝐵𝑐𝑜𝑢𝑙(휀̅ = 0) and 𝐵𝑠(휀)̅ = 𝐵𝑠𝑢𝑟𝑓(휀)̅/𝐵𝑠𝑢𝑟𝑓(휀̅ = 0),                                             

are the Coulomb and surface energies of a nucleus with a sharp surface in units of their 

corresponding values for spherical shape. The second term in the Coulomb energy is a 

(shape-independent) diffuseness correction with d being the diffuseness. The Coulomb 

energy constant is often defined as  𝑎𝑐 = (3 5⁄ )(𝑒2 𝑅𝑐⁄ ). When calculating the nuclear 

mass, one should note that the average pairing energy should be subtracted from 𝐸𝑝𝑎𝑖𝑟 . 

    The calculation of the Coulomb correction is somewhat involved: the original six-

dimensional integral can be simplified only to four dimensions [17]. Furthermore, the 

use of stretched coordinates leads to complicated expressions. 

    Because of the incompressibility of nuclear matter, the nuclear volume is kept 

constant when the nucleus is deformed. This is achieved by varying the frequency 

𝜔0(휀, 𝛾, 휀4 ) from its value for a spherical shape, 𝜔0
0 . The integration of the nuclear 

volume is most easily performed in the stretched-coordinate system and then multiplied 

with the corresponding Jacobian, a constant proportional to √𝜔𝑥𝜔𝑦𝜔𝑧 𝜔0
3⁄  . 

    From the single-particle wave functions the electric (or mass) quadrupole moment 

may be calculated as  

                                                     𝑄2 = ∑ 𝑝𝑖⟨𝜒𝑖
𝜔|𝑞2|𝜒𝑖

𝜔⟩𝑜𝑐𝑐 ,                                        (5.8) 

where  𝑝𝑖 = 1 for protons and 0 for neutrons and the functions 𝜒𝑖
𝜔 are those which are 

given by equation (4.7).  

        The relation between the measured quadrupole moment, denoted by 𝑄𝑆 and 𝑄2 is 

given by [26] 

                                   𝑄𝑆 =
3𝐾2−𝐼(𝐼+1)

(𝐼+1)(2𝐼+2)
𝑄2.                                                            (5.9) 
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The number 𝐼 in equation (5.9) is the spin-quantum number of the specified nuclear 

state and K is its component along the body-fixed 𝑧-axis. It turns out that always the 

ground state spin of the nucleus 𝐼0  =  𝛺 =  𝐾, where 𝛺 is the 𝑧-component of the total 

angular momentum 𝐽, except when 𝛺 =  
1

2
, in which case the ground state spin 𝐼0 is 

given as function of the decoupling factor 𝑎, as given by Table-III of reference [26]. 

 

6. Results and Discussions 

We have applied the CNM to the nine deformed nuclei in the p-shell, namely the nuclei 
6Li, 7Li, 9Be, 10B, 11B, 12B, 13B, 11C, and 14N in order to calculate the intrinsic electric 

quadrupole moments of these nuclei and as a consequence the measured quadrupole 

moment of the nine nuclei are then obtained. 

    In Table-1 we present the calculated values of the quadrupole moments of the nine 

deformed nuclei, together with the corresponding experimental values [30,31] and the 

values of the deformation parameters for which the obtained results are in good 

agreement with the corresponding experimental values. The values of the nondeformed 

oscillator parameter ℏ𝜔0
0 , the total spin and parity 𝐼𝜋  are also given in this table.  

 

Table-3 Quadrupole moments of the nine deformed nuclei 

Nucleus 𝛽 𝛾° 𝐼𝜋 ℏ𝜔0
0 

(MeV) 

𝑄𝑠 CNM    

(e m barns) 

𝑄 exp. [30-31] 

(e m barns) 

6Li -0.12 10° 1+ 9.5939 -0.079 -0.08 

7Li -0.18 𝛾° 3

2

−

 
11.7960 -3.935 -4.0 

9Be 0.27 𝛾° 3

2

−

 
12.5610 4.921 5.0 

10B 0.44 30° 3+ 12.0220 8.441 8.5 

11B 0.37 30° 3

2

−

 
12.7680 4.009 4.1 

12B 0.18 𝛾° 1+ 13.3110 1.823 1.8 

13B 0.39 30° 3

2

−

 
13.709 4.895 ±5.0 

11C 0.21 30° 3

2

−

 
11.5620 3.002 3.1 

14N 0.12 10° 1+ 12.2520 0.936 1.0 

 

    The analysis of the quadrupole moments of the considered nuclei shows that, among 

all the considered nuclei, the nuclei 6Li and 7Li have, only, oblate shapes while the other 

nuclei have prolate deformations. Moreover, it is seen from Table-1 that the obtained 
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values of the electric quadrupole moments of the nine deformed nuclei are in good 

agreement with the corresponding experimental values. 
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