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Abstract. Irregular-spotty-byte error control codes devised by the
author[3-5] are suitable for binary semiconductor memories with bi-
nary arithmatic where a memory chip consists of irregular bytes of
not necessarily of same length. However, direct storage and process-
ing of non-binary numbers in base 10, base 8 or base 16 is possible
with the instant invention. Keeping this in view, in this paper, we
formulate the concept of non-binary lti/ni

-ispotty byte error control
codes suitable for non-binary storage and computing using RAM
chips of irregular bytes.
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1. Introduction

Irregular-spotty-byte error control codes devised by the author [3-
5] are suitable for correcting/detecting errors in binary semiconductor
memory systems having ibyte-organized memory chips where ibytes are
memory bytes not necessarily of the same length. A memory chip under
this configuration consists of “s” ibytes where length of the jth ibyte is
nj(n ≥ 1, 1 ≤ j ≤ s). These semiconductor memory systems are useful
in computer and other communication systems such as mobile systems,
aircrafts, satellites etc. The multiple errors arising in these semiconduc-
tor memories while being exposed to strong electromegnatic waves, ra-
dioactive particles or energetic cosmic particles are isopotty-byte errors or
ti/ni-errors[3-5]. The study of ispotty-byte error control codes [3-5] has
been made with respect to the ispotty distance induced from the classical
Hamming distance. However, now a days, the memory elements may be
programmed to store and process non-binary digits. Direct storage and
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processing of numbers in base 10, base 8 or base 16 etc is possible with
the instant invention. As a result, higher storage densities and non-binary
operation possible with multistage memory elements through the instant
computing methods provides an opportunity to vastly improve the speed
and efficiency of computation relative to conventional binary computing
machines [9]. Keeping this in view, there is a need for non-binary ispotty
byte errors control codes. Since the binary ispotty distance is induced from
the classical Hamming distance and we know that the classical non-binary
Lee distance is stronger than the Hamming distance since in the case of
Hamming distance, any digital change in one place is a single errors, no
matter what the magnitude of change is, whereas in the case of Lee dis-
tance, a digital change of ±t in one place contributes “t” errors. Therefore,
in this paper, we present a model of non-binary ispotty-byte error control
codes viz. lti/ni

-codes equipped with a non-binary ispotty distance induced
from the classical Lee distance [7]. We present various bounds on the pa-
rameters of non-binary lti/ni

-ispotty byte error control codes capable of
detecting/correcting non-binary lti/ni

-errors.

Throughout this paper, [x] denotes the greatest integer less than or
equal to x and dxe denotes the smallest integer greater than or equal to x.

2. Definitions and notations

Let q, n be positive integers with q ≥ 2. Let Zq be the ring of integers
modulo q. Let Zn

q be the set of all n-tuples over Zq. Then Zn
q is a module

over Zq. Let V be a submodule of the module Zn
q over Zq. For q prime, Zq

becomes a field and Zn
q becomes a vector space and subspace respectively

over Zq. A partition P of the positive integer n is defined as

P : n = n1 + n2 + · · ·+ ns, 1 ≤ n1 ≤ n2 ≤ n3 · · · · · · ≥ ns ≤ 1, s ≥ 1,

and is denoted as

P : n = [n1][n2] · · · [ns]

= [m1]
l1 [m2]

l2 · · · [mr]
lr if

n1 = n2 = · · · = nl1 = m1,

nl1+1 = nl1+2 = · · · = nl1+l2 = m2,
...
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...

...

nl1+l2+···+lr−1+1 + nl1+l2+···+lr−1+2

+ · · ·+ nl1+l2+···+lr = mr.

Then we can write the field Zn
q as

Zn
q = Zn1

q ⊕ Zn2
q ⊕ · · · ⊕ Zns

q .

Each vector v ∈ Zn
q can be uniquely written as v = (v1, v2, · · · , vs) where

vi ∈ Vi = Zni
q for all 1 ≤ i ≤ s and is called the ith irregular-byte or

simply ith i-byte of v. We call the partition P as primary-partition or
irregular-byte-partition. Further, let 1 ≤ t ≤ n be a positive integer and let
P ′ : t = [t1][t2] · · · [ts] be a partition of t where 1 ≤ ti ≤ ni for all 1 ≤ i ≤ s.
Then P ′ is called as “secondary-partition” or “error-partition”. Note that
the secondary partition depends upon primary partition. The number n is
called the primary number and t is called the secondary number.

Further, we define the modular value or Lee weight |a| (or wl(a)) of
an element a ∈ Zq by

wl(a) = |a| =

{
a if 0 ≤ a ≤ q/2,
q − a if q/2 < a ≤ q − 1.

We note that non-zero modular value |a| can be obtained by two different
ways viz. a and q−a of Zq provided {q is odd} or {q is even and a 6= [q/2]}
i.e.

|a| = |q − a| if





q is odd
or
q is even and a 6= q/2.

If q is even and a = [q/2] or if a = 0, then |a| is obtained in only one
way viz. |a| = a. Thus there may be one or two equivalent values of |a|
which we shall refer to as repetitive equivalent values of a. The number of
repetitive equivalent values of a will be denoted by ea where

ea =

{
1 if { q is even and a = [q/2]} or {a = 0}
2 if { q is odd and a 6= 0} or {q is even, a 6= 0 and a 6= [q/2]}.
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Definition 2.1. Let n and t be the positive integers with 1 ≤ t ≤ n. Let
P and P ′ be the primary and secondary partitions corresponding to n and
t respectively given by

P : n = [n1][n2] · · · [ns],

and

P ′ : t = [t1][t2] · · · [ts],

where 1 ≤ ti ≤ ni for all 1 ≤ i ≤ s.

Let u be a vector in Zn
q = ⊕i=1Z

ni
q given by

u = (u1, u2, · · · , us)

where ui ∈ Zni
q for all i is the ith i-byte of u of size ni. We define the

non-binary ispotty weight (or simply lti/ni
-measure) of u corresponding to

the primary-partition P and secondary-partition P ′ as

w
(P,P ′)
lti/ni

=
s∑

i=1

⌈
wl(ui)

ti

⌉
,

where wl(ui) is the Lee weight of the ith ibyte ui of u of size ni.

Definition 2.2. The non-binary ispotty distance (or equivalently lti/ni
-

distance) between two vectors u = (u1, u2, · · · , us) and v = (v1, v2, · · · vs)
in Zn

q = ⊕s
i=1Z

ni
q is given by

d
(P,P ′)
lti/ni

(u, v) = w
(P,P ′)
lti/ni

(u − v)

=
s∑

i=1

⌈
dl(ui, vi)

ti

⌉
,

where dl(ui, vi) is the Lee distance between the ith ibytes ui and vi of u and
v respectively. Then lti/ni

-distance is a metric function on Zn
q = ⊕s

i=1Z
ni
q

(proven in Theorem 3.1)

Note. We will call denote the non-binary ispotty weight and non-binary
ispotty distance viz. w

(P,P ′)
lti/ni

and d
(P,P ′)
lti/ni

by wθ and dθ respectively when the

primary-partition P and secondary-partition P ′ are clear from the context.
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Definition 2.3. Let t and n be positive integers with 1 ≤ t ≤ n. Let
V ⊆ Zn

q = ⊕s
i=1Z

ni
q be a Zq-submodule of Zn

q = ⊕s
i=1Z

ni
q equipped with the

non-binary ispotty metric dθ corresponding to the primary-partition P of
n and secondary-partition P ′ of t. Then V is called a non-binary ispotty
byte error control code (or simply θ-code) and is denoted by [n, k, dθ; P, P ′]
where P : n = [n1][n2] · · · [ns] is the irregular-byte partition, P ′ : t =
[t1][t2] · · · [ts], 1 ≤ ti ≤ ni is the error-partition, k = dimZqV and dθ = min-
imum θ distance= min

x,y∈V
x6=y

dθ(x, y).

3. Properties of lti/ni
-codes

We begin by proving that lti/ni
-distance defined in Section 2 is indeed

a metric function.

Theorem 3.1. The θ-distance dθ corresponding to the primary-partition
P : n = [n1][n2] · · · [ns] and secondary-partition P ′ : t = [t1][t2] · · · [ts],
1 ≤ ti ≤ ni for all i ≤ i ≤ s is metric function on Zn

q = ⊕s
i=1Z

ni
q .

Proof. Let x = (x1, x2, · · · , xs), y = (y1, y2, · · · , ys) and z = (z1, z2, · · · zs)
be arbitrary vectors in Zn

q = ⊕s
i=1Z

ni
q where xi, yi, zi ∈ Zni

q for all i. Then

(i) Clearly dθ(x, y) > 0 if x 6= y and dθ(x, y) = 0 if x = y.

(ii) dθ(x, y) = dθ(y, x)

(iii) Since dl(xi, yi) ≤ dl(xi, zi) + dl(zi, yi),
therefore,

dl(xi, yi)

ti
≤ dl(xi, zi)

ti
+

dl(zi, yi)

ti
,

which further gives

⌈
dl(xi, yi)

ti

⌉
≤

⌈
dl(xi, zi)

ti
+

dl(zi, yi)

ti

⌉

≤
⌈
dl(xi, zi)

ti

⌉
+
⌈
dl(zi, yi)

ti

⌉
. (1)

Taking summation from i = 1 to s in (1) gives

dθ(x, y) ≤ dθ(x, z) + dθ(z, y)

Hence dθ is a metric function on ZN
q = ⊕s

i=1Z
ni
q . 2
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Remarks 3.2.

(i) Let t′, s and b be positive integers with 1 ≤ t′ ≤ b. Taking n = bs, t =
t′s, ni = b and ti = t′ for all i, then θ-distance (weight) reduces to
the t′/b-distance (weight) introduced by the author [5].

(ii) If ti = 1 for all 1 ≤ i ≤ s, then wθ(x) for x = (x1, x2, · · · , xs) ∈
⊕s

i=1Z
ni
q is expressed as

wθ(x) =
s∑

i=1

⌈
wl(xi)

1

⌉

=
s∑

i=1

wl(xi)

= Lee weight of x.

(iii) If ti = ni for all 1 ≤ i ≤ s i.e. when secondary partition P ′ is equal to
the primary partition P , then wθ(x) for x = (x1, · · · , xs) ∈ ⊕s

i=1Z
ni
q

is expressed as

wθ(x) =
s∑

i=1

⌈
wl(xi)

ni

⌉

= α-weight of x [6].

(iv) If q = 2, 3 then θ-weight (θ-distance) coincides with the binary
ispotty-weight (ispotty-distance) introduced by the author [3].

(v) Let λi =

⌈
ni[q/2]

ti

⌉
for all 1 ≤ i ≤ s. Then λi is the maximum

θ-measure of an error pattern that can occur in the ith byte of size

ni. Let λ̂ =
s∑

i=1

λi. Then λ̂ is the maximum θ-measure of an error

pattern that can occur in a word x = (x1, x2, · · ·xs) ∈ ⊕s
i=1Z

ni
q .

(vi) Let θZ(x) be the total number of (erroneous) ibytes in a word
x ∈ ⊕s

i=1Z
ni
q having errors of θ-measure equal to “Z” where Z =

0, 1, 2, · · · , λ; λ =
s

max
i=1

{λi} and λ′
is are as given in (v).
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Let

σ = θ1(x) + θ2(x) · · ·+ θλ(x)

= total number of erroneous

ibytes in x.

The total number of ibytes in the word x is expressed as

s = σ + θ0(x)

= θ0(x) + θ1(x) + · · ·+ θλ(x).

Using these functions θZ
′s, the θ-measure of x ∈ ⊕s

i=1Z
ni
q is expressed

as
wθ(x) = θ1(x) + 2θ2(x) + · · · + λθλ(x),

where

λ =
s

max
i=1

{λi} =
s

max
i=1

{⌈
ni[q/2]

ti

⌉}
.

We now give a definition of linear combination of vectors (in Zni
q ) of Lee

weight wl.

Definition 3.3. A linear combination of vectors u
(i)
1 , u

(i)
2 , · · · , u(i)

ni
(in Zni

q )
given by

α1u
(i)
1 + α2u

(i)
2 + · · ·+ αni

u(i)
ni

,

where αj ∈ Zq, u
(i)
j ∈ Zni

q for all 1 ≤ j ≤ ni is called a linear combination
of Lee weight wl if the Lee weight of the ni-vector (α1, α2, · · · , αni

) ∈ Zni
q

is wl.

Now we give a necessary and sufficient condition for the θ-distance of
an ispotty byte code to be equal to d.

Theorem 3.4. Let P : n = [n1][n2] · · · [ns] and P ′ : t = [t1][t2] · · · [ts] be the
primary and secondary partitions corresponding to primary-number n and
secondary-number t respectively where 1 ≤ ti ≤ ni for all 1 ≤ i ≤ s. Let
H = [H1, H2, · · · , Hs] be an r×n parity check matrix of an [n, n− r; P, P ′]
θ-code V over Fq where Hi(1 ≤ i ≤ s) is the ith r × ni q-ary submatrix of
H. Then the minimum θ-distance of code V is “d” iff the following two
conditions hold:
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(i) xHT 6= 0 for all x = (x1, x2, · · ·xs) ∈ ⊕s
i=1Z

ni
q with wθ(x) ≤ d − 1,

and

(ii) there exists u = (u1, u2, · · · , us) ∈ ⊕s
i=1Z

ni
q satisfying

uHT = 0 and wθ(x) = d.

Proof. The proof follows from the fact that syndrome of a received word
x having errors of θ-measure (d − 1) or less is not equal to zero and also
there exists a word of u of θ-measure “d” whose syndrome is zero. 2

Theorem 3.5. A linear [n, n − r, d; P, P ′] θ-code over Zq corresponding
to the primary partition P : n = [n1][n2] · · · [ns] and secondary partition
P ′ : t = [t1][t2] · · · [ts] and having minimum θ-distance “d” requires at least[
d − 1

[q/2]

]
t′ parity check digits where t′ =

s
max
i=1

{ti} or equivalently

r ≥
[
d − 1

[q/2]

]
t′. (2)

Proof. By Theorem 3.2, every linear combination of Lee weight (d − 1)ti
or less of columns of the submatrix Hi of H are linearly independent over
Zq. Since maximum modular value of an element in Zq is [q/2], therefore,

equivalently we can say that every set of

[
d − 1

[q/2]

]
ti or fewer columns of the

submatrix Hi of H is linearly independent over Zq and hence

r ≥
[
d − 1

[q/2]

]
ti for all 1 ≤ i ≤ s

or equivalently

r ≥
[
d − 1

[q/2]

]
t′ where t′ =

s
max
i=1

{ti}.

2

Definition 3.6. An [n, n − r; P, P ′] θ-code V is called an MDS code if
equality holds in (2).
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Example 3.7. Let q = 5, n = t = 3. Let P : P ′ : 3 = [1][2] be the primary
and secondary partitions. Then n1 = t1 = 1 and n2 = t2 = 2 and s = 2.
Let V be a [3, 1, dθ; P, P ′] θ-code over Z5 with parity check matrix

H = (H1
... H2)

=


 1

... 1 0

1
... 0 1


 .

The generator matrix of the code V is given by

G = (G1
... G2)

=
(

4
... 4 1

)
.

The five codewords of the code V are

v0 = (0
... 0 0), wθ(v0) = 0;

v1 = (4
... 4 1), wθ(v1) = 2;

v2 = (3
... 3 2), wθ(v2) = 3;

v3 = (2
... 2 3), wθ(v3) = 4;

v4 = (1
... 1 4), wθ(v4) = 2.

The minimum θ-weight and hence minimum θ-distance of the code V is 2.
Thus V is an MDS code as the parameters of code V satisfy the relation

r =

[
d − 1

[q/2]

]
t′

as r = 2; t′ = max{1, 2} = 2, q = 5 and d = 2.

Now, we obtain the Hamming sphere packing bound for θ-codes. To
obtain the desired bound, we need to find V

(ti/n1,t2/n2,···,ti/ns)
d,q where

V
(ti/n1,t2/n2,···,ti/ns)
d,q is the volume of a sphere of radius d in Zn

q =
s⊕

i=1

Zni
q

equipped with the θ-metric. This is equivalent to finding all block vectors
of length n corresponding to the primary partition P : n = [n1][n2] · · · [ns]
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and secondary partition P ′ : t = [t1][t2] · · · [ts] having θ-weight d or less.
We obtain the number of such block vectors in the following lemma:

Lemma 3.8. If V
(ti/n1,t2/n2,···,ti/ns)
d,q denote the number of all block vectors in

Zn
q =

s⊕

i=1

Zni
q having θ-weight equal to d corresponding to the primary parti-

tion P : n = [n1][n2] · · · [ns] and secondary partition P ′ : t = [t1][t2] · · · [ts].
Then V

(ti/n1,t2/n2,···,ti/ns)
d,q is given by

V
(ti/n1,t2/n2,···,ti/ns)
d,q =

∑

(p1,p2,···,ps)

( s∏

i=1

L(pi, ti, ni)
)

(3)

where the summation in (3) is taken over all s-tuples (p1, p2, · · · , ps) of
non-negative integers satisfying

0 ≤ pi ≤ [q/2] for all 1 ≤ i ≤ s;

0 ≤
s∑

i=1

pi ≤ d, (4)

and L(pi, ti, ni) represents the number of ways of obtaining θ-weight of the
ith ibyte equal to pi and is given by

L(pi, ti, ni) =
min(piti,[q/2]∑

j=1

∑

ri0
,ri1

···,rij

ni!

ri0!ri1! · · · rij !

e
ri1
1 e

ri2
2 · · · e

rij

j , (5)

where rik(0 ≤ k ≤ j) are non-negative integers satisfying

ri0 + ri1 + · · ·+ rij = ni, rij ≥ 1, rik ≥ 0for k 6= j;
⌈
ri1 + 2ri2 · · ·+ jrij

ti

⌉
= pi. (6)

Proof. We consider the partition of the integer piti, the largest entry in
which is exactly equal to j (1 ≤ j ≤ min(piti, [q/2])). If rik(0 ≤ k ≤ j)
is the number of times “k” or an entry equivalent to k occurs then the
number of ibyets of length ni having θ-weight pi that can be formed by
filling ni positions from the integers 0, 1, 2, · · · j is given by

ni!

ri0!ri1! · · · rij !
e

ri1
1 e

ri2
2 · · · e

rij

j . (7)
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Clearly ri0 + ri1 + · · ·+ rij = ni, and

⌈
ri1 + 2ri2 · · ·+ jrij

ti

⌉
= pi.

Now summing (7) for all values of rik (0 ≤ k ≤ j) and j (1 ≤ j ≤ min(piti, [q/2])
gives (5). The proof now follows from the fact that the summation in (3)
is taken over all s-tuples (p1, p2, · · · , ps) of non-negative integers where
pi(1 ≤ i ≤ s) in the θ-weight of the ith ibyte subject to constraints (4). 2

Example 3.9. Let q = 5, n = t = 3. Let P = P ′ : 3 = [1][2] be a partition

of n = t = 3. Let d = 1. Then V
(t1/n1,t2/n2)
1,5 is given by (using (3))

V
(1/1,2/2)
1,5 =

∑

p1,p2

(
2∏

i=1

L(pi, ti, ni)

)

=
∑

p1,p2

L(p1, 1, 1) × L(p2, 2, 2), (8)

where the 2-tuple (p1, p2) of non-negative integers satisfy

0 ≤ p1, p2 ≤ 2,

and

0 ≤ p1 + p2 ≤ 1.

The feasible solutions for (p1, p2) are

(p1, p2) = (0, 0), (1, 0) and (0, 1).

We consider each of the three feasible solutions of (p1, p2) as follows:

Case 1. When (p1, p2) = (0, 0). Then

L(p1, 1, 1) = L(0, 1, 1) = 1;

L(p2, 2, 2) = L(0, 2, 2) = 1.

Case 2. When (p1, p2) = (0, 1). Then

L(p1, 1, 1) = L(1, 1, 1) = 2;

L(p2, 2, 2) = L(0, 2, 2) = 1.
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Case 3. When (p1, p2) = (0, 1). Then

L(p1, 1, 1) = L(0, 1, 1) = 1;

L(p2, 2, 2) = L(1, 2, 2) = 8.

Substituting these values in (8) gives

V
(1/1,2/2)
1,5 = (1 × 1) + (2 × 1) + (1 × 8) = 11.

These 11 block vectors of length n = 3 = [1][2] having θ-weight 1 or less
over Z5 are given by

v0 = (0
... 0 0),

v1 = (1
... 0 0),

v2 = (4
... 0 0),

v3 = (0
... 1 0),

v4 = (0
... 4 0),

v5 = (0
... 0 1),

v6 = (0
... 1 1),

v7 = (0
... 4 1),

v8 = (0
... 0 4),

v9 = (0
... 1 4),

v10 = (0
... 4 4).

Now we give the Hamming sphere upper bound for θ-codes.

Theorem 3.10 (Hamming Sphere packing Bound). Let V be an
[n, k, d; P, P ′] θ-code over Zq corresponding to the primary-partition P :
n = [n1][n2] · · · [ns] and secondary-partition P ′ : t = [t1][t2] · · · [ts]. Then

qn−k ≥ V
(t1/n1,t2/n2,···,ts/ns)
[d−1/2],q , (9)

where V
(t1/n1,t2/n2,···,ts/ns)
[d−1/2],q is given by (3).
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Proof. The proof follows from the fact that all the n = n1 + n2 + · · ·+ ns-
block vectors of θ-weight [d− 1/2] or less must belong to distinct cosets of
the standard array and the number of available cosets in qn−k. 2

Definition 3.11. A θ-code V is called a perfect code if equality holds in
(9).

Example 3.12. Let n = t = 2. Let P : P ′ : 2 = [1][1] be a partition of
n = t = 2. Then n1 = t1 = n2 = t2 = 1 and s = 2. Let V be a 5-ary
[2, 1, 3; P, P ′] θ-code with parity check matrix

H = (H1
... H2)

=
(

1
... 3

)
.

The generator matrix of the code V is given by

G = (G1
... G2)

=
(

2
... 1

)
.

The five codewords of the code V are

v0 = (0
... 0), wθ(v0) = 0;

v1 = (2
... 1), wθ(v1) = 3;

v2 = (4
... 2), wθ(v2) = 3;

v3 = (1
... 3), wθ(v3) = 3;

v4 = (3
... 4), wθ(v4) = 3.

Therefore dθ = min
x,y∈V
x6=y

dθ(x, y) = min
x∈V
x6=0

wθ(x) = 3.

The equation (9) with equality in this case becomes

5 = V
(1/1,1/1)
1,5 ,

which is true as V
(1/1,1/1)
1,5 = 5 and can be computed similar to the compu-

tations given in Eample 3.12 as shown below:

V
(1/1,1/1)
1,5 = (L(0, 1, 1) × L(0, 1, 1)) + (L(1, 1, 1) × L(0, 1, 1))
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+(L(0, 1, 1) × L(1, 1, 1))

= (1 × 1) + (2 × 1) + (1 × 2)

= 1 + 2 + 2 = 5.

Hence V is a single θ-error correcting perfect code over Z5.

Theorem 3.13 (Gilbert Bound). Let n, k, q, t be positive integers satis-
fying q ≥ 2, 1 ≤ k ≤ n and 1 ≤ t ≤ n. Let P : n = [n1][n2] · · · [ns], and
P ′ : t = [t1][t2] · · · [ts] be the primary and secondary partitions respectively.
Let d be a positive integer satisfying 1 ≤ d ≤ s[q/2]. Then there exists an
[n, k, d; P, P ′] θ-code over Zq with minimum θ-distance at least d provided

n − k ≥ logq

(
V

(t1/n1,t2/n2,···,ts/ns)
d−1,q

)
, (10)

where V
(t1/n1,t2/n2,···,ts/ns)
d−1,q is given by (3).

Proof. We shall show that if (9) holds then there exists an (n − k) × n
matrix H over Zq such that no linear combination of blocks of H of θ
weight (d−1) or less is zero. We define an algorithm for finding the blocks

H1, H2, · · · , Hs of H where Hi = (h
(i)
1 , h

(i)
2 , · · · , h(i)

ni
) for all 1 ≤ i ≤ s. From

the set of all qn−k columns vectors of length (n − k) over Zq, we choose
blocks of columns of the parity check matrix H as follows:

(1) The n1 column vectors in the first block H1 can be any vectors chosen
from the set of qn−k column vectors of length n−k over Zq satisfying

λ1.H1 6= 0,

where
λ1 = (λ

(1)
1 , λ

(1)
2 , · · · , λ(1)

n1
) ∈ Zn1

q ,

and

1 ≤ wθ(λ1) = wθ(λ
(1)
1 , λ

(1)
2 ,

· · · , λ(1)
n1

)

≤ d − 1.

(2) The second block H2 = (h
(2)
1 , h

(2)
2 , · · · , h(2)

n2
) can be any set of n2

column vectors of length (n − k) satisfying

λ1.H1 + λ2.H2 6= 0,

14



where for 1 ≤ i ≤ 2,

λi = (λ
(i)
1 , λ

(i)
2 , · · · , λ(i)

ni
) ∈ Zni

q ,

and

1 ≤ wθ(λ1) + wθ(λ2)

≤ d − 1.

...
...

...
...

...
...

...
...

...

(l) The lth block Hl = (h
(l)
1 , h

(l)
2 , · · · , h(l)

nl
) can be any set of nl column

vectors of length (n − k) satisfying

λ1.H1 + λ2.H2 + · · ·
+λl.Hl 6= 0. (11)

where

λi = (λ
(i)
1 , λ

(i)
2 , · · · , λ(i)

ni
) ∈ Zni

q

for all 1 ≤ i ≤ l,

and

1 ≤ wθ(λ1) + wθ(λ2) + · · ·
+wA(λl)

≤ d − 1. (12)

...
...

...
...

...
...

...
...

...
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(s) The sth block Hs = (h
(s)
1 , h

(s)
2 , · · · , h(s)

ns
) can be any set of ns column

vectors satisfying

λ1.H1 + λ2.H2 + · · ·+ λs.Hs 6= 0.

where

λi = (λ
(i)
1 , λ

(i)
2 , · · · , λ(i)

ni
) ∈ Zni

q

for all 1 ≤ i ≤ s,

and

1 ≤ wA(θ1) + wA(θ2) + · · ·
+wA(θs)

≤ d − 1.

If we carry out this algorithm to completion, then, H1, H2, · · · , Hs are
the blocks of size (or length) n1, n2, · · · , ns respectively of an (n − k) ×

n
(
where n =

s∑

i=1

ni

)
block matrix H such that no linear combination of

blocks of H of θ-weight (d− 1) or less is zero and this matrix is the parity
check matrix for a θ-code with minimum θ-distance at least d. We show
that the construction can indeed be completed. Let l be an integer such
that 2 ≤ l ≤ s and assume that the blocks H1, H2, · · · , Hl−1 have been
chosen. Then the block Hl can be added to H provided (11) is satisfied.
The number of distinct linear combinations in (11) satisfying (12) including
the pattern of all zeros is given by

V
(t1/n1,t2/n2,···,tl/nl)
d−1,q

where V
(t1/n1,t2/n2,···,tl/nl)
d−1,q is given by (3).

As long as the set of all linear combinations occuring in (11) satisfying (12)
is less than or equal to the total number of (n− k)-tuples, the lth block Hl

can be added to H. Therfore, the block Hl can be added to H provided
that

qn−k ≥ V
(t1/n1,t2/n2,···,tl/nl)
d−1,q
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or

n − k ≥ logq

(
V

(t1/n1,t2/n2,···,tl/nl)
d−1,q

)
.

Thus the fact that the blocks H1, H2, · · · , Hs can be chosen follows by
induction on l and we get (10). 2

Corollary 3.14. For positive integer t
(
t ≤ s[q/2] − 1

2

)
, a sufficient con-

dition for the existence of an [n, k, d; P, P ′] θ-code V over Zq that correct
all random block errors of θ-weight t or less is given by

n − k ≥ logq

(
V

(t1/n1,t2/n2,···,ts/ns)
2t,q

)
.

Proof. The proof follows from Theorem 3.13 and the fact that to correct
all errors of θ-weight t or less, the minimum θ-weight of an ispotty byte
code must be at least 2t + 1. 2

Theorem 3.15 (Varshamov Bound). Let Bq(n, d; P, P ′) denotes the
largest number of code vectors in an [n, k; P, P ′] θ-code over Zq with P :
n = [n1][n2] · · · [ns] and P ′ : t = [t1][t2] · · · [ts] having θ-distance at least d.
Then

Bq(n, d; P, P ′) ≥ qn−dlogq(L)e,

where L = V
(t1/n1,t2/n2,···,ts/ns)
d−1,q is given by (3).

Proof. By Theorem 3.13, there exists an [n, k; P, P ′] θ-code over Zq with
minimum θ-distance at least d provided

qn−k ≥ V
(n1,···,ns)
d−1,q = L

⇒ n − k ≥ logq(L)

⇒ k ≤ n − logq(L).

The largest integer k satisfying the above inequality is n−dlogq(L)e. Thus

Bq(n, d; P, P ′) ≥ qn−dlogq(L)e

where L = V
(t1/n1,t2/n2,···,ts/ns)
d−1,q is given by (3). 2
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