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Abstract. Irregular-spotty-byte error control codes devised by the
author[3-5] are suitable for binary semiconductor memories with bi-
nary arithmatic where a memory chip consists of irregular bytes of
not necessarily of same length. However, direct storage and process-
ing of non-binary numbers in base 10, base 8 or base 16 is possible
with the instant invention. Keeping this in view, in this paper, we
formulate the concept of non-binary I, /,,,-ispotty byte error control
codes suitable for non-binary storage and computing using RAM
chips of irregular bytes.
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1. Introduction

Irregular-spotty-byte error control codes devised by the author [3-
5] are suitable for correcting/detecting errors in binary semiconductor
memory systems having ibyte-organized memory chips where ibytes are
memory bytes not necessarily of the same length. A memory chip under
this configuration consists of “s” ibytes where length of the j** ibyte is
nj(n > 1,1 < j < s). These semiconductor memory systems are useful
in computer and other communication systems such as mobile systems,
aircrafts, satellites etc. The multiple errors arising in these semiconduc-
tor memories while being exposed to strong electromegnatic waves, ra-
dioactive particles or energetic cosmic particles are isopotty-byte errors or
t;/ni-errors[3-5]. The study of ispotty-byte error control codes [3-5] has
been made with respect to the ispotty distance induced from the classical
Hamming distance. However, now a days, the memory elements may be
programmed to store and process non-binary digits. Direct storage and
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processing of numbers in base 10, base 8 or base 16 etc is possible with
the instant invention. As a result, higher storage densities and non-binary
operation possible with multistage memory elements through the instant
computing methods provides an opportunity to vastly improve the speed
and efficiency of computation relative to conventional binary computing
machines [9]. Keeping this in view, there is a need for non-binary ispotty
byte errors control codes. Since the binary ispotty distance is induced from
the classical Hamming distance and we know that the classical non-binary
Lee distance is stronger than the Hamming distance since in the case of
Hamming distance, any digital change in one place is a single errors, no
matter what the magnitude of change is, whereas in the case of Lee dis-
tance, a digital change of £t in one place contributes “t” errors. Therefore,
in this paper, we present a model of non-binary ispotty-byte error control
codes viz. Iy, /p,-codes equipped with a non-binary ispotty distance induced
from the classical Lee distance [7]. We present various bounds on the pa-
rameters of non-binary Iy, ,,,-ispotty byte error control codes capable of
detecting/correcting non-binary Iy, /,,-errors.

Throughout this paper, [x] denotes the greatest integer less than or
equal to z and [x| denotes the smallest integer greater than or equal to .

2. Definitions and notations

Let ¢,n be positive integers with ¢ > 2. Let Z, be the ring of integers
modulo g. Let Z7 be the set of all n-tuples over Z,. Then Z is a module
over Z,. Let V be a submodule of the module Zj over Z,. For q prime, Z,
becomes a field and Zj becomes a vector space and subspace respectively
over Z,. A partition P of the positive integer n is defined as

P:n = n+ny+---4+n,;,1<n; <ny<ng------ >n, <1, s>1,

and is denoted as

Pin=[m][no] - [n

=[] [mo]™ - [m, )" if

ny =mng = =Ny = ma,

Npy+1 = N2 = =00 = N4, = My,
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MUy ot a+1 T Ty ot 1+2
+-+ Ny +lot- ot = My

Then we can write the field ZZ as
ZZzZZl@Zgz@u-@ng.

Each vector v € Z; can be uniquely written as v = (v1,v9, -+, v5) Where
v, €V, = Z;“ for all 1 < ¢ < s and is called the " irreqular-byte or
simply " i-byte of v. We call the partition P as primary-partition or
wrreqular-byte-partition. Further, let 1 <t < n be a positive integer and let
P’ it = [t1][ts] - - - [ts] be a partition of ¢ where 1 < ¢; < n; forall 1 <i < s.
Then P’ is called as “secondary-partition” or “error-partition”. Note that
the secondary partition depends upon primary partition. The number n is
called the primary number and t is called the secondary number.

Further, we define the modular value or Lee weight |a| (or w;(a)) of
an element a € Z, by

i Ja if 0< a<gq/2,
wl(a)_|a|_{q—a if g/2<a<q-—1.

We note that non-zero modular value |a| can be obtained by two different
ways viz. a and g—a of Z, provided {q is odd} or {¢is even and a # [¢/2]}

le.
g is odd
la| = |¢ —a| if or
q is even and a # q/2.
If ¢ is even and a = [¢/2] or if a = 0, then |a| is obtained in only one

way viz. |a| = a. Thus there may be one or two equivalent values of |a|
which we shall refer to as repetitive equivalent values of a. The number of
repetitive equivalent values of a will be denoted by e, where

|1 if {gq isevenand a=[g/2]} or {a =0}
““T\2 i {q isodd and a # 0} or {giseven,a #0 and a# [q/2]}.
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Definition 2.1. Let n and ¢ be the positive integers with 1 <t <n. Let
P and P’ be the primary and secondary partitions corresponding to n and
t respectively given by

P:n = [n][ng]---[ng,
and
Pt = [ti[ta] - - - [ts],

where 1 <¢, <n; forall 1 <ij <s.

Let u be a vector in Z; = ®i=1Z;" given by
u = (ul‘)uQJ te .7u8>

where u; € Zy* for all 7 is the it" i-byte of u of size n;. We define the
non-binary ispotty weight (or simply l;, /,,,-measure) of u corresponding to
the primary-partition P and secondary-partition P’ as

PPy _ o~ wiw)
wlt-/n- = Z [ ‘ )
i/ Mg i1 i
where w;(u;) is the Lee weight of the i ibyte u; of u of size n,.

Definition 2.2. The non-binary ispotty distance (or equivalently Iy, y,-

distance) between two vectors u = (uy, ug, -+, us) and v = (vq, vy, -+ - V)
in Zy = &;_,Z;" is given by
(P,P") _ (P
dlti/"i (u,v) o wlti/"i (u _U)

- 2

=1

where d;(u;, v;) is the Lee distance between the i** ibytes u; and v; of u and
v respectively. Then [y, /,,-distance is a metric function on Z7 = &;_,Zy’
(proven in Theorem 3.1)

Note. We will call denote the non-binary ispotty weight and non-binary

ispotty distance viz. wl(f}f_/) and d(P’P_,) by wy and dy respectively when the

lti/"z
primary-partition P and secondary-partition P’ are clear from the context.
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Definition 2.3. Let t and n be positive integers with 1 < ¢t < n. Let
V CZy = @;_,Zy be a Zs-submodule of Zy = &;_;Zy" equipped with the
non-binary ispotty metric dy corresponding to the primary-partition P of
n and secondary-partition P’ of t. Then V is called a non-binary ispotty
byte error control code (or simply 6-code) and is denoted by [n, k, dg; P, P']
where P : n = [ng][ng]---[ns] is the irregular-byte partition, P’ : ¢t =
[t1][t2] - - - [ts], 1 < t; < m; is the error-partition, & = dimz,V and dy = min-
imum 6 distance= min do(x,y).
z#Y

3. Properties of [, /, -codes

We begin by proving that [, /,,-distance defined in Section 2 is indeed
a metric function.

Theorem 3.1. The 0-distance dy corresponding to the primary-partition
P :n = [n][ne] - [ns] and secondary-partition P : t = [t1][ta] - - [ts],
L <t <y foralli <1< s is metric function on Zy = &;_Zy".

Proof. Let © = (¢1, 22, -, 2.),y = (41,92, ys) and = = (21,72, - 2)
be arbitrary vectors in ZZ = lezg” where x;,y;, z; € Z;” for all ¢. Then

(i) Clearly dy(z,y) >0 if x #yand dyp(z,y) =0 ifz=y.

(ii) do(z,y) = dy(y,x)

(iii) Since di(z;, i) < di(xs, z) + di(2, yi),
therefore,
dz(im%) < dz(iiazi) n dz(ztz‘;yi),

which further gives

[dl(xi;yiw

[dl(xiazi) n dl(ziayz')w

t; - t; t;
< [dl(xi; Zz)w n {dl(zi, yz)} (1)
t; t;
Taking summation from i = 1 to s in (1) gives
do(x,y) < dg(x, 2) + do(2,y)
Hence dy is a metric function on Z) = @;_, 77+ O
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Remarks 3.2.

(i) Let t, s and b be positive integers with 1 < ¢’ < b. Taking n = bs,t =
t's, n; = b and t; = t’ for all 7, then f-distance (weight) reduces to
the t'/b-distance (weight) introduced by the author [5].

(i) Ift; = 1 for all 1 < i < s, then wy(x) for © = (x1, 29, -, 25) €
i1Z4y" is expressed as

we(r) = ZS: [U}l(lwl)-‘

i=1
= Y w(z)
i=1
= Lee weight of x.
(i) Ift; =n, foralll <i < si.e. when secondary partition P’ is equal to

the primary partition P, then wy(z) for z = (21, -+, 2,) € &, Z
is expressed as

wo(z) = zs: {wz(:&)}

=1 T
= a-weight of = [6].

(iv) If ¢ = 2,3 then 6-weight (f-distance) coincides with the binary
ispotty-weight (ispotty-distance) introduced by the author [3].

(v) Let \; = {M—‘ for all 1 < i < s. Then J\; is the maximum

1
f-measure of an error pattern that can occur in the i'* byte of size
S

n;. Let A\ = Z)‘i’ Then )\ is the maximum f-measure of an error
i=1
pattern that can occur in a word z = (1,9, - ¥5) € Bi_, Z7".

(vi) Let 6z(x) be the total number of (erroneous) ibytes in a word
T € @;_1Z;" having errors of f-measure equal to “Z” where Z =

0,1,2,---,\; A= mélx{)\,} and s are as given in (v).
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Let

g = 91(58) + 62(37) R 0)\(1’)
= total number of erroneous

ibytes in x.

The total number of ibytes in the word z is expressed as

s = o+ 6(v)
= Op(z) +01(z) + - - -+ Oi\(2).
Using these functions 07's, the §-measure of x € ®F_, Z;' is expressed

we(z) = 01(x) + 2602(x) + - - - + N\ (),

where

A= nzaialx{)\i} = r?ialx{ {M-‘ }

t;

We now give a definition of linear combination of vectors (in Z7?) of Lee

weight wy.
Definition 3.3. A linear combination of vectors u\”, u{, - -- ,ull) (in Z77)
given by

arul?! + apul! + - + o ul)

mng?

where o € Zq,u§i) € Z;” for all 1 < j < n; is called a linear combination
of Lee weight wy if the Lee weight of the n;-vector (o, g, -+, ) € Zy
is wy.

Now we give a necessary and sufficient condition for the #-distance of
an ispotty byte code to be equal to d.

Theorem 3.4. Let P : n = [nq][ng] - - - [ns] and P’ : t = [t1][ts] - - - [ts] be the
primary and secondary partitions corresponding to primary-number n and
secondary-number t respectively where 1 < t; < n; for all 1 <1i <'s. Let
H = [Hy, Hy, -+, Hy| be anr X n parity check matriz of an [n,n —r; P, P’|
-code V over ¥, where H;(1 <1i < s) is the it" v x n; g-ary submatriz of
H. Then the minimum 6-distance of code V s “d” iff the following two
conditions hold:
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(i) zH" # 0 for all x = (1,29, - x5) € G5 L2 with wy(zx) < d — 1,
and

(ii) there ewists u = (uy,ug, -+, us) € Oi_,Zy" satisfying

uH' =0 and wy(z) = d.

Proof. The proof follows from the fact that syndrome of a received word
x having errors of f-measure (d — 1) or less is not equal to zero and also
there exists a word of u of #-measure “d” whose syndrome is zero. O

Theorem 3.5. A linear [n,n — r,d; P, P'| §-code over Z, corresponding

to the primary partition P : n = [ni][ng]---[ns] and secondary partition
Pt =[t1][ts] - - - [ts] and having minimum 0-distance “d” requires at least
d—

1 s .
—] t' parity check digits where t' = m:alx{ti} or equivalently

[q/2
r> [%] v )

Proof. By Theorem 3.2, every linear combination of Lee weight (d — 1)¢;
or less of columns of the submatrix H; of H are linearly independent over

Z,. Since maximum modular value of an element in Z, is [¢/2], therefore,

d—1
equivalently we can say that every set of [—1 t; or fewer columns of the

/2]

submatrix H; of H is linearly independent over Z, and hence

7’2[;1]72 forall1<i<s

[9/2]
or equivalently

d—1 s
r>|———|t wheret = max{t;}.
> |l el

O

Definition 3.6. An [n,n — r; P, P’] #-code V is called an MDS code if
equality holds in (2).
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Example 3.7. Let ¢ =5,n =1t =3. Let P: P': 3 = [1][2] be the primary
and secondary partitions. Then ny =t =1 and ny =t = 2 and s = 2.
Let V be a [3, 1, dp; P, P'] -code over Zs with parity check matrix

H = (H, ' H,)

(110
101

The generator matrix of the code V' is given by
G = (G1:Gy)
= (4:41)
The five codewords of the code V are

0:00),wy(vg) =

Vg —

N
W
—_
S

>
(e

=

( ), we(vo) =0
vo= (4:41),we(vy) =2
ve = (3:32),we(vy) = 3;
vs = (2:23),wp(vs) =4

( ), wo(va) =2

1:14

Vg =

The minimum #-weight and hence minimum 6#-distance of the code V' is 2.
Thus V is an MDS code as the parameters of code V satisfy the relation

= [l

asr = 2;t' =maz{l,2} =2,¢g=>5and d = 2.

Now, we obtain the Hamming sphere packing bound for #-codes. To

obtain the desired bound, we need to find ‘/d(,tqi/ nt2/n2etime) where

S

l@ﬁ?/nl’t2/n2""’ti/ns) is the volume of a sphere of radius d in Z} = @Zgi

=1
equipped with the #-metric. This is equivalent to finding all block vectors
of length n corresponding to the primary partition P : n = [ng][ng] - - - [n]

9
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and secondary partition P’ : ¢t = [t1][ta] - - - [ts] having O-weight d or less.
We obtain the number of such block vectors in the following lemma:

Lemma 3.8. If 1/(1(3/"1’7&2/"2"”’”/"5) denote the number of all block vectors in

Z; = @Z;” having 0-weight equal to d corresponding to the primary parti-
i=1
tion P :n = [nq][na] - - - [ns] and secondary partition P':t = [tq][ts] - - - [ts].

Then Vé’;/nl’h/n”"’ti/ns) is given by

gt =52 (L) ®)

(p1,p2,,ps) =1
where the summation in (3) is taken over all s-tuples (p1,pa,---,ps) of

non-negative integers satisfying

0 < p;<Jg/2]foralll<i<s;

0 < Ypi<d, (4)
i=1

and L(p;, t;, n;) represents the number of ways of obtaining #-weight of the
it" ibyte equal to p; and is given by
min(p;ti,lq/2]

;! Tii Ti Ti;
L(pi,tz‘,nz‘) - Z Z Lelllef"'ej], (5)

j=1 TigsTiy 5T Tig!Tiq! Tij!

where 7;, (0 < k < j) are non-negative integers satisfying

Tio + Tiy -i—-i-’l“lg = Ny, Ty > 177‘% > Ofor k7é]7
Ti, + 2ri, -+ g1
1 2t‘ JTi; = pi. (6)

Proof. We consider the partition of the integer p;t;, the largest entry in
which is exactly equal to j (1 < j < min(p;t;,[¢/2])). If r; (0 < k < j)
is the number of times “k£” or an entry equivalent to k occurs then the
number of ibyets of length n; having 6-weight p; that can be formed by
filling n; positions from the integers 0, 1,2, -7 is given by

nz' i, Ti T
1 2 J

¢y ley ey (7)

TigI i) - T

10
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T +2T1 cee 'T’i,
Clearly ri, + 7y + -+ 1, =n;, and | — 2t I | = i
Now summing (7) for all values of r;, (0 < k < j)and j (1 <j < min(pit;, [q/2])
gives (5). The proof now follows from the fact that the summation in (3)
is taken over all s-tuples (pi,p2,---,ps) of non-negative integers where

pi(1 <i < s) in the f-weight of the i ibyte subject to constraints (4). O

Example 3.9. Let ¢ =5,n=1¢=3. Let P = P': 3 = [1][2] be a partition
ofn=t=3. Let d = 1. Then Vl(,?/m’tz/m) is given by (using (3))

2
1/1,2/2
‘/1(’5/ /2) _ 3 (HL(pi,ti,m)>
i=1

p1,p2

= 3" L(py, 1,1) x L(ps, 2,2), (8)

P1,p2

where the 2-tuple (py, p2) of non-negative integers satisfy
0 S b1, P2 S 2a

and
0<p+p<1.

The feasible solutions for (py, ps) are
(p1,p2) = (0,0),(1,0) and (0, 1).

We consider each of the three feasible solutions of (pq,p2) as follows:

Case 1. When (p1,p2) = (0,0). Then

L(p,1,1) = L(0,1,1) = 1;
L(p2,2,2) = L(0,2,2) =1.

Case 2. When (py,p2) = (0,1). Then

L(p1,1,1) = L(1,1,1) = 2;
L(ps,2,2) = L(0,2,2) =
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Case 3. When (p1,p2) = (0,1). Then

L(p,1,1) = L(0,1,1) = 1;
L(p2,2,2) = L(1,2,2) =8,

Substituting these values in (8) gives
VPP = (1x 1)+ (2x 1) + (1 x 8) = 11.

These 11 block vectors of length n = 3 = [1][2] having 6-weight 1 or less
over Zs are given by

v = (0:00),
vo= (1:00),
ve = (4:00),
vg = (0:10),
vy = (0:40),
vs = (0:01),
v o= (0511),
v; = (0:41),
vs = (0:04),
vg = (0:14),
v = (0:44).

Now we give the Hamming sphere upper bound for #-codes.

Theorem 3.10 (Hamming Sphere packing Bound). Let V' be an
[n, k,d; P, P'| 0-code over Z, corresponding to the primary-partition P :

n = [ni][ng] - - - [ns] and secondary-partition P':t = [t1|[ta] - - - [ts]. Then
R R (9)
where ‘/[Eltl{721]t2/n2""’ts/"s) is given by (3).

12
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Proof. The proof follows from the fact that all the n =nq +ng + - - - 4+ n,-
block vectors of §-weight [d — 1/2] or less must belong to distinct cosets of
the standard array and the number of available cosets in ¢"*. O

Definition 3.11. A A-code V is called a perfect code if equality holds in
(9).

Example 3.12. Let n =t = 2. Let P : P’ : 2 = [1][1] be a partition of
n=t=2 Thenny =t =ny =ty =1and s = 2. Let V be a 5-ary
[2,1,3; P, P'] 6-code with parity check matrix

=(1:3).

The generator matrix of the code V' is given by

G = (GG
= (2:1).

The five codewords of the code V are

vo = (0:0),we(vo) = 0;
o= (2:1),we(v1) =3;
vy = (4:2),we(v2) = 3;
vs = (1:3),we(vs) =3;
vy = (3:4),wy(vy) =3

Therefore dy = min do(z,y) = rglel‘l/ﬂwg(w) = 3.
TH#Y x#0
The equation (9) with equality in this case becomes

1/1,1/1
5:‘/1(,5/ /)7

which is true as ‘/'1(,15/ LY — 5 and can be computed similar to the compu-
tations given in Eample 3.12 as shown below:

VS = ((0,1,1) x L(0,1,1)) + (L(1,1,1) x L(0, 1, 1))

13
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+(L(0,1,1) x L(1,1,1))
= (Ix1)+(2x1)+(1x2)
= 1+2+42=05.

Hence V is a single #-error correcting perfect code over Zs.

Theorem 3.13 (Gilbert Bound). Let n, k,q,t be positive integers satis-
fyingq>21<k<nandl <t<n. Let P:n=[n]ng- - [ns, and
P’ it =[t1][ta] - - - [ts] be the primary and secondary partitions respectively.
Let d be a positive integer satisfying 1 < d < s[q/2]. Then there exists an
[n, k,d; P, P'| 0-code over Z, with minimum 6-distance at least d provided

n k> log, (Vg (10)

t 7t 7...7t
where V'd(_ll/zl 2/n2,ts [ns)

Proof. We shall show that if (9) holds then there exists an (n — k) x n
matrix H over Z, such that no linear combination of blocks of H of 0
weight (d— 1) or less is zero. We define an algorithm for finding the blocks
Hy,Hs,---, Hy of H where H; = (hgi), hg), s hg?) for all 1 <i < s. From
the set of all ¢"~* columns vectors of length (n — k) over Z,, we choose
blocks of columns of the parity check matrix H as follows:

is given by (3).

(1) The ny column vectors in the first block H; can be any vectors chosen
from the set of ¢"* column vectors of length n — k over Z, satisfying

A\LHy #£0,

where
A=Ay ez

Y ni

and

1 SUJQ()\l) = ’wo()\gl),)\;l)7
< d-1.

(2) The second block Hy = (hgz),hgz),---,h,%) can be any set of ng
column vectors of length (n — k) satisfying

/\1.H1 + )\Q.HQ 75 0,

14
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where for 1 <17 < 2,
A=A AD) ez
and

wg(/\l) + wg()\g)
d—1.

IN A

(1) The I** block H;, = (hgl), . R can be any set of n; column

» Py

vectors of length (n — k) satisfying

)\1.H1 + )\2.H2 + -

+X\.H; # 0. (11)
where
No= PN D) ez
for all 1 <i<l|,
and

1 S lUQ()\l) + w9(>\2) + -
+wA()\l)
< d-1. (12)

15
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(s) The s block H, = (h{", h§, - -, h{)) can be any set of n, column
vectors satisfying

)\1.H1 -+ )\Q.Hg + -+ )\s-Hs 7é 0.

where
No= QAPAY D) ez
for all 1 <i<s,
and
1 S wA(Ql) + wA(Gg) —+ e
+wA(95)
< d-1.
If we carry out this algorithm to completion, then, Hy, Hy,---, Hy are
the blocks of size (or length) ny,ng,---,ns respectively of an (n — k) x

n <Where n = an> block matrix H such that no linear combination of
i=1
blocks of H of #-weight (d — 1) or less is zero and this matrix is the parity
check matrix for a #-code with minimum #-distance at least d. We show
that the construction can indeed be completed. Let [ be an integer such
that 2 < [ < s and assume that the blocks Hy, Ho, -, H;_1 have been
chosen. Then the block H; can be added to H provided (11) is satisfied.
The number of distinct linear combinations in (11) satisfying (12) including
the pattern of all zeros is given by
V(t1/n1,t2/n2,~~,tz/m)

d—1,q

where ‘/;f11<21’t2/n2’...’tl/nl) is given by (3).

As long as the set of all linear combinations occuring in (11) satisfying (12)
is less than or equal to the total number of (n — k)-tuples, the I'" block H,
can be added to H. Therfore, the block H; can be added to H provided

that

qn—k > ‘/;l(?l/’;u,tz/nz,“',tl/nl)
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or
n—k > log, (Vd(fll/’zlft2/"2r~~,tz/nz)>'

Thus the fact that the blocks Hy, Hs,---, Hy can be chosen follows by

induction on [ and we get (10). O
2| —1

M , a sufficient con-

dition for the ezistence of an [n,k,d; P, P'] 0-code V' over Z, that correct
all random block errors of O-weight t or less is given by

Corollary 3.14. For positive integer t (t <

n—k > log, (‘/2(;;/"17t2/n2,'~~,ts/ns)>.

Proof. The proof follows from Theorem 3.13 and the fact that to correct
all errors of #-weight t or less, the minimum 6#-weight of an ispotty byte
code must be at least 2¢ 4 1. O

Theorem 3.15 (Varshamov Bound). Let B,(n,d; P, P’) denotes the
largest number of code vectors in an [n,k; P, P'| 0-code over Z, with P :
n = [ni][ne] - - [ns] and P : t = [t1][ta] - - - [ts] having O-distance at least d.
Then

B,(n,d; P, P > qn—flogq(llﬂ7
where L = Vd(i11/,Zl’tZ/n2"”’tS/nS) is given by (3).
Proof. By Theorem 3.13, there exists an [n, k; P, P'] -code over Z, with
minimum #-distance at least d provided

I e )

- d—1,q
=n—k > log,(L)
=k < n-—log,(L).

The largest integer k satisfying the above inequality is n— [log,(L)]. Thus
B,(n,d; P,P") > qn—flogq(Lﬂ

where L = \/;i11<21’t2/n2""’t5/"5) is given by (3). O
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