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Abstract 

The single particle Schrödinger fluid model is a fantastic concept of the application of the time-dependent 
Schrödinger wave equation in the collective motion of nucleons in an axially symmetric deformed 
nucleus. This model is formulated especially for the evaluation of moments of inertia of axially 
symmetric deformed nuclei. Accordingly, we apply the single-particle Schrödinger fluid model to 
calculate the moments of inertia of some axially-deformed nuclei in the p-shell, namely: the nuclei with 
mass number 8 ≤ 𝐴𝐴 ≤ 11.   
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1. Introduction 

Second order parabolic partial differential equations [1] have important applications in 
engineering sciences, quantum mechanics and many other branches of theoretical 
physics. The time-dependent Schrödinger wave equation is one of the main equations 
of these type of differential equations. It has many different applications in nuclear, 
atomic, molecular and elementary-particle physics. As is well-known, its formulation 
depends mainly on the Hamiltonian operator which describes the motions of the 
quantum particles. To formulate this Hamiltonian one needs to construct certain model 
through which the problem can be solved. Many different models can be applied for 
the solutions of the different characteristics of axially-symmetric deformed nuclei. The 
numerical methods of solutions of these models are also of major importance in these 
models.     

    The single particle Schrödinger fluid [2-7] is one of the very interesting models 
which is created directly from the time-dependent Schrödinger wave equation by a 
suitably chosen type of complex wave functions. This model makes it possible to 
formulate the well-known equation of continuity, Euler's equation and Navier-Stokes 
equations of fluid mechanics [8] as results from the separation of the real and imaginary 
parts of the time-dependent Schrödinger wave equation. The single-particle potential 
that represents the residual interparticle interaction inside the nucleus is taken in the  
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form of a three-dimensional anisotropic oscillator. The single particle Schrödinger fluid 
is a concept which is used to describe the collective motions of the nucleons in an 
axially symmetric deformed nucleus [9]. This concept can be applied to study the 
rotational motion of a deformed nucleus.  

    In this paper, we carry out the derivations of this model and accordingly clarify how 
the moment of inertia of an axially deformed nucleus can be obtained in frame-work of 
this model. As examples for the application of this model to the calculations of the 
nuclear moments of inertia we calculated the cranking-model and the rigid body-model 
moments of inertia of the nuclei 8Li, 9Li, 10B and 11B. The variations of the nuclear 
moments of inertia with respect to the deformation parameter 𝛽𝛽, which describes the 
deviation from the spherical case, are also given in this paper. 

 

2. The Fluid Dynamical Equations 

Let us consider a nucleus consisting of 𝐴𝐴 nucleons. We assume that each nucleon in 
this nucleus (proton or neutron) has mass 𝑀𝑀 and is moving in a single-particle potential 
𝑉𝑉�𝒓𝒓,𝑎𝑎(𝑡𝑡)�, which is deformed with time 𝑡𝑡, through its parametric dependence on a 
classical shape variable 𝛼𝛼(𝑡𝑡). Here, 𝛼𝛼(𝑡𝑡) is assumed to be an externally prescribed 
function of 𝑡𝑡. Thus, the Hamiltonian for the present problem is given by [2] 

                                  𝐻𝐻�𝒓𝒓,𝒗𝒗,𝑎𝑎(𝑡𝑡)� = − ℏ2

2𝑀𝑀
𝛻𝛻2 + 𝑉𝑉�𝒓𝒓,𝑎𝑎(𝑡𝑡)�.                                  (2.1) 

The operator ∇ in equation (2.1) appeared because in Quantum Mechanics the operator 
associated with the particle momentum, 𝒑𝒑 = 𝑚𝑚𝒗𝒗, is given by −𝑖𝑖ℏ∇, where 𝒗𝒗 is the 
particle velocity and ℏ is Planck's constant divided by 2𝜋𝜋. The single-particle time-
dependent wave function Ψ(𝐫𝐫,α(t), t) which satisfies the time-dependent Schrödinger 
wave equation that describes the motion of a nucleon, is defined as  

                            H�𝒓𝒓,𝒗𝒗, α(𝑡𝑡)�Ψ(𝒓𝒓,α(𝑡𝑡), 𝑡𝑡) = 𝑖𝑖ℏ ∂
∂t
Ψ(𝒓𝒓,α(𝑡𝑡), 𝑡𝑡).                          (2.2) 

    To obtain a fluid dynamical description of the wave function Ψ(𝒓𝒓,α(𝑡𝑡), 𝑡𝑡), we use 
the polar form of the wave function. We first isolate the explicit time dependence in the 
form 

                               Ψ(𝒓𝒓,α(𝑡𝑡), 𝑡𝑡) = ψ�𝒓𝒓,α(𝑡𝑡)�exp �− 𝑖𝑖
ℏ ∫ ϵ�α(𝑡𝑡′)�𝑑𝑑𝑡𝑡′t

0 �,                 (2.3) 

where ϵ is the energy density which depends on the time through the parameter α(𝑡𝑡). 
Then, we write the complex wave function ψ(𝒓𝒓,α(𝑡𝑡)) in the following polar form:  

                               ψ�𝒓𝒓,α(𝑡𝑡)� = Φ�𝒓𝒓,α(𝑡𝑡)�exp �− 𝑖𝑖𝑀𝑀
ℏ
𝑆𝑆�𝒓𝒓,α(𝑡𝑡)��,                         (2.4) 

where Φ(𝒓𝒓,α(𝑡𝑡)) and 𝑆𝑆(𝒓𝒓,α(𝑡𝑡)) are assumed to be real functions of 𝒓𝒓 and α(𝑡𝑡). Finally, 
we assume that the function Φ(𝒓𝒓,α(𝑡𝑡)) is positive definite. In the case of rotation, the 
parameter α(𝑡𝑡) becomes the angle of rotation, θ = Ω𝑡𝑡, where Ω is the angular velocity.  
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    Substituting equations (2.1), (2.3) and (2.4) into (2.2) we get  

𝐻𝐻Ψ(𝒓𝒓,𝛼𝛼(𝑡𝑡), 𝑡𝑡) = exp�−
𝑖𝑖
ℏ
�𝜀𝜀(𝛼𝛼(𝑡𝑡′))𝑑𝑑𝑡𝑡′
𝑡𝑡

0

�

× �−
ℏ2

2𝑚𝑚
∇2 + 𝑉𝑉(𝒓𝒓,𝛼𝛼(𝑡𝑡))� �Φ�𝒓𝒓,α(t)�exp �−

iM
ℏ

S�𝒓𝒓,α(𝑡𝑡)���

= 𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡
�Φ�𝒓𝒓,𝛼𝛼(𝑡𝑡)� exp �−

𝑖𝑖𝑀𝑀
ℏ
𝑆𝑆�𝒓𝒓,𝛼𝛼(𝑡𝑡)�� exp�−

𝑖𝑖
ℏ
� 𝜀𝜀�𝛼𝛼(𝑡𝑡′)�𝑑𝑑𝑡𝑡′
𝑡𝑡

0

�� 

So that, 

𝐻𝐻Ψ(𝒓𝒓,𝛼𝛼(𝑡𝑡), 𝑡𝑡) = exp �− 𝑖𝑖
ℏ ∫ 𝜖𝜖�𝛼𝛼(𝑡𝑡′)�𝑑𝑑𝑡𝑡′𝑡𝑡

0 � exp �− 𝑖𝑖𝑀𝑀
ℏ
𝑆𝑆(𝒓𝒓,𝛼𝛼(𝑡𝑡)� ×

�𝜖𝜖(𝛼𝛼(𝑡𝑡)Φ(𝒓𝒓,𝛼𝛼(𝑡𝑡) + 𝑀𝑀Φ�𝒓𝒓,𝛼𝛼(𝑡𝑡)� 𝜕𝜕
𝜕𝜕𝑡𝑡
𝑆𝑆�𝒓𝒓,𝛼𝛼(𝑡𝑡)� + 𝑖𝑖ℏ 𝜕𝜕

𝜕𝜕𝑡𝑡
 Φ�𝒓𝒓,𝛼𝛼(𝑡𝑡)�� .                    (2.5) 

Hence, 

�− ℏ2

2𝑀𝑀
∇2 + 𝑉𝑉�𝒓𝒓,𝛼𝛼(𝑡𝑡)�� �Φ�𝒓𝒓,𝛼𝛼(𝑡𝑡)� exp �− 𝑖𝑖𝑀𝑀

ℏ
𝑆𝑆�𝒓𝒓,𝛼𝛼(𝑡𝑡)��� =

exp �− 𝑖𝑖𝑀𝑀
ℏ
𝑆𝑆�𝒓𝒓,𝛼𝛼(𝑡𝑡)�� �𝜖𝜖�𝛼𝛼(𝑡𝑡)�Φ�𝒓𝒓,𝛼𝛼(𝑡𝑡)� + 𝑀𝑀Φ�𝒓𝒓,𝛼𝛼(𝑡𝑡)� ∂

∂𝑡𝑡
𝑆𝑆(𝒓𝒓,𝛼𝛼(𝑡𝑡) +

                 𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝑡𝑡

 Φ�𝒓𝒓,𝛼𝛼(𝑡𝑡)�� .                                                                                      (2.6) 

But we know that 

∇2 �Φ exp �−𝑖𝑖
𝑀𝑀𝑆𝑆
ℏ
�� = (∇2Φ) exp �−𝑖𝑖

𝑀𝑀𝑆𝑆
ℏ
� + Φ∇2 �exp �−𝑖𝑖

𝑀𝑀𝑆𝑆
ℏ
�� 

                                                    +2(∇Φ) ∙ ∇ �exp �−𝑖𝑖 𝑀𝑀𝑀𝑀
ℏ
��,                                  (2.7)       

Also, we have                                                                                                                      

∇ �exp �−𝑖𝑖
𝑀𝑀𝑆𝑆
ℏ
�� = −𝑖𝑖

𝑀𝑀
ℏ

(∇𝑆𝑆) exp �−𝑖𝑖
𝑀𝑀𝑆𝑆
ℏ
� , 

and 

∇2 �exp �−𝑖𝑖
𝑀𝑀𝑆𝑆
ℏ
�� = −𝑖𝑖

𝑀𝑀
ℏ
∇ ∙ �(∇𝑆𝑆) exp �−𝑖𝑖

𝑀𝑀𝑆𝑆
ℏ
��

= −𝑖𝑖
𝑀𝑀
ℏ
�(∇2𝑆𝑆) exp �−𝑖𝑖

𝑀𝑀𝑆𝑆
ℏ
� − 𝑖𝑖

𝑀𝑀
ℏ

(∇𝑆𝑆) ∙ (∇) exp �−𝑖𝑖
𝑀𝑀𝑆𝑆
ℏ
��

= −𝑖𝑖
𝑀𝑀
ℏ

(∇2𝑆𝑆) exp �−𝑖𝑖
𝑀𝑀𝑆𝑆
ℏ
� −

𝑀𝑀2

ℏ2
(∇𝑆𝑆) ∙ (∇𝑆𝑆) exp �−𝑖𝑖

𝑀𝑀𝑆𝑆
ℏ
�. 

Substituting from the above results into equation (2.6) we get 

   𝑖𝑖 �ℏ 𝜕𝜕Φ
𝜕𝜕𝑡𝑡
− ℏ

2
Φ(∇2𝑆𝑆) − ℏ(∇Φ) ∙ (∇𝑆𝑆)�  + 𝑀𝑀Φ𝜕𝜕𝑀𝑀

𝜕𝜕𝑡𝑡
+ 𝜖𝜖Φ − 𝐻𝐻Φ− 𝑀𝑀

2
Φ(∇𝑆𝑆) ∙ (∇𝑆𝑆) = 0.      (2.8)                                
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This equation yields, from its real and imaginary parts, a pair of coupled equations for 
Φ and 𝑆𝑆 as follows: 

                                       �𝐻𝐻 −𝑀𝑀 �𝜕𝜕𝑀𝑀
𝜕𝜕𝑡𝑡
− 1

2
∇𝑆𝑆 ∙ ∇𝑆𝑆��Φ = 𝜖𝜖Φ.                                     (2.9)                        

and 

                                         1
2
Φ(∇2𝑆𝑆) + (∇Φ) ∙ (∇𝑆𝑆) = 𝜕𝜕Φ

𝜕𝜕𝑡𝑡
.                                         (2.10) 

    We may call equation (2.9) modified Schrödinger equation because it differs from 
the usual time-independent Schrödinger equation 𝐻𝐻Φ = 𝜖𝜖Φ by an added term which 
we refer to as the “dynamical modification potential” 

                                      𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑀𝑀 �𝜕𝜕𝑀𝑀
𝜕𝜕𝑡𝑡
− 1

2
(∇𝑆𝑆) ∙ (∇𝑆𝑆)�.                                      (2.11) 

 

3. The Fluid Equations 

As is well-known, the probability density of a single-particle is identified by the square 
of the amplitude |Φ|2 [10]. Equation (2.10), when multiplied by 2Φ, gives 

                                             Φ2∇2𝑆𝑆 + ∇Φ2 ∙ ∇𝑆𝑆 = 𝜕𝜕Φ2

𝜕𝜕𝑡𝑡
.                                              (3.1) 

Hence, we obtain two equations the first is 

                                            𝜌𝜌∇ ∙ 𝒗𝒗 + 𝒗𝒗 ∙ ∇𝜌𝜌 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

,                                                  (3.2) 

where 𝒗𝒗 is the irrotational velocity and 𝜌𝜌 is the density. This equation is the well-known 
equation of continuity in fluid mechanics [8]. It can be rewritten in the form:  

                                                  ∇ ∙ (𝜌𝜌𝒗𝒗) = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

,                                                              (3.3) 

where 𝜌𝜌 = Φ2 and 𝒗𝒗 = −∇𝑆𝑆.  

The second equation is 

                                            (𝐻𝐻 + 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑)Φ = 𝜖𝜖Φ,                                                               (3.4) 

which is a modified Schrödinger equation with 

                                    𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑀𝑀�𝜕𝜕𝑀𝑀
𝜕𝜕𝑡𝑡
− 1

2
𝒗𝒗2�.                                                         (3.5) 

Equation (2.4) can be written simply as 𝜓𝜓 = Φ exp �−𝑖𝑖 𝑀𝑀𝑀𝑀
ℏ
�, so that  

                                                       𝑆𝑆 = 𝑖𝑖ℏ
2𝑀𝑀

ln �𝜓𝜓
𝜓𝜓∗�.                                                           (3.6)                                                             
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and 

                                                  𝒗𝒗 = −∇𝑆𝑆 = 𝑖𝑖ℏ
2𝑀𝑀
�∇𝜓𝜓

∗

𝜓𝜓∗ −
∇𝜓𝜓
𝜓𝜓
�. 

Therefore, 

                                                    𝒗𝒗 = 𝑖𝑖ℏ
2𝑀𝑀|𝜓𝜓|2

[𝜓𝜓∇𝜓𝜓∗ − 𝜓𝜓∗∇𝜓𝜓].                                      (3.7)     

The current of the single particle state is defined by 𝒋𝒋 = 𝜌𝜌𝒗𝒗 [10], so that   

                                             

                                              𝒋𝒋 = 𝑖𝑖ℏ
2𝑀𝑀

|Φ|2

|𝜓𝜓|2
[𝜓𝜓∇𝜓𝜓∗ − 𝜓𝜓∗∇𝜓𝜓],                                        (3.8)            

where 𝜌𝜌 = |Φ|2. 

Since, 

|𝜓𝜓|2 = |Φ|2 �𝑒𝑒−
𝑖𝑖𝑀𝑀𝑀𝑀
ℏ �

2
= |Φ|2, 

we finally get 

                                                𝒋𝒋 = 𝑖𝑖ℏ
2𝑀𝑀

[𝜓𝜓∇𝜓𝜓∗ − 𝜓𝜓∗∇𝜓𝜓].                                             (3.9) 

Euler’s equation for the non-viscous fluid flow is given by [8] 

                                                𝜕𝜕𝒗𝒗
𝜕𝜕𝑡𝑡

+ (𝒗𝒗 ∙ ∇)𝒗𝒗 = −∇𝑃𝑃
𝜕𝜕

,                                                      (3.10) 

where 𝑃𝑃 is the pressure on the fluid at a point 𝑃𝑃(𝒓𝒓) at an instant of time 𝑡𝑡. For an ideal 
fluid, ∇𝑃𝑃 is related to the enthalpy per unit mass, 𝑤𝑤, of the fluid by the following manner 

                                                        ∇𝑃𝑃
𝜕𝜕

= ∇𝑤𝑤.                                                                        (3.11) 

Therefore, Euler’s equation can be rewritten as 

                                         𝜕𝜕𝒗𝒗
𝜕𝜕𝑡𝑡

+ (𝒗𝒗 ∙ ∇)𝒗𝒗 = −∇𝑤𝑤.                                                     (3.12) 

After integration and using 𝒗𝒗 =  −∇𝑠𝑠 we get 

                                          𝜕𝜕𝑀𝑀
𝜕𝜕𝑡𝑡
− 1

2
𝑣𝑣2 = 𝑤𝑤.                                                                  (3.13) 

Using also 

𝑣𝑣2 = (∇𝑆𝑆)2, 

we get 
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                                             𝜕𝜕𝑀𝑀
𝜕𝜕𝑡𝑡
− 1

2
(∇𝑆𝑆)2 = 𝑤𝑤,                                                        (3.14) 

where 𝑆𝑆 is the velocity potential for 𝒗𝒗, (𝒗𝒗 =  −∇𝑆𝑆) and the constant of integration in 
equation (3.13) is chosen here to be zero. Therefore, we can write 

                                         𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑀𝑀 �𝜕𝜕𝑀𝑀
𝜕𝜕𝑡𝑡
− 1

2
(∇𝑆𝑆)2� = −𝑀𝑀𝑤𝑤,                                      (3.15) 

and then the modified Schrödinger equation takes the form 

                                             (𝐻𝐻 −𝑀𝑀𝑤𝑤)Φ = 𝜖𝜖Φ,                                                     (3.16) 

where 𝑤𝑤 is now the “enthalpy” of the single-particle Schrödinger fluid [2].  

    Hence, we have a set of fluid dynamical equations completely analogous to those 
which describe a classical fluid. This set consists of the continuity equation (3.3), the 
Euler equation (3.12), and an equation of state (3.16). By derivations, their contents are 
precisely those of the original time-dependent Schrodinger equation. Hill and Wheeler 
[11] assumed that the single-practice Schrödinger fluid is irrotational and implicitly 
incompressible flow. The present formulation is specifically not restricted to 
incompressible flows, but allows also irrotational but compressible.  

    The description of the density |𝜓𝜓|2 as a classical fluid implies that we are assigning 
labels to each mass element |𝜓𝜓|2∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 and considering its motion in time as 
described by the velocity field 𝒗𝒗. However, in quantum mechanics, the quantity 
|𝜓𝜓|2∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 is interpreted as the probability of finding the nucleon in the volume 
element ∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧.  

    In addition to the irrotational velocity 𝒗𝒗, which is a result from the fluid dynamical 
equation, other velocity fields which satisfy the continuity equation of the Schrödinger 
equation occur. Among these velocity fields are [2] the incompressible velocity field, 
the regular velocity field, the geometric velocity field, and the rigid body velocity field. 
For rotations, the rigid-body velocity field 𝑣𝑣𝑟𝑟𝑖𝑖𝑟𝑟 is defined as 

                                                     𝒗𝒗𝑟𝑟𝑖𝑖𝑟𝑟 = 𝛀𝛀 × 𝒓𝒓.                                                       (3.17) 

It is seen that this velocity field is incompressible, regular and, also, of geometric type.  

    In the adiabatic approximation, where 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
→ 0, that is the angle of rotation 𝜃𝜃 is 

constant of time, the collective kinetic energy of a nucleon in the nucleus is given by 
[2] 

                                            𝑇𝑇𝐾𝐾 = 1
2 ∫ 𝜌𝜌𝒗𝒗𝐾𝐾 ∙ (𝛀𝛀 × 𝒓𝒓)𝑑𝑑𝑑𝑑.                                             (3.18) 

and the collective kinetic energy 𝑇𝑇 of the nucleus is given by [2] 

                                           𝑇𝑇 = 1
2

M∫𝜌𝜌𝑇𝑇𝒗𝒗𝑇𝑇 ∙ (𝛀𝛀 × 𝒓𝒓)𝑑𝑑𝑑𝑑,                                       (3.19) 
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where 𝜌𝜌𝑇𝑇 is the total density distribution of the nucleus and 𝒗𝒗𝑇𝑇 is the total velocity field  

                                                   𝒗𝒗𝑇𝑇 = ∑ 𝜕𝜕𝐾𝐾𝒗𝒗𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜
∑ 𝜕𝜕𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜

 .                                                     (3.20) 

 

4. Single Particle in the Harmonic Oscillator Potential 

The single particle oscillator wave functions are taken in the form of products of three 
one-dimensional oscillator functions of the form [3] 

                                    𝑢𝑢𝑑𝑑𝑥𝑥𝑢𝑢𝑑𝑑𝑦𝑦𝑢𝑢𝑑𝑑𝑧𝑧 = 𝑢𝑢𝑑𝑑𝑥𝑥(𝜉𝜉)𝑢𝑢𝑑𝑑𝑦𝑦(𝜂𝜂)𝑢𝑢𝑑𝑑𝑥𝑥(𝜁𝜁),                                        (4.1) 

where 

                              𝑢𝑢𝑑𝑑𝑧𝑧(𝜁𝜁) = 1
�2𝑛𝑛𝑧𝑧𝑑𝑑𝑧𝑧!

�𝑚𝑚𝜔𝜔𝑧𝑧
𝜋𝜋ℏ

�
1
4 𝐻𝐻𝑑𝑑𝑧𝑧(𝜁𝜁) exp �− 1

2
𝜁𝜁2� .                            (4.2) 

    Similar equations hold for 𝑢𝑢𝑑𝑑𝑥𝑥(𝜉𝜉) and 𝑢𝑢𝑑𝑑𝑦𝑦(𝜂𝜂). In (4.2) 𝐻𝐻𝑑𝑑𝑧𝑧(𝜁𝜁) is the Hermite 
polynomial, and the dimensionless variables are defined as [3] 

                                   (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = ��𝑚𝑚𝜔𝜔𝑥𝑥

ℏ
𝑥𝑥, �

𝑚𝑚𝜔𝜔𝑦𝑦

ℏ
𝑦𝑦, √𝑚𝑚𝜔𝜔𝑧𝑧

ℏ
𝑧𝑧�.                                     (4.3)      

    In the above relations, we restrict the discussion to the axially symmetric geometry 
for use in the case of axially-symmetric deformed nuclei. Hence, 𝜔𝜔𝑥𝑥 = 𝜔𝜔𝑑𝑑 and the 
intrinsic energy of the single particle state is given by 

 

                             𝐸𝐸𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 = ℏ𝜔𝜔𝑥𝑥�𝑛𝑛𝑥𝑥 + 𝑛𝑛𝑑𝑑 + 1� + ℏ𝜔𝜔𝑧𝑧 �𝑛𝑛𝑧𝑧 + 1
2
�.                            (4.4) 

    Using the perturbation theory, we can calculate the cranking correction to the wave 
function [3] explicitly and the result is 

 

                                                𝜇𝜇𝑘𝑘 = Ω∑ |〈𝑗𝑗|ℒ|𝑘𝑘〉|
𝜖𝜖𝑗𝑗−𝜖𝜖𝑘𝑘𝑗𝑗≠𝑘𝑘 𝑢𝑢𝑗𝑗 ,                                               (4.5) 

where 
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𝜇𝜇𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 = 𝜇𝜇𝑑𝑑𝑥𝑥(𝜉𝜉)𝜇𝜇𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧(𝜂𝜂, 𝜁𝜁) = − Ω𝑢𝑢𝑛𝑛𝑥𝑥
2√𝜔𝜔𝑦𝑦𝜔𝜔𝑧𝑧

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜎𝜎�𝑛𝑛𝑑𝑑𝑛𝑛𝑧𝑧𝑢𝑢𝑑𝑑𝑦𝑦−1𝑢𝑢𝑑𝑑𝑧𝑧−1

+ 1
𝜎𝜎 �𝑛𝑛𝑑𝑑(𝑛𝑛𝑧𝑧 + 1)𝑢𝑢𝑑𝑑𝑦𝑦−1𝑢𝑢𝑑𝑑𝑧𝑧+1

+ 1
𝜎𝜎
�𝑛𝑛𝑧𝑧�𝑛𝑛𝑑𝑑 + 1�𝑢𝑢𝑑𝑑𝑦𝑦+1𝑢𝑢𝑑𝑑𝑧𝑧−1

+𝜎𝜎��𝑛𝑛𝑑𝑑 + 1�(𝑛𝑛𝑧𝑧 + 1)𝑢𝑢𝑑𝑑𝑦𝑦+1𝑢𝑢𝑑𝑑𝑧𝑧+1⎭
⎪⎪
⎬

⎪⎪
⎫

            (4.6) 

In (4.5) and (4.6), 𝜇𝜇𝑘𝑘 is the first-order perturbation correction for rotation about the 𝑧𝑧-
axis and the functions with subscripts 𝑛𝑛𝑥𝑥,𝑛𝑛𝑑𝑑 and 𝑛𝑛𝑧𝑧 have arguments 𝜉𝜉, 𝜂𝜂 and 𝜁𝜁, 
respectively. In (4.6) the quantity 𝜎𝜎 is defined by  

                                                        𝜎𝜎 = 𝜔𝜔𝑦𝑦−𝜔𝜔𝑧𝑧

𝜔𝜔𝑦𝑦+𝜔𝜔𝑧𝑧
,                                                                (4.7) 

and is a measure of the deformation of the potential. 

    We introduce one single parameter of deformation 𝛿𝛿 given by [12] 

                                                 𝜔𝜔𝑧𝑧2 = 𝜔𝜔0
2 �1 − 4

3
𝛿𝛿�,                                                    (4.8) 

                                              𝜔𝜔𝑥𝑥2 = 𝜔𝜔𝑑𝑑2 = 𝜔𝜔0
2 �1 + 2

3
𝛿𝛿�.                                               (4.9) 

    The condition of constant volume of the nucleus leads to 

                                                𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝜔𝜔𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡.                                                        (4.10) 

    Keeping this condition in the general case together with (4.8) and (4.9), 𝜔𝜔0 depends 
on 𝛿𝛿 in the following way [12] 

                                         𝜔𝜔0 = 𝜔𝜔0(𝛿𝛿) = 𝜔𝜔0
0 �1 − 12

9
𝛿𝛿2 − 16

27
𝛿𝛿3�

−16,                           (4.11)                                              

where 𝜔𝜔0
0 is the value of 𝜔𝜔0(𝛿𝛿) for 𝛿𝛿 = 0. The quantity ℏ𝜔𝜔0

0 is known as the non-
deformed oscillator parameter. This parameter can be calculated from the values of the 
total number of protons in the nucleus 𝑍𝑍, the number of neutrons N and the mass number 
𝐴𝐴 as follows [3-7] 

                                 
( ) 2

A
N191.0

A
646.1

1

3
1

A6.380
0





 −

−+

−

=
Z

ω .                                  (4.12) 

The deformation parameter 𝛿𝛿 is related to the well-known deformation parameter 𝛽𝛽 by 

                                                       𝛿𝛿 = 3
2
� 5
4𝜋𝜋
𝛽𝛽.                                                        (4.13) 

The parameter 𝛽𝛽 can vary in the range −0.5 ≤ 𝛽𝛽 ≤ 0.5. 
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5. Moments of Inertia from Fluid Dynamical Viewpoint 

We now examine the cranking moment of inertia in terms of the velocity fields. Bohr 
and Mottelson [9] showed that for harmonic oscillator case at the equilibrium 
deformation, where 

                                                𝑑𝑑
𝑑𝑑𝑑𝑑
∑ �𝐸𝐸𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧�𝑖𝑖𝑖𝑖=1 = 0,                                             (5.1) 

the cranking moment of inertia is identically equal to the rigid moment of inertia: 

                                         ℑ𝑐𝑐𝑟𝑟 = ℑ𝑟𝑟𝑖𝑖𝑟𝑟 = ∑ 𝑚𝑚〈𝑦𝑦𝑖𝑖2 + 𝑧𝑧𝑖𝑖2〉.𝑖𝑖=1                                        (5.2) 

    In terms of expression (3.19) involving the velocity fields, this result asserts the 
equality of the collective kinetic energy of the Schrödinger fluid and that of rigidly 
rotating classical fluid 

                         𝑚𝑚
2 ∫𝜌𝜌𝑇𝑇𝒗𝒗𝑇𝑇 ∙ (𝛀𝛀 × 𝒓𝒓)𝑑𝑑𝑑𝑑 = 1

2
ℑ𝑟𝑟𝑖𝑖𝑟𝑟Ω2 = 𝑚𝑚

2 ∫𝜌𝜌𝑇𝑇(𝛀𝛀 × 𝒓𝒓)2 𝑑𝑑𝑑𝑑,                (5.3) 

at the equilibrium deformation. We emphasize that equations (5.1) and (5.2) hold for 
any number of nucleons occupying any set of single particle harmonic oscillator states 
at the deformation defined by equilibrium condition (5.1). In particular, it holds for a 
one particle state. For this case, equation (5.3) becomes 

                                   𝑚𝑚
2 ∫𝜌𝜌𝐾𝐾𝒗𝒗𝐾𝐾 ∙ (𝛀𝛀 × 𝒓𝒓)𝑑𝑑𝑑𝑑 = 𝑚𝑚

2 ∫𝜌𝜌𝐾𝐾(𝛀𝛀 × 𝒓𝒓)2 𝑑𝑑𝑑𝑑,                         (5.4) 

at the equilibrium deformation of the single particle state 

                                                   |𝑖𝑖〉 ≡ �𝑛𝑛𝑥𝑥𝑛𝑛𝑑𝑑𝑛𝑛𝑧𝑧〉.                                                        (5.5)     

    Equation (5.4) is a remarkable identity. The scalar product of 𝒗𝒗𝐾𝐾 and (𝛀𝛀 × 𝒓𝒓) which 
occurs on the left side is replaced on the right side, by the absolute square of (𝛀𝛀 ×).     
It forces one to inquire whether the irrotational field 𝒗𝒗𝐾𝐾 is equal to (𝛀𝛀 × 𝒓𝒓). The answer, 
of course, is no. For, 𝒗𝒗𝐾𝐾 posses compressible line vortices. It could be impossible to 
equal the velocity field for rigid rotation 𝒗𝒗𝑟𝑟𝑖𝑖𝑟𝑟 = 𝛀𝛀 × 𝒓𝒓, which has no singularity and is 
everywhere incompressible and rotational. Despite this qualitative difference between 
𝒗𝒗𝐾𝐾 and the other velocity in equation (5.3), this shows that, as regards their effects 
under the integral upon the overall kinetic energy (or the internal parameter), these two 
velocity fields are equivalent at the equilibrium deformation. We note that the cranking 
moment of inertia ℑ𝑐𝑐𝑟𝑟 and the rigid moment of inertia ℑ𝑟𝑟𝑖𝑖𝑟𝑟 are equal only when the 
harmonic oscillator is at the equilibrium deformation. At other deformations, they can, 
and do, deviate substantially from one another [2].  

    The following-expressions for the cranking moment of inertia, ℑ𝑐𝑐𝑟𝑟, and the rigid-
body moment of inertia, ℑ𝑟𝑟𝑖𝑖𝑟𝑟, hold [2, 3]: 

                              ℑ𝑐𝑐𝑟𝑟 = 𝐸𝐸
𝜔𝜔0
2 �

1
6+2𝜎𝜎

� �1+𝜎𝜎
1−𝜎𝜎

�
1
3 �𝜎𝜎2(1 + 𝑞𝑞) + 1

𝜎𝜎
(1 − 𝑞𝑞)�,                     (5.6) 
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                                ℑ𝑟𝑟𝑖𝑖𝑟𝑟 = 𝐸𝐸
𝜔𝜔0
2 �

1
6+2𝜎𝜎

� �1+𝜎𝜎
1−𝜎𝜎

�
1
3 [(1 + 𝑞𝑞) + 𝜎𝜎(1 − 𝑞𝑞)],                          (5.7) 

where 𝐸𝐸 is the total nuclear ground-state energy defined by 

                              𝐸𝐸 = ∑ �ℏ𝜔𝜔𝑥𝑥�𝑛𝑛𝑥𝑥 + 𝑛𝑛𝑑𝑑 + 1� + ℏ𝜔𝜔𝑧𝑧 �𝑛𝑛𝑧𝑧 + 1
2
��𝑜𝑜𝑐𝑐𝑐𝑐 ,                           (5.8) 

 
and 𝑞𝑞 is the ratio of the summed single particle quanta in the 𝑦𝑦-and 𝑧𝑧-directions 

                                                 𝑞𝑞 =
∑ �𝑑𝑑𝑦𝑦+1�𝑜𝑜𝑜𝑜𝑜𝑜

∑ (𝑑𝑑𝑧𝑧+1)𝑜𝑜𝑜𝑜𝑜𝑜
.                                                         (5.9) 

The quantity 𝑞𝑞 is known as the anisotropy of the configuration.  

 

6. Results and Conclusions 

By assigning suitable values for the quantum numbers 𝑛𝑛𝑥𝑥, 𝑛𝑛𝑑𝑑 and 𝑛𝑛𝑧𝑧, we constructed 
the ground states of the four p-shell nuclei 8Li, 9Li, 10B and 11B by filling their states 
with successive single-particle states as given by equation (5.8). For more details 
concerning this filling see Appendix-1 in ref. [7]. Accordingly, the single particle states 
in each nucleus are filled with the corresponding wave functions. As a result, ℑ𝑐𝑐𝑟𝑟 and 
ℑ𝑟𝑟𝑖𝑖𝑟𝑟 are calculated for each nucleus. Finally, the corresponding reciprocal moments 

ℏ2

2ℑ𝑜𝑜𝑐𝑐𝑐𝑐𝑛𝑛𝑘𝑘
 and ℏ2

2ℑ𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 are calculated. 

    In Figures 1, 2, 3 and 4 we present the calculated values of the reciprocal moments 
of inertia according to the cranking model and the rigid-body model as functions of the 
deformation parameter 𝛽𝛽 for the nuclei 8Li, 9Li, 10B and 11B, respectively.  
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Fig.1 Reciprocal moments of inertia of the nucleus 8Li 

 

 

Fig.2 Reciprocal moments of inertia of the nucleus 9Li 
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Fig. 3 Reciprocal moments of inertia of the nucleus 10B 

  

 

 

Fig. 4 Reciprocal moments of inertia of the nucleus 11B 

 

    In Table-1 we present the experimental reciprocal moments of inertia of the nuclei 
8Li, 9Li, 10B and 11B. The calculated values which are in good agreement with the 
corresponding experimental values are also given in this table. The values of the 
nondeformed oscillator parameter ℏ𝜔𝜔0

0, for the four nuclei, are given. The values of the 
deformation parameter 𝛽𝛽 are also given in this table.  
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Table-1 The experimental reciprocal moments of inertia of the nuclei 8Li, 9Li, 10B and 
11B. The calculated values which are in good agreement with the corresponding 
experimental values are given. The values of ℏ𝜔𝜔0

0 and 𝛽𝛽 are also given in this table.  

       

Nucleus 𝛽𝛽 ℏ𝜔𝜔0
0 MeV ℏ2

2ℑ𝑜𝑜𝑐𝑐𝑐𝑐𝑛𝑛𝑘𝑘
 KeV ℏ2

2ℑ𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 KeV ℏ2

2ℑ𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑐𝑐
KeV 

8Li -0.16 
0.16 

13.21 
 

747.17 
773.01 

1140.84 
1075.15 

750 .00 

9Li -0.17 
0.17 

14.14 
 

872.85 
909.16 

1133.23 
1064.51 

900.00 

10B -0.35 
0.31 

12.02 722.63 
697.41 

786.12 
695.55 

715.72 

11B -0.21 
0.20 

12.77 
 

298.20 
293.90 

668.94 
627.87 

297.71 

 

It is seen from Figs. 1, 2, 3 and 4, and Table-1 that each nucleus has two values of the 
deformation parameter 𝛽𝛽 which produce good agreement between the calculated and 
the corresponding experimental reciprocal moments of inertia for the cranking model. 
Concerning the rigid-body model, the calculated values are not in good agreement with 
the corresponding experimental values, a result which always occur with this model for 
most of the deformed nuclei [4-7]. 

    Finally, we see that the single particle Schrödinger fluid has been applied 
successfully to the four p-shell nuclei 8Li, 9Li, 10B and 11B with a suitable choice and 
filling of the single-particle anisotropic harmonic oscillator states especially for the 
cranking-model moments. Also, the choice of the polar form for the time-dependent 
wave function is very accurate and produced an excellent application of the second-
order parabolic partial differential equations in the calculations of the moments of 
inertia of deformed p-shell nuclei. 
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