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Abstract 
In this paper we present two examples to illustrate the application of the variational Monte Carlo method to 

quantum-mechanical problems by using the MATLAB program. The first problem is the one-dimensional 

harmonic oscillator and the second is the hydrogen atom. By a suitably chosen trial wave functions, the 

obtained results are in good agreement with the corresponding exact values. 

 
1. Introduction 

The variational Monte Carlo (VMC) method [1-13] has been applied successfully in 

nuclear, atomic, and molecular physics. It is one of the different techniques of the quantum 

Monte Carlo methods. It uses the Monte Carlo techniques for computing the integrals rise 

while applying the variational method in quantum mechanics. Also, the program MATLAB 

has been used extensively in the recent years in the solutions of many numerical problems 

in Mathematics, Physics, Chemistry, and Engineering researches. Thus, we are interested 

in the present paper by using the MATLAB program [14] in the numerical computations 

which result in applying the VMC method in solving problems in quantum mechanics. We 

shall discuss first the variational method, and then we will discuss the Monte Carlo 

techniques for integrals along with one sampling technique, namely; the Metropolis 

algorithm. We shall next solve the 1-dimensional harmonic oscillator problem and the 

hydrogen atom [15] by the variational method, and the VMC method. 

 

2. The Variational Principle 

We begin by a trial unknown wave function Ψ(𝒓). By the completion of the eigenstates of 

the Hamiltonian operator, we can express Ψ(𝒓) as follows:  

Ψ(𝒓) = ∑ 𝑎𝑛

∞

𝑛=1

𝜓𝑛(𝒓) 

where 𝜓𝑛(𝒓) are the eigenstates of the Hamiltonian in a certain domain 𝑅. Since Ψ(𝒓) is 

normalized, then 

∫ Ψ∗
𝑅

𝛹 𝑑𝐫 = ∫ ( ∑ 𝑎𝑚
∗

𝑚 𝜓𝑚
∗ )(∑ 𝑎𝑛𝑛 𝜓𝑛)

R
𝑑𝒓 = ∑ ∑ 𝑎𝑚

∗
𝑛 𝑎𝑛 ∫ 𝜓𝑚

∗
R

𝜓𝑛𝑑𝐫𝑚 =

∑ ∑ 𝑎𝑚
∗

𝑛 𝑎𝑛𝛿𝑚𝑛 = 1𝑚   

 

Hence  

                                                        ∑ | 𝑎𝑛|2
𝑛 = 1                                                          (2.1) 

 

Now, we compute the energy of the state 𝛹 by Schrödinger’s expectation value formula 

 

⟨H⟩ =
∫ Ψ∗H

R
𝛹𝑑𝐫

 ∫ Ψ∗
R

𝛹𝑑𝐫
  = ∫ Ψ∗H

R
𝛹𝑑𝐫,     𝛹 is normalized  
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Since 𝐻 is a linear operator, we get 

 

⟨H⟩  = ∫ (∑ 𝑎𝑚
∗ 𝜓𝑚

∗
𝑚 )H(∑ 𝑎𝑛𝜓𝑛𝑛 )

R
d𝐫 = ∫ (∑ 𝑎𝑚

∗ 𝜓𝑚
∗

𝑚 )(∑ 𝑎𝑛H𝜓𝑛𝑛 )
R

𝑑𝒓  

      = ∫ (∑ 𝑎𝑚
∗ 𝜓𝑚

∗
𝑚 )(∑ 𝑎𝑛En𝜓𝑛𝑛 )𝑑𝒓

R
 =  ∑ ∑ 𝑎𝑚

∗ 𝑎𝑛𝐸𝑛𝑛 ∫ 𝜓𝑚
∗ 𝜓𝑛𝑑𝐫 

R𝑚   

      =  ∑ ∑ 𝑎𝑚
∗ 𝑎𝑛𝐸𝑛

𝑛𝑚

𝛿𝑚𝑛  =  ∑|𝑎𝑛|2𝐸𝑛

𝑛

 

 

Since the ground state energy 𝐸𝑔𝑠  is the least energy. i.e.  𝐸𝑔𝑠 ≤ 𝐸𝑛 for all 𝑛 = 1,2,3, …, 

then 

⟨H⟩𝛹 ≥ 𝐸𝑔𝑠∑|𝑎𝑛|2 

and from equation (2.1) we get    

                                                          ⟨H⟩𝛹 ≥ 𝐸𝑔𝑠                                                            (2.2) 

This is the variational principle, and it means that the energy of any arbitrary state 𝛹 is an 

upper bound of the ground state energy. With this principle in mind, the steps of the 

variational method are: 

(i) Pick a nice trial wave function 𝛹 with parameters 𝑎, 𝑏, … to be determined. 

(ii) Compute its energy ⟨H⟩𝛹 . This will give a function of the parameters 𝑎, 𝑏, … 

(iii) Minimize ⟨H⟩𝛹 with respect to the parameters, then you get 

 

⟨H⟩Ψ𝑚𝑖𝑛
≃ 𝐸𝑔𝑠  

The following notes must be taken into consideration:  

(a) The choice of the trial wave function 𝛹 is up to the researcher, and it requires expertise 

and brilliance. 

(b) The variational method is used to estimate the ground state energy of the system. This 

must not be confused with the ground state itself. That is 𝛹 is not the ground state of the 

system. 

 

3. The Variational Monte Carlo Method 

The VMC method [1-4] can be considered as the variational method but with the use of the 

Monte Carlo technique for integration. In practice, the quantity: 

 

                                                     ⟨H⟩𝛹 =
∫ 𝛹∗

R
H𝛹𝑑𝐑

∫ 𝛹∗
R

𝛹𝑑𝐑
                                                      (3.1) 

 

is not easy to evaluate. It can even happen that it does not have a closed form. Hence the 

use of Monte Carlo. If we multiply and divide the integrals by 𝛹, we get: 

 

⟨H⟩𝛹 = ∫
|𝛹|2

∫ |
R

𝛹|2𝑑RR

H𝛹

𝛹
𝑑𝐑     

We put 

                                                   𝜌(R) =
|𝛹|2

∫ |
R

𝛹|2𝑑𝐑
                                                          (3.2)               

and 

                                                     𝐸𝐿(R) =
H𝛹

𝛹
                                                               (3.3) 
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In the above equations R is the set of all possible coordinates 𝐑. We call 𝜌(R) the 

probability distribution function, and 𝐸𝐿(R) the local energy function. Hence, the 

expectation value (3.1) becomes 

                                                   ⟨H⟩𝛹 = ∫ 𝜌
R

(R)𝐸𝐿(R)𝑑𝐑                                            (3.4) 

with the property that  

∫ 𝜌
R

(R)𝑑𝐑 = 1 

we obtain 

                                                           ⟨H⟩𝛹 = 𝐸𝐿(R)                                                     (3.5) 

Now, we can estimate the expectation value of the local energy function by averaging its 

values at discrete 𝑁 points {𝐑1, 𝐑2, … 𝐑𝑁}. These points must be distributed by the 

probability distribution 𝜌(𝑅).   

Thus, we have [6] 

                                               ⟨H⟩𝛹 = 𝐸𝐿(R) ≈
1

𝑁
∑ 𝐸𝐿

𝑁
𝑖=1 (𝐑𝑖)                                     (3.6) 

The problem now turns to how we could get these points distributed by this particular 

distribution. This problem is solved in statistics by the sampling techniques. By the theory 

of continuous random variables, this integral represents the expectation value of the local 

energy function according to the distribution 𝜌(R) [6] 

 

                                                             ⟨H⟩𝛹 = 𝐸𝐿(R).                                                  (3.7)  

 

4. The Simple Harmonic Oscillator  

4.1 The Simple Harmonic Oscillator Using the Variational Method 

The simple harmonic oscillator has Hamiltonian given by 

                                                      𝐻 = −
ℏ2

2𝑚

𝑑2

𝑑𝑥2 +
1

2
𝑚𝜔2𝑥2                                        (4.1) 

We will try to estimate the ground state energy of the harmonic oscillator in one dimension. 

A common trial function is of a Gaussian form 

                                                              𝜓 = 𝐴𝑒−𝑎𝑥2
                                                      (4.2) 

where 𝐴 is a normalization constant, and 𝑎 is a parameter to be determined. 

Applying the normalization condition: 

∫ 𝜓∗∞

−∞
𝜓𝑑𝑥 = |𝐴|2 ∫ 𝑒−2𝑎𝑥2∞

−∞
= |𝐴|2√

𝜋

2𝑎
     

Thus, we have 

                                                         |𝐴|2 = √
2𝑎

𝜋
                                                            (4.3) 

From (4.2) we obtain 

 

                                                 
𝑑2𝜓

𝑑𝑥2 = 2𝑎𝐴[2𝑎𝑥2 − 1]𝑒−𝑎𝑥2
                                         (4.4)        

 

We will now compute the expectation value of the energy: 
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⟨H⟩𝜓 =  ∫ 𝜓∗H 𝜓 𝑑𝑥
∞

−∞
=  ∫ 𝜓∗ [

−ℏ2

2𝑚

𝑑2

𝑑𝑥2 +
1

2
𝑚𝜔2𝑥2] 𝜓 𝑑𝑥

∞

−∞
  

   

          =  ∫ 𝐴∗𝑒−𝑎𝑥2
(

−ℏ2

2𝑚
2𝑎𝐴[2𝑎𝑥2 − 1]𝑒−𝑎𝑥2

+
1

2
𝑚𝜔2𝑥2𝐴𝑒−𝑎𝑥2

) 𝑑𝑥
∞

−∞
  

       =
−ℏ2𝑎 |𝐴|2

𝑚
 ∫ [2𝑎𝑥2 − 1]𝑒−2𝑎𝑥2

 𝑑𝑥 +
|𝐴|2𝑚𝜔2

2
∫ 𝑥2𝑒−2𝑎𝑥2

 𝑑𝑥
∞

−∞

∞

−∞
   

          =  
−ℏ2𝑎 |𝐴|2

𝑚
(

1

2
√

𝜋

2𝑎
− √

𝜋

2𝑎
) +   

|𝐴|2𝑚𝜔2

8𝑎
√

𝜋

2𝑎
    

Substituting for the value of 𝐴, we get: 

                                                      ⟨H⟩𝜓 =
ℏ2𝑎

2𝑚
+

𝑚𝜔2

8𝑎
                                                    (4.5) 

The next step is to minimize ⟨H⟩𝜓 with respect to the parameter 𝑎. This means that: 
𝑑⟨H⟩𝜓

𝑑𝑎
= 0, from which we obtain 

ℏ2

2𝑚
−

𝑚𝜔2

8𝑎2 = 0. Hence, 

                                                                 𝑎 =
𝑚𝜔

2ℏ
.                                                         (4.6) 

 

Computing the second derivative and substituting for 𝑎, we get: 

 
𝑑2⟨H⟩𝜓

𝑑𝑎2 =
2𝑚𝜔2

8𝑎3 =
2ℏ3

𝑚2𝜔
> 0,   

then ⟨H⟩𝜓 is minimum at 𝑎. Substituting for 𝑎 into equation (4.5) we get the minimum 

energy 

                                                            ⟨H⟩𝜓min
=

1

2
ℏ𝜔                                                  (4.7) 

 

This is exactly the ground state energy of the harmonic oscillator obtained by solving the 

problem analytically. 

 

4.2 The Simple Harmonic Oscillator Using the VMC Method 

We recall that the expectation value of the energy ⟨H⟩𝜓 with respect to a trial wave function 

𝜓 is expressed as [6] 

                                                      ⟨H⟩𝜓 = ∫ 𝐸𝐿𝑥
(𝑥)𝜌(𝑥)𝑑𝑥                                          (4.8) 

It can be estimated as follows 

                                               ⟨H⟩𝜓 = 𝐸𝐿(𝑥) ≈
1

𝑁
∑ 𝐸𝐿

𝑁
𝑖=1 (𝑥𝑖)                                      (4.9) 

where the points {𝑥𝑖} are distributed according to a probability distribution function 𝜌(𝑥) 

given by 

                                                            𝜌(𝑥) =
|𝜓|2

∫ |
𝑥

𝜓|2𝑑x
                                                 (4.10)  

and the function 𝐸𝐿(𝑥) is the local energy function and is given by 𝐸𝐿(𝑥) =
H𝜓

�̃�
 . A common 

trial function to begin with is of Gaussian form, we put one parameter 𝛼 to calculate the 

minimum energy 

                                                               𝜓 = 𝑒−𝛼𝑥2
                                                     (4.11) 

The distribution function is calculated simply as follows: 

 

                                             𝜌(𝑥) =
𝑒−2𝛼𝑥2

∫ 𝑒−2𝛼𝑥2∞
−∞

𝑑x
= √

2𝛼

𝜋
𝑒−2𝛼𝑥2

                                 (4.12)  
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For simplicity and by a suitable choice of the physical units, we can put: 𝑚 = ℏ = 𝜔 = 1.  

    Acting on the trial wave function (4.11) by the Hamiltonian of the simple harmonic 

oscillator we get 

H𝜓 = (𝛼 + 𝑥2 (
1

2
− 2𝛼)) 𝑒−𝛼𝑥2

   

Hence, the local energy function is given by 

 

                                                     𝐸𝐿(𝑥) = 𝛼 + 𝑥2 (
1

2
− 2𝛼).                                      (4.13) 

Our mission is to get the minimum of the energy. To do that in MATLAB [14], we 

introduce some values for the parameter 𝛼 and compute the energy for each one, and finally 

we pick the minimum one. We use the Metropolis-Hastings algorithm [2] to estimate the 

value of the Hamiltonian for each 𝛼 according to the Monte Carlo technique. We generate 

the random trial points given the point 𝑥 by choosing them uniformly in the interval 
(𝑥 − 2, 𝑥 + 2). We implement all of these in the following code. We have made 20 

samples, 500,000 points each. 

 
seed = 1; rand( 'state' , seed ); %for reproducibility 

a = [0.1:.1:2]; 

x=[]; 

for i = [1:20]; 

targ = @(x) exp(-2*a(i)*x^2); %target distribution 

proprnd = @(x) x+ 4*(rand - 0.5); %random number generator for new points uniformly in interval (x-4, 
x+4) 

proppdf = @(x,y) 1/8; %propsal density function 

start = rand; %initialize 

nsample = 500000; %# of points 

sam = [start]; %the sample matrix 

for j = [1:1:nsample-1]; 

xt = proprnd(sam(j)) ; %new point 

r = (targ(xt)*proppdf(xt,sam(j))) / (targ(sam(j))*proppdf(sam(j),xt)); %calculate the ration 

if r > rand; 

sam(j+1) = xt; %accept 

else 
sam(j+1) = sam(j); %reject 

end 

end 

x = [x ; sam]; %matrix of samples 

end 

E= []; %matrix of energy 

for i = [1:20]; 

u = a(i) + ((x(i,:).^2) .* (0.5 - 2*(a(i)^2))); 

h = sum(u)/nsample; %energy 

E = [E ;h]; 

end 
H = min(E) 

r =find(E==H); 

alpha = a(r) 

 

 

and the output is 
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H=0.5000 

 

alpha= 0.5000 

 

We find the minimum energy is ⟨H⟩𝜓min
=

1

2
 which is equal to the exact energy given in 

equation (4.7) providing that 𝑚 = ℏ = 𝜔 = 1 with relatively small number of iterations. 

This is because the harmonic oscillator is much simpler than any other problem in which 

we use the VMC method. Here, We can see a plot of a random sample of the 20 samples 

we made in Figure-1.  

 

 
 

Figure-1 A random sample 

If we plot the values of the energy for each value of 𝛼 against the values of 𝛼 we get the 

plot in the figure-2, and we are ensuring that the minimum energy is exactly at 𝛼 =
1

2
. 

 

 
 

Figure-2 Energy of the harmonic oscillator as a function of alpha 

 

5. The Hydrogen Atom 

5.1 The Hydrogen Atom Problem 

The Hydrogen atom is a two-body problem. We have a proton and an electron, so we have 

the Hamiltonian of the system as [15] 
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                                         H =
−ℏ2

2𝑚1
∇1

2 −
−ℏ2

2𝑚2
∇2

2 −
𝑒2

4𝜋𝜖0𝑟
                                                (5.1) 

where ∇1
2 and ∇2

2 denote the Laplacian ∇2 computed at the coordinates of the electron and 

the proton, respectively. 𝑚1 is the mass of the electron, and 𝑚2 is the proton mass. The 

third term is the electric potential which depends on the distance 𝑟 between the electron 

and the proton where 𝐫𝟏 and 𝐫𝟐 are the coordinates of the electron and the proton, 

respectively. Hence, the complete solution for the Hydrogen atom expressed in terms of 

𝑟, 𝜃, 𝜙 is [15] 

                                  𝜓𝑙𝑚𝑛(𝑟, 𝜃, 𝜙) = 𝐴(𝛼𝑟)𝑙𝑒−
1

2
𝛼𝑟𝐿𝑛+𝑙

2𝑙+1(𝛼𝑟)𝑌𝑙,𝑚(𝜃, 𝜙)                     (5.2) 

where the constant 𝐴 can be calculated by the normalization condition 

 

∫ ∫ ∫ |
2𝜋

𝜙=0

𝜋

𝜃=0

∞

𝑟=0
𝜓𝑙𝑚𝑛|2𝑟2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙 = 1  

The energy is given by   

                                                 𝐸𝑛 = −
𝜇𝑒4

2(4𝜋2𝜖0)2𝑛2ℏ2                                                      (5.3) 

Putting the values of the constants in the right-hand side, we get the energy for the ground 

state (𝑛 = 1) 

                                                𝐸𝑔𝑠 = −13.6057eV                                                        (5.4)  

This is the ground state energy of the hydrogen atom to the 4th decimal place. We shall 

approximate it in the next two sections. 

 

5.2 The Hydrogen Atom in the Variational Method 

We know that the hydrogen atom is spherically symmetric due to the symmetry of the 

electric potential around the nucleus 

                                                         𝑉(𝑟) =
𝑒2

4𝜋𝜖0𝑟
                                                          (5.5)                                                       

So, a reasonable trial wave function can be taken as a function of the radial coordinate 𝑟  

 

                                                           𝜓 = 𝐴𝑒−𝛼𝑟                                                           (5.6) 

where 𝐴 is a normalization constant, and 𝛼 is a parameter to be determined. Applying the 

normalization condition: 

∫ 𝜓∗∞

0
𝜓𝑟2𝑑𝑟 = |𝐴|2 ∫ 𝑟2∞

0
𝑒−2𝛼𝑟𝑑𝑟 = |𝐴|2 (

1

4𝑎3) = 1    

we get 

                                                         |𝐴|2 = 4𝛼3                                                            (5.7) 

Since 𝜓 is a function of 𝑟 only so ∇2𝜓 in the spherical polar coordinates becomes 

 

∇2𝜓 =
1

𝑟2

𝑑

𝑑𝑟
(𝑟2 𝑑

𝑑𝑟
) 𝜓 =

1

𝑟2

𝑑

𝑑𝑟
(−𝛼𝑟2𝐴𝑒−𝛼𝑟) = 𝐴 (𝛼2 −

2𝛼

𝑟
) 𝑒−𝛼𝑟                               (5.8) 

 

Assuming that the nucleus is fixed, then the Hamiltonian of the system is 

 

                                                H =  
−ℏ2

2𝑚
∇2 −  

𝑒2

4 𝜋𝜖0𝑟
                                                       (5.9) 

So that, 

                                         H =  
−ℏ2

2𝑚
(𝛼2 −

2𝛼

𝑟
) −  

𝑒2

4 𝜋𝜖0𝑟
                                               (5.10) 
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Computing the expectation value of the energy we get 

 

⟨H⟩𝜓 = ∫ 𝜓∗∞

0
H𝜓𝑟2𝑑𝑟 = ∫ 𝑒−𝛼𝑟∞

0
[

−ℏ2|𝐴|2

2𝑚
(𝛼2 −

2𝛼

𝑟
) 𝑒−𝛼𝑟 −

𝑒2|𝐴|2

4𝜋𝜖0𝑟
𝑒−𝛼𝑟)] 𝑟2𝑑𝑟          

 

= |𝐴|2 [
−ℏ2𝛼2

2𝑚
∫ 𝑒−2𝛼𝑟𝑟2𝑑𝑟 + (

ℏ2𝛼

𝑚
−

𝑒2

4 𝜋𝜖0
)

∞

0
∫ 𝑒−2𝛼𝑟∞

0
𝑟𝑑𝑟]  

 

= |𝐴|2 [−
ℏ2

8𝑚𝛼
+ (

ℏ2𝛼

𝑚
−

𝑒2

4 𝜋𝜖0
) (

1

4𝛼2)]       

Substituting for the value of 𝐴, we get: 

 

                       ⟨H⟩𝜓 = 4𝛼3 [−
ℏ2

8𝑚𝛼
+ (

ℏ2

4𝑚𝛼
−

𝑒2

16 𝜋𝜖0𝛼2
)] = [

ℏ2𝛼2

2𝑚
−

𝑒2𝛼

4 𝜋𝜖0
]                   (5.11) 

Now, we want to minimize the energy with respect to 𝛼;  
𝑑⟨H⟩𝜓

𝑑𝛼
= 0, to obtain  

                                                         𝛼 =
𝑚𝑒2

4𝜋ℏ2𝜖0
.                                                          (5.12)     

Substituting this value in (5.11) we get the minimum value of the energy 

                                                       ⟨H⟩𝜓min
=

−𝑚𝑒4

2(4𝜋𝜖0)2ℏ2                                              (5.13) 

This is again the same value of the analytical result.                                    

    It must be noted that it is not the case in every situation we can reach the true value of 

the ground state with just one parameter. In most cases, we get a poor estimation. We need 

to assume more parameters to get a good approximation. 

 

5.3 The Hydrogen Atom in the VMC Method 

We will assume that the nucleus is fixed. Since the Hydrogen atom is spherically symmetric 

about the nucleus, we put the trial function as a function of the distance between the 

electron and the proton. In the spherical coordinates, it will depend only on 𝑟. We put 

 

                                                       𝜓 = 𝑒−𝛼𝑟                                                                (5.14) 

We will use the atomic units in which 

                                                 𝑚 = ℏ = 𝑒 =
1

4𝜋𝜖0
= 1                                               (5.15) 

The expectation value is given by 

⟨H⟩𝜓 =
∫ 𝜓∗∞

0
H𝜓𝑟2𝑑𝑟

∫ |
∞

0
𝜓|2𝑟2𝑑𝑟

   

 

Now, we apply the Monte Carlo technique by multiplying and dividing by 𝜓 

 

                                             ⟨H⟩𝜓 = ∫
|𝜓|2

∫ |
∞

0
𝜓|2𝑟2𝑑𝑟

∞

0
(

H𝜓

𝜓
) 𝑟2𝑑𝑟                                   (5.16) 

This gives a distribution function 

                                                   𝜌(𝑟) =
|𝜓|2

∫ |
∞

0
𝜓|2𝑟2𝑑𝑟

                                                     (5.17) 

and a local energy function 

                                                    𝐸𝐿(𝑟) =
H𝜓

𝜓
                                                               (5.18) 
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Now the expectation value of the energy is the average of the local energy function of 𝑁 

points distributed according to 𝜌(𝑟) 

⟨H⟩𝜓 ≈
1

𝑁
∑ 𝐸𝐿

𝑁
𝑖=1 (𝑟𝑖)   

Calculating the distribution function 

                                             𝜌(𝑟) =
𝑒−2𝛼𝑟

∫ 𝑒−2𝛼𝑟∞
0

𝑟2𝑑𝑟
=

1

4𝛼3 𝑒−2𝛼𝑟                                     (5.19)                               

To calculate the local energy, recall the Hamiltonian of the hydrogen atom from equation 

(5.9). With the atomic units, it becomes 

H =
−1

2
∇2 −

1

𝑟
  

Since the trial function is a function of 𝑟 only, then by expressing the operator ∇2 in the 

spherical coordinates, we have 

                                                   H =
−1

2

1

𝑟2

𝑑

𝑑𝑟
(𝑟2 𝑑

𝑑𝑟
) −

1

𝑟
                                            (5.20) 

This gives us 

                                                  𝐸𝐿(𝑟) =
−𝛼

2
(𝛼 −

2

𝑟
) −

1

𝑟
                                             (5.21) 

The following is the code for the hydrogen atom. It is the same as the harmonic oscillator 

code but with some modifications. the important one is that the values of 𝑟 must be positive. 

 
seed = 1; rand( 'state' , seed ); %for reproducibility 

a = [0.1:0.1:2]; 

s=size(a); 

r=[]; 
for i = [1:s(2)]; 

targ = @(r) (r^2)*exp(-2*a(i)*r); %target distribution 

proprnd = @(r) abs(r+ 4*(rand - 0.5)); %random number generator for new points uniformly in interval 

(r-4, r+4) 

proppdf = @(r,y) 1/8; %propsal density function 

start = rand; %initialize 

nsample = 500000; %# of points 

sam = [start]; %the sample matrix 

for j = [1:1:nsample-1]; 

rt = proprnd(sam(j)) ; %new point 

l = (targ(rt)*proppdf(rt,sam(j))) / (targ(sam(j))*proppdf(sam(j),rt)); %calculate the ration 

if l > rand; 
sam(j+1) = rt; %accept 

else 

sam(j+1) = sam(j); %reject 

end 

end 

r = [r ; sam]; %matrix of samples 

end 

E= []; %matrix of energy 

for i = [1:s(2)]; 

u = (-a(i)/2)*(a(i)- 2./ r(i,:)) - 1./r(i,:) ; 

h = sum(u)/nsample; %energy 
E = [E ;h]; 

end 

H = min(E) 

q =find(E==H); 

alpha = a(q) 
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and the output is  

 
H=-0.5000 

alpha =  1 

 

This is the exact value of the ground state energy of the hydrogen atom. However, in most 

cases when we do not have the exact form of the wave function of the problem under study, 

we do not get the exact value of the ground state energy by applying the VMC. Instead, we 

got a good approximation comparing to the experimental value of the energy. 

If we plot the energy as a function of the parameter variable 𝛼 we get the plot in figure-3. 

 

 
Figure-3 Energy of the hydrogen atom as a function of alpha 

 

We must note that when using the VMC method with the Metropolis-Hastings algorithm 

[16], we did not use the normalization constant appeared in the denominator of the 

distribution function (5.19). This is because the Metropolis-Hastings algorithm samples the 

required distribution up to a constant. This is a powerful advantage of this method since it 

gives us the freedom of choosing any trial function without worrying about its complexity 

to calculate the normalization constant. 
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